Contents & Goals

Sdtware Design, Modelling andAnalysisin UML

Ledure 12: Core Sate Machines I

201312-09

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

6.2.3 The Basic Causality Model [omg, 2007h 17

Last Lecture:

« State machine syntax

© core state machines

This Lecture:

« Educational Objectives: Capabilities for following tasks/questions.

= What does this State Machine mean? What happens if | inject this event?

= Can you please model the following behaviour.
« What is: Signal, Event, Ether, Transformer, Step, RTC.

Content:

o The basic causality model

o Ether

« System Configuration, Transformer
« Examples for transformer

« Run-to-completion Step

15.3.12 SateMachine [omg, 2007h 563

“‘Causality model’ is a specification of how things happen at run time [...].
The causality model is quite straightforward:
« Objects respond to messages that are generated by objects executing
communication actions.
« When these messages arrive, the receiving objects eventually respond
by executing the behavior that is matched to that message.
« The dispatching method by which a particular behavior is associated
with a given message depends on the higher-level formalism used and
is not defined in the UML specification
(i.e., it is a semantic variation point).

The causality model also subsumes behaviors invoking each other and pass-
ing information to each other through arguments to parameters of the in-
voked behavior, |...].

1200

This purely ‘procedural” or ‘process’ model can be used by itself or in con-
junction with the object-oriented model of the previous example. g

Event occurrences are detected, .
patched, and then processed by the
state machine, one at a time.

The semantics of event occurrence
processing is based on the run-to-
completion assumption, interpreted as
run-to-completion processing.

Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.
The processing of a single event
occurrence by a state machine is known
as a run-to-completion step.

Before commencing on a run-to-

completion step, a state machine
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

The same conditions apply after the
run-to-completion step is completed.
Thus, an event occurrence will never be
processed [...] in some intermediate and
inconsistent situation.

[IOW,] The run-to-completion step is
the passage between two state
configurations of the state machine.

The run-to-completion assumption sim-
plifies the transition function of the StM,
since concurrency conflicts are avoided

during the processing of event, allowing
the StM to safely complete its run-to-
completion step.

The Basic Causality Model

15.3.12 SateMachine [omg, 2007 563

© The order of dequeuing is not defined,
leaving open the possi
different priority-based schemes.

ity of modeling in various ways. [..]

* Run-to-completion may be implemented

System Configuration, Ether, Transformer

1276

And?

3

Ffz:=0

We have to formally define what event occurrence is.
We have to define where events are stored — what the event pool is.

We have to explain how transitions are chosen — "matching”.

« We have to explain what the effect of actions is — on state and event pool.
+ We have to decide on the granularity — micro-steps, steps,
run-to-completion steps (aka. super-steps)?

We have to formally define a notion of stal

y and RTC-step completion.

© And then: hierarchical state machines

Ether aka. Event Pod

~

Definition. Let . = (7,4, V, atr, &) be a signature with signals
and Z a structure.

We call a tuple (Eth, ready, ®, 6, [-]) an ether over # and 2 if
and only if it provides
+ a ready operation which yields a set of events that are ready for a
given object, e, for, 0 et jlelar el oo o = e
~ P v
ready : Bith x 9(€) 276l ewds]
N set of £ instonces

« a operation to insert an event destined for a given object, i.e.
dv Eq o desHgadon, eeat obte d
@ Eth x 9(€) x 9(8) — Blp #0s%”

&

« a operation to remove an event, i.e. o
e oyt i)
o : Bth x 9(&) — Eth

« an operation to clear the ether for a given object

[-]: Eth x 9(€) — Eth.

K 1368

Roadmap: Chrondogically

(i) What do we (have to) cover?
UML State Machine Diagrams Syntax.

(if) Def.: Signature with signals. ,

) Def.: Core state machine. s%

) Map UML State Machine Diagrams
to core state 3mn:.§mm.'\

Semantics:
The Basic Causality Model v~

Def.: Ether (aka. event pool)
Def.: System configuration.
Def.: Event.

Def.: Transformer.

Def.: Transition system, computation. ‘op

Def.: step, run-to-completion step.

Later: Hierarchical state machines.

1006
Ether: Examples (et reety, @,0.02)
- ready 1 £, x DCe) LN?Q
» A (single, global, shared, reliable) FIFO queue is an ether:
- Eu=PERE o
Bur el of Al bk sequeeces of paire (ye) e DCE)x D)
wsi <~ ready{ (welE,v): x%&. if v=v »mdhmﬂ.&%w!\ sastuce

o efgvie) = (ue) ¥ Lo obpee
cotwaa F) = {E) S

tmeve all (ve) s fram girtn Sepence
= One FIFO queue per active object is an ether. [Rlepsodss dec]
h. Lossy n:m:m.v (becavse @, rmdy are fuunchon)

= One-place buffer.

« Priority queue.

« Multi-queues (one per sender).

01312.09 - Su

« Trivial example: sink, “black hole”.
Lo Seb of ermrbs

' o 14/6

15.3.12 SateMachine [oma, 2007h 563

« The order of dequeuing is not defined, o Run-to-completion may be implemented
ity of modeling in various ways. [..]

leaving open the possi
ferent priority-based schemes.

15/6

sl A
¢ (m.s ﬁ nJV,‘@
o®

3,- (18, 3063, fand ortit, €13, 163)

S ({1t S 3,108,
for shllegs Bl g Sufu § 20 52
60 Sx, Shiler, e U { s, prvbosi
) m;w\\
1eb),

DOCu,) = fs0,51,%§

receiviey kot plte”

Ether and[OMG, 20074
waire. comcepiond; ot vS' clispotels /eiscand
The standard distinguishes (among ofhers)
« SignalEvent [OMG, 2007b, 450] and Reception [OMG, 2007b, 447].
v uS: cvent
. . .4
A signal everit represents the receipt of an asynchronous signal instance. A

signal event may, for example, cause a state machine to trigger a transi-
tion. [OMG, 2007b, 449]

[-] = nassager

Semantic Variation Points //

The means by which fequestS)are transported to their target depend on the
pe of requesting action, the target, the properties of the communication
medium, and numerous other factors.

On SignalEvents, it says

reliable while in others
.

In some cases, this is i and
loss of requests,

it may involve transmission delays of variable duration,
reordering, or duplication.s .
(See also the discussion on page 421.) [OMG, 2007b, 450]

Our ether is a general representation of the possible choices. (. keeds relaios)

Often seen minimal requirement: order of sending by one object is preserved.
But—weHaterbriefty-di i ing“—of events. 1606

System Configuration Sep-by-Step

« We start with some signature with signals % = (%, 6o, V. atro, &).

« A system configuration is a pair (o, €) which
comprises a system state o wrt. . (not wrt. .%p).

» Such a system state o wrt. .% provides, for each object u € dom(o),

it attributes in Vj,
attributes, namely

+ values for the exp

« values for a number of impl

y flag, i.e. o(u)(stable) is a boolean value,

e acurrent (state machine) state, i.e. o(u)(st) denotes one of the
states of core state machine M,

« a temporary association to access event parameters for each class,
i.e. o(u)(params) is defined for each £ € &.

« For convenience require: there is no link to an event except for params .

186

System Configuation

FRTEr

s

~

Definition. Let % = (%, 6o, Vo, atro, &) be a signature with signals,
9y a structure of ., (Eth, ready, &, S, [-]) an ether over % and 7.
Furthermore assume there is one core state machine M per class C € €.
A system configuration over .%, Zo, and Eth is a pair
;hﬂeﬂnﬁx e (0,¢) € 52 x Eth o
o wta T e POZVE
where & A
G G AL I P
Vo U {(stable : Bool, —, true, 0)} iitial shte o A
jinles § — 5
U {(sto : Smg,+0,0) | C € €} ek dpct e Kl
toids . ~A b & ﬁw«.\k hstahges
yia U {{params B, +,0,0) | E€ &}, /7 W0 % accesd
s g
e {C > atro(C) et athiboted
U {stable, st} U {paramsy, | E € &} | C € €}, &)
. s of shhc o]
© 2= U Sy — S(Mc) | C €€}, and sk wadive Kz o C
A
N o a(u)(r) N 2(&) = 0 for each u € dom(c) and 7 € Vq. D,
e
References
675

References

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling
with statecharts. IEEE Computer, 30(7):31-42

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal /07-11-02.

20131209 - main -

6865

