— 12 — 2013-12-09 — main —

Sdtware Design, Modelling andAnalysisin UML

Ledure 12: Core Sate Machines||
201312-09

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 12 — 2013-12-09 — Sprelim —

Last Lecture:
o State machine syntax

e core state machines

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.
o What does this State Machine mean? What happens if | inject this event?
o Can you please model the following behaviour.

o What is: Signal, Event, Ether, Transformer, Step, RTC.

o Content:
o The basic causality model
o Ether
o System Configuration, Transformer

Examples for transformer

o Run-to-completion Step

2/68

The Basic Causality Model

— 12 - 2013-12-09 — main

6.2.3 The Basic Causality Model [oma, 20074 12

“*Causality model’ is a specification of how things happen at run time [...].

The causality model is quite straightforward:

Objects respond to messages that are generated by objects executing
communication actions.

When these messages arrive, the receiving objects eventually respond
by executing the behavior that is matched to that message.

The dispatching method by which a particular behavior is associated
with a given message depends on the higher-level formalism used and
is not defined in the UML specification

(i.e., it is a semantic variation point).

The causality model also subsumes behaviors invoking each other and pass-
ing information to each other through arguments to parameters of the in-
voked behavior, [...].

This purely ‘procedural’ or ‘process’ model can be used by itself or in con-
Jjunction with the object-oriented model of the previous example.”

— 12 — 2013-12-09 — Sstmstd —

368

4/68

15.3.12 SateMachine [omg, 20074 563

— 12 — 2013-12-09 — Sstmstd —

Event occurrences are detected,
dispatched, and then processed by the
state machine, one at a time.

The semantics of event occurrence
processing is based on the run-to-
completion assumption, interpreted as
run-to-completion processing.
Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

The processing of a single event
occurrence by a state machine is known
as a run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not

necessarily do-activities) completed.

The same conditions apply after the
run-to-completion step is completed.

Thus, an event occurrence will never be
processed [...] in some intermediate and
inconsistent situation.

[IOW,] The run-to-completion step is

the passage between two state
configurations of the state machine.

The run-to-completion assumption sim-
plifies the transition function of the StM,
since concurrency conflicts are avoided
during the processing of event, allowing
the StM to safely complete its run-to-
completion step.

6/68

15.3.12 SateMachine [omgG, 20074 563

— 12 — 2013-12-09 — Sstmstd —

The order of dequeuing is not defined,
leaving open the possibility of modeling
different priority-based schemes.

Run-to-completion may be implemented
in various ways. [...]

7 /68

— 12 — 2013-12-09 — Sstmstd —

— 12 — 2013-12-09 — Sstmstd —

; Sty
C)12/ ® - y/@
X we LS goaln? &
== =4
Ous clance. of He
:fgz; ;G're C':S

—>@ge’)
i
E
t
ost remmins
W’-clmgn‘ 8/68
And? En#0/z:=x+1;n!F

F/x: \0\\\\/

— In:= x>0

I/

We have to formally define what event occurrence is.

We have to define where events are stored — what the event pool is.

We have to explain how transitions are chosen — “matching”.

We have to explain what the effect of actions is — on state and event pool.
We have to decide on the granularity — micro-steps, steps,
run-to-completion steps (aka. super-steps)?

We have to formally define a notion of stability and RTC-step completion.

And then: hierarchical state machines.

9/68

Roadmap: Chrondogically

(i) What do we (have to) cover?
UML State Machine Diagrams Syntax.

(ii) Def.: Signature with signals.

(iii) Def.: Core state machine.

; : - ¢ eocL
(iv) Map UML State I\/!achnne Diagrams ‘/}
to core state machines. % |
(Z,€,V, atr), SM expr
Semantics: 0 |
The Basic Causality Model J M= (22, Ay, —)

(v) Def.: Ether (aka. event pool) LILLA\L%\D

(vi) Def.: System configuration.

(vii) Def.: Event. %

(viii) Def.: Transformer. G=(N.E.f)

(ix) Def.: Transition system, computation. op

—~
X
—

Transition relation induced by core state ma-
chine.

(xi) Def.: step, run-to-completion step.

— 12 — 2013-12-09 — Sstmstd —

(xii) Later: Hierarchical state machines.

System Configuration, Ether, Transformer

— 12 - 2013-12-09 — main —

B = (Qsp,q0, Av,—sp, Fsp)

) Leonso Sndo), (conso,Sndo) 2

(01,€1) - <"\ Wy =

(04, cons;, Snd;)); e

10/68

12/68

Ether aka. Event Podl

Definition. Let ¥ = (J,%,V, atr, &) be a signature with signals
and 2 a structure.

We call a tuple (Eth, ready,®,O,[-]) an ether over . and 2 if
and only if it provides
a ready operation which yields a set of events that are ready for a

. . . -k(o eveat wdue an ()?Qt‘ ...qﬁ/q"m « set
given object, i.e. pool £6\“ Tdentity o . of ‘“'0‘”‘(/A

<t (& Cov exvents/
ready : Eth x 9(€) — 27(¢)
N set of & instusces

a operation to insert an event destined for a given object, i.e.
for Eq des‘-;z«ﬂou, M;:lt b d

©: Bth x D(€) x D(8) — Bty "5~
zl
a operation to remove an event, i.e.

E 1’
En e.wﬁt

V)
©: Eth x 9(&) — Eth

an operation to clear the ether for a given object, i.e.

s

[-]: Eth x 9(%) — Eth.

— 12 — 2013-12-09 — Sstmsem

K / 13/68
Ether: Examples (Et, resdy, @,0.03))
reacy + £, x DCC) —2
A (single, global, shared, reliable) FIFO queue is an ether:
Eth=(D (©) <DE)* /
all fade cequemces o s (Ge)e DCE)x D)
e
ovead reaayy tuelC, g, oWorsse il of deshuabp, odyce
ole,u.e) = & (ve)
Y if f=e
o lwe).g, F) = {(W‘).g, sflusense
[]: remeve all (ue) pois fram gives Jeguenmce
One FIFO queue per active object is an ether. [Rexpsoly s choiee
(Lossy queue.) (because @, medy are febncHon)
One-place buffer.
Priority queue.
Multi-queues (one per sender).
; Trivial example: sink, “black hole”.
; Sedt o{ Qx&vfl'é
14/68

15.3.12 SateMachine [omg, 20074 563

— 12 — 2013-12-09 — Sstmsem —

The order of dequeuing is not defined, Run-to-completion may be implemented
leaving open the possibility of modeling in various ways. |[...]
different priority-based schemes.

15/68

Ether and[OMG, 2007l Y receviny Haeas place ”

— 12 — 2013-12-09 — Sstmsem —

mare conCeptionad; foy vst clispatels /discad
The standard distinguishes (among ofhers)
SignalEvent [OMG, 2007b, 450] and Reception [OMG, 2007b, 447].

On SignalEvents, it says v us:eventd

A Wt represents the receipt of an asynchronous signal instance. A
signal event may, for example, cause a state machine to trigger a transi-

tion. [OMG, 2007b, 449]
[] = nessages

Semantic Variation Points/

The means by which are transported to their target depend on the
pe of requesting action, the target, the properties of the communication
medium, and numerous other factors.

In some cases, this is instantaneous and completely reliable while in others
it may involve transmission delays of variable duration, loss of requests,
reordering, or duplication.y *

(See also the discussion on page 421.) [OMG, 2007b, 450]
Our ether is a general representation of the possible choices. (':l,:- weads relobiss)
Often seen minimal requirement: order of sending by one object is preserved.

16/68

System Configuration

Definition. Let 4 = (9, %o, Vo, atrg, &) be a signature with signals,
Do a structure of %, (Eth, ready, ®, S, [-]) an ether over % and %.
Furthermore assume there is one core state machine M per class C € €.

A system configuration over .%y, %y, and Eth is a pair

vaine fov each
:&f: ol (0,€) € 2 x Eth
where
Y:(%U{SMC|C€<€}, %0,

He Vo U {(stable : Bool,—, true, 0)}

oaly fiales U {(stc : Sug, +,50,0) | C € €} sl
b e e T b & g b
. U {(paramsg : Eo1,+,0,0) | E € &}, owtes 1
e mf Qﬁ‘lfbufe&'

g) s {C' — atro(C)
U {stable, stc} U {paramsy | E € &} | C € ‘5};& &)

— ¢ of
92900{%HS(MC)|C€<K},and Sk wackive Ko oA C

>« o(u)(r) N D(&) = 0 for each u € dom(c) and r € Vj. j
7/68

_

/)=

— 12 — 2013-12-09 — Sstmse

E
x: lut

8 - (§tS, $¢.E3, fa,d, i otxt Ealf, 3€3)

\Sr ({lw{'l‘s,chlzclEs, 5
{ a,x, shbe,: Bool , .\fd:S/,cgu § mi‘i::} x= 27 Wr/

e §x, shle, , st o { o, prnoss b =S¢

E£r 1abf,
{E’)/ quuvs

OCou)- E505,55

System Configuation Sep-by-Sep

— 12 — 2013-12-09 — Sstmsem —

— 12 - 2013-12-09 — main —

o We start with some signature with signals % = (%, %, Vo, atrg, &).

o A system configuration is a pair (o, &) which
comprises a system state o wrt. . (not wrt. .%;).

o Such a system state o wrt. . provides, for each object u € dom(o),

o values for the explicit attributes in 1},
o values for a number of implicit attributes, namely
 a stability flag, i.e. o(u)(stable) is a boolean value,
o a current (state machine) state, i.e. o(u)(st) denotes one of the
states of core state machine M¢,

e a temporary association to access event parameters for each class,
i.e. o(u)(paramsy) is defined for each E € &.

o For convenience require: there is no link to an event except for paramsy.

References

18/68

67 /68

— 12 - 2013-12-09 — main

References

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. IEEE Computer, 30(7):31-42.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

68/68

