Software Design, Modelling and Analysis in UML

Lecture 14: Core State Machines IV

2013-12-18

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- System configuration
- Transformer
- Action language: skip, update, send

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What does this State Machine mean? What happens if I inject this event?
- Can you please model the following behaviour.
- What is: Signal, Event, Ether, Transformer, Step, RTC.
- Content:
- Transformers for Action Language
- Run-to-completion Step
- Putting It All Together

Transformer Cont'd

Transformer: Create (*) so not: $x:=\left(\text { new } C^{\prime}\right)^{\prime} x+$ new C	if readed
abstract syntax concrete syntax create $(C, \operatorname{expr}, v)$ exp $1 . v:=$ new C	
intuitive semantics Create an object of class C and assign it to attribute v of the object denoted by expression expr.	
well-typedness $\operatorname{expr}: \tau_{D}, v \in \operatorname{atr}(D), \operatorname{atr}(C)=\left\{\left\langle v_{\mathbf{1}}^{*}: \tau_{\mathbf{i}}^{\mathbf{i}}, \exp r_{i}^{0}\right\rangle \mid 1 \leq i \leq n\right\}$	
semantics	
observables	
(error) conditions $I \llbracket \operatorname{expr} \rrbracket(\sigma, \beta)$ not defined.	

- We use an "and assign"-action for simplicity - it doesn't add or remove (*) expressive power, but moving creation to the expression language raises all kinds of other problems such as order of evaluation (and thus creation).
- Also for simplicity: no parameters to construction (\sim parameters of constructor). Adding them is straightforward (but somewhat tedious).

Create Transformer Example
$\mathcal{S M}_{C}:$

How To Choose New Identities?

- Re-use: choose any identity that is not alive now, i.e. not in $\operatorname{dom}(\sigma)$.
- Doesn't depend on history.
- May "undangle" dangling references - may happen on some platforms.
- Fresh: choose any identity that has not been alive ever, i.e. not in $\operatorname{dom}(\sigma)$ and any predecessor in current run.
- Depends on history.
- Dangling references remain dangling - could mask "dirty" effects of platform.

Transformer: Create

Transformer: Destroy

abstract syntax destroy (expr)	concrete syntax delete expr
intuitive semantics	
Destroy the object denoted by expression expr.	
well-typedness	
$\operatorname{expr}: \tau_{C}, C \in \mathscr{C}$	
semantics	
observables	
Obs $s_{\text {destroy }}\left[u_{x}\right]=\left\{\left(u_{x}, \perp,(+, \emptyset), u\right)\right\}$	
(error) conditions	

What to Do With the Remaining Objects?

Assume object u_{0} is destroyed. . .

- object u_{1} may still refer to it via association r :
- allow dangling references?
(1)
- or remove u_{0} from $\sigma\left(u_{1}\right)(r)$?

- object u_{0} may have been the last one linking to object u_{2} :
(2) leave u_{2} alone?
- or remove u_{2} also? ("garbage collection")
- Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!
This is in line with "expect the worst", because there are target platforms which don't provide garbage collection - and models shall (in general) be correct without assumptions on target platform.

But: the more "dirty" effects we see in the model, the more expensive it often is to analyse. Valid proposal for simple analysis: monotone frame semantics, no destruction at all.

Transformer: Destroy

```
abstract syntax
```

 concrete syntax
 destroy (exp)
intuitive semantics
Destroy the object denoted by expression expr.
well-typedness $\operatorname{expr}: \tau_{C}, C \in \mathscr{C}$
semantics

$$
t\left[u_{x}\right](\sigma, \varepsilon)=\left(\sigma^{\prime}, \varepsilon\right) \quad \text { function restriction }
$$

where $\sigma^{\prime}=\sigma{ }_{\operatorname{dom}(\sigma) \backslash\{u\}}$ with $u=I \llbracket \operatorname{expr} \rrbracket\left(\sigma, \boldsymbol{\varphi}_{\mathbf{x}}\right)$.
observables

$$
O b s_{\text {destroy }}\left[u_{x}\right]=\left\{\left(u_{x}, \perp,(+, \emptyset), u\right)\right\}
$$

(error) conditions

$$
I \llbracket \operatorname{expr} \rrbracket\left(\sigma, \boldsymbol{u}_{\mathbf{x}}\right) \text { not defined. }
$$

Sequential Composition of Transformers

- Sequential composition $t_{1} \circ t_{2}$ of transformers t_{1} and t_{2} is canonically defined as
with observation

$$
O b s_{\left(t_{2} \circ t_{1}\right)}\left[u_{x}\right](\sigma, \varepsilon)=O b s_{t_{1}}\left[u_{x}\right](\sigma, \varepsilon) \cup O b s_{t_{2}}\left[u_{x}\right]\left(t_{1}(\sigma, \varepsilon)\right) .
$$

- Clear: not defined if one the two intermediate "micro steps" is not defined.

Transformers And Denotational Semantics

Observation: our transformers are in principle the denotational semantics of the actions/action sequences. The trivial case, to be precise.

Note: with the previous examples, we can capture

- empty statements, skips,
- assignments,
- conditionals (by normalisation and auxiliary variables),

- create/destroy,
$\angle x>0 J / x:=x-1$
but not possibly diverging loops.

Our (Simple) Approach: if the action language is, e.g. Java, then (syntactically) forbid loops and calls of recursive functions.
Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted into transition cycles in the state machine.

Transition Relation, Computation

Definition. Let A be a set of actions and S a (not necessarily finite) set of of states.
We call

$$
\rightarrow \subseteq S \times A \times S
$$

a (labelled) transition relation.
Let $S_{0} \subseteq S$ be a set of initial states. A sequence

$$
\underbrace{s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{a_{1}} s_{2} \xrightarrow{a_{2}} \ldots .}
$$

with $s_{i} \in S, a_{i} \in A$ is called computation of the labelled transition system $\left(S, \rightarrow, S_{0}\right)$ if and only if

- initiation: $s_{0} \in S_{0}$
- consecution: $\left(s_{i}, a_{i}, s_{i+1}\right) \in \rightarrow$ for $i \in \mathbb{N}_{0}$.

Note: for simplicity, we only consider infinite runs.

Active vs. Passive Classes/Objects

- Note: From now on, assume that all classes are active for simplicity.

We'll later briefly discuss the Rhapsody framework which proposes a way how to integrate non-active objects.

- Note: The following RTC "algorithm" follows [Harel and Gery, 1997] (i.e. the one realised by the Rhapsody code generation) where the standard is ambiguous or leaves choices.

From Core State Machines to LTS

Definition. Let $\mathscr{S}_{0}=\left(\mathscr{T}_{0}, \mathscr{C}_{0}, V_{0}, a t r_{0}, \mathscr{E}\right)$ be a signature with signals (all classes active), \mathscr{D}_{0} a structure of \mathscr{S}_{0}, and (Eth, ready $\left.\oplus, \ominus,[\cdot]\right)$ an ether over \mathscr{S}_{0} and \mathscr{D}_{0}.
Assume there is one core state machine M_{C} per class $C \in \mathscr{C}$.
We say, the state machines induce the following labelled transition relation on states

- $(\sigma, \varepsilon) \xrightarrow[u]{\substack{\text { (cons,Snd })}}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$
if and only if
(i) an event with destination u is discarded,
(ii) an event is dispatched to u, i.e. stable object processes an event, or
(iii) run-to-completion processing by u commences,
i.e. object u is not stable and continues to process an event,
(iv) the environment interacts with object u,
- $s \xrightarrow{(\text { cons }, \emptyset)} \#$
if and only if
(v) $s=\#$ and cons $=\emptyset$, or an error condition occurs during consumption of cons.

(i) Discarding An Event

$$
(\sigma, \varepsilon) \xrightarrow[u]{(\text { cons }, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if

- an E-event (instance of signal E) is ready in ε for object u of a class \mathscr{C}, i.e. if

$$
u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \exists u_{E} \in \mathscr{D}(\mathscr{E}): u_{E} \in \operatorname{ready}(\varepsilon, u)
$$

- u is stable and in state machine state s, i.e. $\sigma(u)($ stable $)=1$ and $\sigma(u)(s t)=s$,
- but there is no corresponding transition enabled (all transitions incident with current state of u either have other triggers or the guard is not satisfied)

$$
\forall\left(s, F, \operatorname{expr}, a c t, s^{\prime}\right) \in \rightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): F \neq E \vee I \llbracket \exp r \rrbracket(\sigma, v)=0
$$

and

- the system configuration doesn't change, i.e. $\sigma^{\prime}=\sigma$
- the event u_{E} is removed from the ether, i.e.

$$
\varepsilon^{\prime}=\varepsilon \ominus u_{E}
$$

- consumption of u_{E} is observed, i.e.

$$
\text { cons }=\left\{\left(u,\left(E, \sigma\left(u_{E}\right)\right)\right)\right\}, \text { Snd }=\emptyset
$$

Example: Discard

$$
[x>0] / x:=x-1 ; n!J
$$

(ii) Dispatch

$$
(\sigma, \varepsilon) \xrightarrow[u]{(c o n s, S n d)}\left(\sigma_{\mu}^{\prime}, \varepsilon^{\prime}\right) \text { if }
$$

- $u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \exists u_{E} \in \mathscr{D}(\mathscr{E}): u_{E} \in \operatorname{ready}(\varepsilon, u)$
- u is stable and in state machine state s, i.e. $\sigma(u)($ stable $)=1$ and $\sigma(u)(s t)=s$,
- a transition is enabled, i.e.

$$
\exists\left(s, F, \operatorname{expr}, a c t, s^{\prime}\right) \in \rightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): F=E \wedge I \llbracket \operatorname{expr} \rrbracket\left(\tilde{\sigma}_{,}\right)=1
$$

where $\tilde{\sigma}=\sigma\left[\right.$ u.params $\left._{E} \mapsto u_{E}\right]$.
and

- $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ results from applying $t_{a c t}$ to (σ, ε) and removing u_{E} from the ether, i.e.

$$
\begin{gathered}
\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right) \in t_{a c t}\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right), \\
\sigma^{\prime}=\left(\sigma^{\prime \prime}\left[u . s t \mapsto s^{\prime}, \text { u.stable } \mapsto b, \text { u.params }{ }_{E} \mapsto \emptyset\right]\right)
\end{gathered}
$$

where b depends:

- If u becomes stable in s^{\prime}, then $b=1$. It does become stable if and only if there is no transition without trigger enabled for u in $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$.
- Otherwise $b=0$.
- Consumption of u_{E} and the side effects of the action are observed, i.e.

$$
\text { cons }=\left\{\left(u,\left(E, \sigma\left(u_{E}\right)\right)\right)\right\}, S n d=O b s_{t_{a c t}}\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right)
$$

(iii) Commence Run-to-Completion

$$
(\sigma, \varepsilon) \xrightarrow[u]{(\text { cons }, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if

- there is an unstable object u of a class \mathscr{C}, i.e.

$$
u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \sigma(u)(\text { stable })=0
$$

- there is a transition without trigger enabled from the current state $s=\sigma(u)(s t)$, i.e.

$$
\exists\left(s,_{-}, \operatorname{expr}, a c t, s^{\prime}\right) \in \longrightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): I \llbracket \operatorname{expr} \rrbracket\left(\sigma_{,}^{\prime}\right)=1
$$

and

- $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ results from applying $t_{\text {act }}$ to (σ, ε), i.e.

$$
\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right) \in t_{a c t}[u](\sigma, \varepsilon), \quad \sigma^{\prime}=\sigma^{\prime \prime}\left[u . s t \mapsto s^{\prime}, u . s t a b l e \mapsto b\right]
$$

where b depends as before.

- Only the side effects of the action are observed, i.e.

$$
c o n s=\emptyset, S n d=O b s_{t_{a c t}}(\sigma, \varepsilon)
$$

(iv) Environment Interaction

Assume that a set $\mathscr{E}_{e n v} \subseteq \mathscr{E}$ is designated as environment events and a set of attributes $v_{e n v} \subseteq V$ is designated as input attributes.

Then

$$
(\sigma, \varepsilon) \xrightarrow[e n v]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if

- an environment event $E \in \mathscr{E}_{\text {env }}$ is spontaneously sent to an alive object $u \in \mathscr{D}(\sigma)$, i.e.

$$
\sigma^{\prime}=\sigma \dot{\cup}\left\{u_{E} \mapsto\left\{v_{i} \mapsto d_{i} \mid 1 \leq i \leq n\right\}, \quad \varepsilon^{\prime}=\varepsilon \oplus u_{E}\right.
$$

where $u_{E} \notin \operatorname{dom}(\sigma)$ and $\operatorname{atr}(E)=\left\{v_{1}, \ldots, v_{n}\right\}$.

- Sending of the event is observed, i.e. cons $=\emptyset, \operatorname{Snd}=\{(e n v, E(\vec{d}))\}$.
or
- Values of input attributes change freely in alive objects, i.e.

$$
\forall v \in V \forall u \in \operatorname{dom}(\sigma): \sigma^{\prime}(u)(v) \neq \sigma(u)(v) \Longrightarrow v \in V_{e n v}
$$

and no objects appear or disappear, i.e. $\operatorname{dom}\left(\sigma^{\prime}\right)=\operatorname{dom}(\sigma)$.

- $\varepsilon^{\prime}=\varepsilon$.

(v) Error Conditions

$$
s \xrightarrow[u]{(\text { cons }, \text { Snd })} \#
$$

if, in (ii) or (iii),

- $I \llbracket \operatorname{expr} \rrbracket$ is not defined for σ, or
- $t_{\text {act }}$ is not defined for (σ, ε),

and
- consumption is observed according to (ii) or (iii), but $\operatorname{Snd}=\emptyset$.

Examples:

$\begin{aligned} & s_{1} \xrightarrow[{E[x / 0] / \text { act }}]{ } \xrightarrow{s_{2}} \\ & s_{3}\end{aligned}$

- $s_{1} \xrightarrow{E[\text { expr }] / x:=x / 0} s_{2}$
Example: Error Condition

$\sigma:$| $\frac{c: C}{}$ |
| :---: |
| $x=0, z=0, y=27$ |
| st $=s_{2}$ |
| stable $=1$ |

$$
\begin{array}{ll}
\text { - } I \llbracket e x p r \rrbracket \text { not defined for } \sigma \text {, or } & \text { - consumption according to (ii) or (iii) } \\
\text { - } t_{a c t} \text { is not defined for }(\sigma, \varepsilon) & \text { - } S n d=\emptyset
\end{array}
$$

Notions of Steps: The Step

Note: we call one evolution $(\sigma, \varepsilon) \xrightarrow[u]{\left(c_{0 n s, S n d)}\right.}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ a step.
Thus in our setting, a step directly corresponds to one object (namely u) takes a single transition between regular states.
(We have to extend the concept of "single transition" for hierarchical state machines.)
That is: We're going for an interleaving semantics without true parallelism.
Remark: With only methods (later), the notion of step is not so clear.
For example, consider

- c_{1} calls f() at c_{2}, which calls g() at c_{1} which in turn calls h() for c_{2}.
- Is the completion of h() a step?
- Or the completion of $f()$?
- Or doesn't it play a role?

It does play a role, because constraints/invariants are typically ($=$ by convention) assumed to be evaluated at step boundaries, and sometimes the convention is meant to admit (temporary) violation in between steps.

Notions of Steps: The Run-to-Completion Step

What is a run-to-completion step...?

- Intuition: a maximal sequence of steps, where the first step is a dispatch step and all later steps are commence steps.
- Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable - one transition may be taken multiple times during an RTC-step.

Example:

Notions of Steps: The Run-to-Completion Step Cont'd

Proposal: Let

$$
\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow[u_{0}]{\left(\text { cons }_{0}, \text { Snd }_{0}\right)} \ldots \xrightarrow[u_{n-1}]{\left(\text { cons }_{n-1}, \text { Snd }_{n-1}\right)}\left(\sigma_{n}, \varepsilon_{n}\right), \quad n>0,
$$

be a finite (!), non-empty, maximal, consecutive sequence such that

- object u is alive in σ_{0},
- $u_{0}=u$ and (conso, Snd $_{0}$) indicates dispatching to u, i.e. cons $=\{(u, \vec{v} \mapsto \vec{d})\}$,
- there are no receptions by u in between, i.e.

$$
\operatorname{cons}_{i} \cap\{u\} \times \operatorname{Evs}(\mathscr{E}, \mathscr{D})=\emptyset, i>1,
$$

- $u_{n-1}=u$ and u is stable only in σ_{0} and σ_{n}, i.e.

$$
\sigma_{0}(u)(\text { stable })=\sigma_{n}(u)(\text { stable })=1 \text { and } \sigma_{i}(u)(\text { stable })=0 \text { for } 0<i<n,
$$

Let $0=k_{1}<k_{2}<\cdots<k_{N}=n$ be the maximal sequence of indices such that $u_{k_{i}}=u$ for $1 \leq i \leq N$. Then we call the sequence

$$
\left(\sigma_{0}(u)=\right) \quad \sigma_{k_{1}}(u), \sigma_{k_{2}}(u) \ldots, \sigma_{k_{N}}(u) \quad\left(=\sigma_{n-1}(u)\right)
$$

a (!) run-to-completion computation of u (from (local) configuration $\left.\sigma_{0}(u)\right)_{\dot{30 / 38}}$

Divergence

We say, object u can diverge on reception cons from (local) configuration $\sigma_{0}(u)$ if and only if there is an infinite, consecutive sequence

$$
\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow{\left(\text { cons }_{0}, S n d_{0}\right)}\left(\sigma_{1}, \varepsilon_{1}\right) \xrightarrow{\left(\text { cons }_{1}, \text { Snd }_{1}\right)} \ldots
$$

such that u doesn't become stable again.

- Note: disappearance of object not considered in the definitions. By the current definitions, it's neither divergence nor an RTC-step.

What people may dislike on our definition of RTC-step is that it takes a global and non-compositional view. That is:

- In the projection onto a single object we still see the effect of interaction with other objects.
- Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Compositional would be: the behaviour of a set of objects is determined by the behaviour of each object "in isolation".
Our semantics and notion of RTC-step doesn't have this (often desired) property.
Can we give (syntactical) criteria such that any global run-to-completion step is an interleaving of local ones?

Maybe: Strict interfaces.

(Proof left as exercise...)

- (A): Refer to private features only via "self".
(Recall that other objects of the same class can modify private attributes.)
- (B): Let objects only communicate by events, i.e.
don't let them modify each other's local state via links at all.

Putting It All Together

The Missing Piece: Initial States

Recall: a labelled transition system is $\left(S, \rightarrow, S_{0}\right)$. We have

- S : system configurations (σ, ε)
\rightarrow : labelled transition relation $(\sigma, \varepsilon) \xrightarrow[u]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$.
Wanted: initial states S_{0}.
Proposal:
Require a (finite) set of object diagrams $\mathcal{O D}$ as part of a UML model

$$
(\mathscr{C D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D}) .
$$

And set

$$
S_{0}=\left\{(\sigma, \varepsilon) \mid \sigma \in G^{-1}(\mathcal{O D}), \mathcal{O D} \in \mathscr{O D}, \varepsilon \text { empty }\right\}
$$

Other Approach: (used by Rhapsody tool) multiplicity of classes.
We can read that as an abbreviation for an object diagram.

Semantics of UML Model - So Far

The semantics of the UML model

$$
\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})
$$

where

- some classes in $\mathscr{C} \mathscr{D}$ are stereotyped as 'signal' (standard), some signals and attributes are stereotyped as 'external' (non-standard),
- there is a 1 -to- 1 relation between classes and state machines,
- $\mathscr{O D}$ is a set of object diagrams over $\mathscr{C} \mathscr{D}$,
is the transition system $\left(S, \rightarrow, S_{0}\right)$ constructed on the previous slide.

The computations of \mathcal{M} are the computations of $\left(S, \rightarrow, S_{0}\right)$.

OCL Constraints and Behaviour

- Let $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ be a UML model.
- We call \mathcal{M} consistent iff, for each OCL constraint expr $\in \operatorname{Inv}(\mathscr{C D})$,
$\sigma \models \operatorname{expr}$ for each "reasonable point" (σ, ε) of computations of \mathcal{M}.
(Cf. exercises and tutorial for discussion of "reasonable point".)

Note: we could define $\operatorname{Inv}(\mathscr{S} \mathscr{M})$ similar to $\operatorname{Inv}(\mathscr{C} \mathscr{D})$.

Pragmatics:

- In UML-as-blueprint mode, if $\mathscr{S} \mathscr{M}$ doesn't exist yet, then $\mathcal{M}=(\mathscr{C} \mathscr{D}, \emptyset, \mathscr{O} \mathscr{D})$ is typically asking the developer to provide $\mathscr{S} \mathscr{M}$ such that $\mathcal{M}^{\prime}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O D})$ is consistent.

If the developer makes a mistake, then \mathcal{M}^{\prime} is inconsistent.

- Not common: if $\mathscr{S} \mathscr{M}$ is given, then constraints are also considered when choosing transitions in the RTC-algorithm. In other words: even in presence of mistakes, the $\mathscr{S} \mathscr{M}$ never move to inconsistent configurations.

References

References

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models are created equal. Software and Systems Modeling, 6(4):415-435.
[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal semantics for a UML kernel language 1.2. IST/33522/WP 1.1/D1.1.2-Part1, Version 1.2.
[Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state machines: Complete formal semantics via core state machines. In Brim, L., Haverkort, B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS, pages 244-260. Springer.
[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. IEEE Computer, 30(7):31-42.
[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of statecharts. In Ehrig, H., Damm, W., Große-Rhode, M., Reif, W., Schnieder, E., and Westkämper, E., editors, Integration of Software Specification Techniques for Applications in Engineering, number 3147 in LNCS, pages 325-354. Springer-Verlag.
[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

