Software Design, Modelling and Analysis in UML

Lecture 16: Hierarchical State Machines I

2014-01-15

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- Putting it all together: UML model semantics (so far)
- Rhapsody demo, code generation

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What does this State Machine mean? What happens if I inject this event?
- Can you please model the following behaviour.
- What does this hierarchical State Machine mean? What may happen if I inject this event?
- What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...
- Content:
- State Machines and OCL
- Hierarchical State Machines Syntax
- Initial and Final State
- Composite State Semantics
- The Rest

State Machines and OCL

OCL Constraints and Behaviour

- Let $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ be a UML model.

- We call \mathcal{M} consistent jiff, for each $O C L$ constraint $\operatorname{expr} \in \operatorname{Inv}(\mathscr{C} \mathscr{D})$, $\sigma \models \operatorname{expr}$ for each "reasonable point" (σ, ε) of computations of \mathcal{M}. (Cf discussion of "reasonable point".)

Note: we could define $\operatorname{Inv}(\mathscr{S} \mathscr{M})$ similar to $\operatorname{Inv}(\mathscr{C} \mathscr{D})$. $\rho \mu_{c}$:

with mice. steps, $x>0$

Pragmatics: $\}^{d b b r e v .}$

- In UML-as-blueprint mode, if $\mathscr{S} \mathscr{M}$ doesn't exist yet, then $\mathcal{M}=(\mathscr{C} \mathscr{D}, \emptyset, \mathscr{O} \mathscr{D})$ is typically asking the developer to provide $\mathscr{S} \mathscr{M}$ such that $\mathcal{M}^{\prime}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ is consistent.

If the developer makes a mistake, then \mathcal{M}^{\prime} is inconsistent.

- Not common: if $\mathscr{S} \mathscr{M}$ is given, then constraints are also considered when choosing transitions in the RTC-algorithm. In other words: even in presence of mastakes, the $\mathscr{S} \mathscr{M}$ never move to inconsistent configurations.

Hierarchical State Machines

UML State-Machines: What do we have to cover?

The Full Story

UML distinguishes the following kinds of states:

resered keywords, not usable aS	example
sigual hame	

pseudo-state initial (shallow) history deep history fork/join	example
junction, choice	
entry point point	

Representing All Kinds of States

$$
\begin{aligned}
& \left(s_{1}\right) \frac{E(x>0\} / x+1}{\vdots}, s_{2} \operatorname{\sim n}\left(s_{1}, E, x>0, x++, s_{2}\right) \\
& \cdot\left(\left\{s_{1}, s_{2}\right\},\{B\},\left\{\otimes \mapsto\left(\left\{s_{1}\right\},\left\{s_{2}\right\}\right)\right\}\right)
\end{aligned}
$$

Representing All Kinds of States

- Until now:

$$
\left(S, s_{0}, \rightarrow\right), \quad s_{0} \in S, \rightarrow \subseteq S \times(\mathscr{E} \cup\{-\}) \times \operatorname{Expr}_{\mathscr{S}} \times \operatorname{Act}_{\mathscr{S}} \times S
$$

- From now on: (hierarchical) state machines

$$
(S, \text { kind }, \text { region }, \rightarrow, \psi, \text { annot })
$$

where (state machine)

- $S \supseteq\{t o p\}$ is a finite set of'states
- kind : $S \rightarrow$ \{st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term\} is a function which labels states with their kind,
- region : $S \rightarrow 2^{2^{S}}$ is a function which gharacterises the regions of a state,
\rightarrow is a set of transitions, (or trdurition vacues)
- $\psi:(\rightarrow) \rightarrow 2^{S} \times 2^{S}$ is an incidence function, and
- annot $:(\rightarrow) \rightarrow(\mathscr{E} \cup\{-\}) \times \operatorname{Expr}_{\mathscr{S}} \times$ Act $_{\mathscr{S}}$ provides an annotation for each transition.
(s_{0} is then redundant - replaced by proper state (!) of kind 'init'.)

From UML to Hierarchical State Machines: By Example

(S, kind, region, \rightarrow, ψ, annot)				
	example	$\in S$	kind	region
simple state (nothing nested within) final state	S frech name	${ }_{\text {s }}^{q}$	st	\varnothing
composite state				
OR		s	st	$\left\{\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$
AND	s^{s} s_{1} s_{2} s_{3} s_{1}^{\prime} $\left[s_{2}^{\prime}\right.$ $\boxed{s_{3}^{3}}$	5	st	$\begin{gathered} \left\{\left\{s_{1}, s_{1}^{\prime}\right\},\left\{s_{2}, s_{2}^{\prime}\right\},\right. \\ \left.\left.\left\{s_{3}, s_{3}\right\}\right\}\right\} \end{gathered}$
submachine state	(later)			
pseudo-state	\bullet - \boldsymbol{H}_{1}, ${ }^{\text {. }}$	q	init, shist, ...	\varnothing

translates to $(S$, kind, region $, \rightarrow, \psi$, annot $)=$

$$
\begin{aligned}
& \underbrace{(\underbrace{}_{\text {(top, st }}),(s, s t),\left(q_{n}, \text { int }\right),\left(q_{2}, f_{n}\right)\}}_{S, \text { kind }}, \\
& \underbrace{\left\{\operatorname{top} \mapsto\left\{\left\{q_{1}, s_{1} q_{2}\right\}\right\}_{,} s \mapsto \phi_{1} q_{1} \mapsto \varnothing, q_{2} \mapsto \varnothing\right\}}_{\text {region }}, \\
& \underbrace{\left\{t_{1}, t_{2}\right\}}_{\rightarrow}, \underbrace{\left\{t_{1} \mapsto\left(\left\{q_{n}\right\},\{s\}\right), t_{2} \mapsto\left(\{s\},\left\{q_{2}\right\}\right)\right\}}_{\psi}, \\
& \underbrace{\left\{t_{1} \mapsto\left(t_{1}, g d, \text { act }\right), t_{2} \mapsto \text { cannot }\right\}}_{\text {cannot }})
\end{aligned}
$$

Well-Formedness: Regions (follows from diagram)

	$\in S$	kind	region $\subseteq 2^{S}, S_{i} \subseteq S$	child $\subseteq S$
simple state	s	st	\emptyset	\emptyset
final state	s	fin	\emptyset	\emptyset
composite state	s	st	$\left\{S_{1}, \ldots, S_{n}\right\}, n \geq 1$	$S_{1} \cup \cdots \cup S_{n}$
pseudo-state	s	init,	\emptyset	\emptyset
implicit top state	top	st	$\left\{S_{1}\right\}$	${ }_{\text {S }}$
- States $s \in S$ with $\operatorname{kind}(s)=s t$ may comprise regions. $=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ - No region: simple state. $=\left\{s_{1}, s_{2}\right\} \cup\left\{s_{3}, s_{4}\right\}$				
- One region:		OR-state.		
- Two or more	ions	AND-state.		

- Final and pseudo states don't comprise regions.
- The region function induces a child function.

Well-Formedness: Initial State (requirement on diagram)

- Each non-empty region has a reasonable initial state and at least one transition from there, ie.
- for each $s \in S$ with region $(s)=\left\{S_{1}, \ldots, S_{n}\right\}, n \geq 1$, for each $1 \leq i \leq n$,
- there exists exactly one initial pseudo-state $\left(s_{1}^{i}, i n i t\right) \in S_{i}$ and at least one transition $t \in \rightarrow$ with s_{1}^{i} as source,
- and such transition's target s_{2}^{i} is in S_{i}, and (for simplicity!) $\operatorname{kind}\left(s_{2}^{i}\right)=s t$, and $\operatorname{annot}(t)=(-$, true, act).
- No ingoing transitions to initial states.
- No outgoing transitions from final states.
 $($ (s) $(t)=(-$ true $a(t)$.

- Initial pseudostate, final state.
- Composite states.
- Entry/do/exit actions, internal transitions.
- History and other pseudostates, the rest.

Initial Pseudostates and Final States

Initial Pseudostate

Principle:

- when entering a region without a specific destination state,
- then go to a state which is destination of an initiation transition,
- execute the action of the chosen initiation transitions between exit and entry actions(see late).

Special case: the region of top.

- If class C has a state-machine, then "create- C transformer" is the concatenation of
- the transformer of the "constructor" of C (here not introduced explicitly) and
- a transformer corresponding to one initiation transition of the top region.

Towards Final States: Completion of States

- Transitions without trigger can conceptionally be viewed as being sensitive for the "completion event".
- Dispatching (here: E) can then alternatively be viewed as
(i) fetch event (here: E) from the ether,
(ii) take an enabled transition (here: to s_{2}),
(iii) remove event from the ether,
(iv) after having finished entry and do action of current state (here: s_{2}) - the state is then called completed -' eg. "DONE"
(v) raise a completion event - with strict priority over events from ether!
(vi) if there is a transition enabled which is sensitive for the completion event,
- then take it (here: $\left(s_{2}, s_{3}\right)$).
- otherwise become stable.

Final States

- If

- a step of object u moves u into a final state (s, fin), and
- all sibling regions are in a final state,
then (conceptionally) a completion event for the current composite state s is raised.
- If there is a transition of a parent state (i.e., inverse of child) of s enabled which is sensitive for the completion event,
- then take that transition,
- otherwise kill u
\rightsquigarrow adjust (2.) and (3.) in the semantics accordingly
- One consequence: u never survives reaching a state (s, fin) with $s \in \operatorname{child}(t o p)$.

Composite States

(formalisation follows [Damm et al., 2003])

Composite States

- In a sense, composite states are about abbreviation, structuring, and avoiding redundancy.
- Idea: in Tron, for the Player's Statemachine, instead of

Composite States

Recall: Syntax

translates to

$$
\begin{gathered}
(\underbrace{\left(\left\{(t o p, s t),(s, s t),\left(s_{1}, s t\right)\left(s_{1}^{\prime}, s t\right)\left(s_{2}, s t\right)\left(s_{2}^{\prime}, s t\right)\left(s_{3}, s t\right)\left(s_{3}^{\prime}, \text { st }\right)\right\}\right.}_{S, \text { kind }}, \\
\underbrace{\left\{t o p \mapsto\{s\}, s \mapsto\left\{\left\{s_{1}, s_{1}^{\prime}\right\},\left\{s_{2}, s_{2}^{\prime}\right\},\left\{s_{3}, s_{3}^{\prime}\right\}\right\}, s_{1} \mapsto \emptyset, s_{1}^{\prime} \mapsto \emptyset, \ldots\right\}}_{\text {region }}, \\
\rightarrow, \psi, \text { annot })
\end{gathered}
$$

Syntax: Fork/Join

- For brevity, we always consider transitions with (possibly) multiple sources and targets, i.e.

$$
\psi:(\rightarrow) \rightarrow\left(2^{S} \backslash \emptyset\right) \times\left(2^{S} \backslash \emptyset\right)
$$

- For instance,

translates to

$$
(S, \text { kind, region, } \underbrace{\left\{t_{1}\right\}}_{\rightarrow}, \underbrace{\left\{t_{1} \mapsto\left(\left\{s_{2}, s_{3}\right\},\left\{s_{5}, s_{6}\right\}\right)\right\}}_{\psi}, \underbrace{\left\{t_{1} \mapsto(t r, g d, a c t)\right\}}_{\text {annot }})
$$

- Naming convention: $\psi(t)=(\operatorname{source}(t), \operatorname{target}(t))$.

Composite States: Blessing or Curse?

States:

- what are legal state configurations?
- what is the type of the implicit st attribute?

Transitions:

- what are legal transitions?
- what may happen on E ?
- when is a transition enabled?
- what may happen on E, F ?
- can E, G kill the object?
- what effects do transitions have?

State Configuration

- The type of $s t$ is from now on a set of states, i.e. st $: 2^{S}$
- A set $S_{1} \subseteq S$ is called (legal) state configurations if and only if
- top $\in S_{1}$, and
- for each state $s \in S_{1}$, for each non-empty region $\emptyset \neq R \in \operatorname{region}(s)$, exactly one (non pseudo-state) child of s (from R) is in S_{1}, i.e.

$$
\left|\left\{s_{0} \in R \mid \operatorname{kind}\left(s_{0}\right) \in\{s t, f i n\}\right\} \cap S_{1}\right|=1
$$

State Configuration

- The type of $s t$ is from now on a set of states, i.e. st $: 2^{S}$
- A set $S_{1} \subseteq S$ is called (legal) state configurations if and only if
- top $\in S_{1}$, and
- for each state $s \in S_{1}$, for each non-empty region $\emptyset \neq R \in \operatorname{region}(s)$, exactly one (non pseudo-state) child of s (from R) is in S_{1}, i.e.

$$
\left|\left\{s_{0} \in R \mid \operatorname{kind}\left(s_{0}\right) \in\{s t, f i n\}\right\} \cap S_{1}\right|=1 .
$$

- Examples:

State Configuration

- The type of $s t$ is from now on a set of states, i.e. st $: 2^{S}$
- A set $S_{1} \subseteq S$ is called (legal) state configurations if and only if
- top $\in S_{1}$, and
- for each state $s \in S_{1}$, for each non-empty region $\emptyset \neq R \in \operatorname{region}(s)$, exactly one (non pseudo-state) child of s (from R) is in S_{1}, i.e.

$$
\left|\left\{s_{0} \in R \mid \operatorname{kind}\left(s_{0}\right) \in\{s t, f i n\}\right\} \cap S_{1}\right|=1
$$

- Examples:

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- top $\leq s$, for all $s \in S$,
- $s \leq s^{\prime}$, for all $s^{\prime} \in \operatorname{child}(s)$,
- transitive, reflexive, antisymmetric,
- $s^{\prime} \leq s$ and $s^{\prime \prime} \leq s$ implies $s^{\prime} \leq s^{\prime \prime}$ or $s^{\prime \prime} \leq s^{\prime}$.

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- top $\leq s$, for all $s \in S$,
- $s \leq s^{\prime}$, for all $s^{\prime} \in \operatorname{child}(s)$,
- transitive, reflexive, antisymmetric,
- $s^{\prime} \leq s$ and $s^{\prime \prime} \leq s$ implies $s^{\prime} \leq s^{\prime \prime}$ or $s^{\prime \prime} \leq s^{\prime}$.

Least Common Ancestor and Ting

- The least common ancestor is the function lca: $2^{S} \backslash\{\emptyset\} \rightarrow S$ such that
- The states in S_{1} are (transitive) children of $l c a\left(S_{1}\right)$, i.e.

$$
l c a\left(S_{1}\right) \leq s, \text { for all } s \in S_{1} \subseteq S
$$

- lca $\left(S_{1}\right)$ is minimal, i.e. if $\hat{s} \leq s$ for all $s \in S_{1}$, then $\hat{s} \leq l c a\left(S_{1}\right)$
- Note: lca $\left(S_{1}\right)$ exists for all $S_{1} \subseteq S$ (last candidate: top).

Least Common Ancestor and Ting

- The least common ancestor is the function lca: $2^{S} \backslash\{\emptyset\} \rightarrow S$ such that
- The states in S_{1} are (transitive) children of $l c a\left(S_{1}\right)$, i.e.

$$
l c a\left(S_{1}\right) \leq s, \text { for all } s \in S_{1} \subseteq S
$$

- lca $\left(S_{1}\right)$ is minimal, i.e. if $\hat{s} \leq s$ for all $s \in S_{1}$, then $\hat{s} \leq l c a\left(S_{1}\right)$
- Note: lca $\left(S_{1}\right)$ exists for all $S_{1} \subseteq S$ (last candidate: top).

Least Common Ancestor and Ting

- Two states $s_{1}, s_{2} \in S$ are called orthogonal, denoted $s_{1} \perp s_{2}$, if and only if
- they are unordered, i.e. $s_{1} \not \leq s_{2}$ and $s_{2} \not \leq s_{1}$, and
- they "live" in different regions of an AND-state, i.e.
$\exists s, \operatorname{region}(s)=\left\{S_{1}, \ldots, S_{n}\right\} \exists 1 \leq i \neq j \leq n: s_{1} \in \operatorname{child}^{*}\left(S_{i}\right) \wedge s_{2} \in \operatorname{child}^{*}\left(S_{j}\right)$,

Least Common Ancestor and Ting

- Two states $s_{1}, s_{2} \in S$ are called orthogonal, denoted $s_{1} \perp s_{2}$, if and only if
- they are unordered, i.e. $s_{1} \not \leq s_{2}$ and $s_{2} \not \leq s_{1}$, and
- they "live" in different regions of an AND-state, i.e.
$\exists s, \operatorname{region}(s)=\left\{S_{1}, \ldots, S_{n}\right\} \exists 1 \leq i \neq j \leq n: s_{1} \in \operatorname{child}^{*}\left(S_{i}\right) \wedge s_{2} \in \operatorname{child}^{*}\left(S_{j}\right)$,

Least Common Ancestor and Ting

- A set of states $S_{1} \subseteq S$ is called consistent, denoted by $\downarrow S_{1}$, if and only if for each $s, s^{\prime} \in S_{1}$,
- $s \leq s^{\prime}$, or
- $s^{\prime} \leq s$, or
- $s \perp s^{\prime}$.

Least Common Ancestor and Ting

- A set of states $S_{1} \subseteq S$ is called consistent, denoted by $\downarrow S_{1}$, if and only if for each $s, s^{\prime} \in S_{1}$,
- $s \leq s^{\prime}$, or
- $s^{\prime} \leq s$, or
- $s \perp s^{\prime}$.

Legal Transitions

A hiearchical state-machine (S, kind, region, \rightarrow, ψ, annot) is called wellformed if and only if for all transitions $t \in \rightarrow$,
(i) source and destination are consistent, i.e. $\downarrow \operatorname{source}(t)$ and $\downarrow \operatorname{target}(t)$,
(ii) source (and destination) states are pairwise orthogonal, i.e.

- forall $s, s^{\prime} \in \operatorname{source}(t)(\in \operatorname{target}(t)), s \perp s^{\prime}$,
(iii) the top state is neither source nor destination, i.e.
- top $\notin \operatorname{source}(t) \cup \operatorname{source}(t)$.
- Recall: final states are not sources of transitions.

Legal Transitions

A hiearchical state-machine (S, kind, region, \rightarrow, ψ, annot) is called wellformed if and only if for all transitions $t \in \rightarrow$,
(i) source and destination are consistent, i.e. $\downarrow \operatorname{source}(t)$ and $\downarrow \operatorname{target}(t)$,
(ii) source (and destination) states are pairwise orthogonal, i.e.

- forall $s, s^{\prime} \in \operatorname{source}(t)(\in \operatorname{target}(t)), s \perp s^{\prime}$,
(iii) the top state is neither source nor destination, i.e.
- top \notin source $(t) \cup$ source (t).
- Recall: final states are not sources of transitions.

Example:

The Depth of States

- $\operatorname{depth}(t o p)=0$,
- $\operatorname{depth}\left(s^{\prime}\right)=\operatorname{depth}(s)+1$, for all $s^{\prime} \in \operatorname{child}(s)$

The Depth of States

- $\operatorname{depth}(t o p)=0$,
- $\operatorname{depth}\left(s^{\prime}\right)=\operatorname{depth}(s)+1$, for all $s^{\prime} \in \operatorname{child}(s)$

Example:

Enabledness in Hierarchical State-Machines

- The scope ("set of possibly affected states") of a transition t is the least common region of

$$
\operatorname{source}(t) \cup \operatorname{target}(t) .
$$

Enabledness in Hierarchical State-Machines

- The scope ("set of possibly affected states") of a transition t is the least common region of

$$
\operatorname{source}(t) \cup \operatorname{target}(t) .
$$

- Two transitions t_{1}, t_{2} are called consistent if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).

Enabledness in Hierarchical State-Machines

- The scope ("set of possibly affected states") of a transition t is the least common region of

$$
\operatorname{source}(t) \cup \operatorname{target}(t) .
$$

- Two transitions t_{1}, t_{2} are called consistent if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).
- The priority of transition t is the depth of its innermost source state, i.e.

$$
\operatorname{prio}(t):=\max \{\operatorname{depth}(s) \mid s \in \operatorname{source}(t)\}
$$

Enabledness in Hierarchical State-Machines

- The scope ("set of possibly affected states") of a transition t is the least common region of

$$
\operatorname{source}(t) \cup \operatorname{target}(t) \text {. }
$$

- Two transitions t_{1}, t_{2} are called consistent if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).
- The priority of transition t is the depth of its innermost source state, i.e.

$$
\operatorname{prio}(t):=\max \{\operatorname{depth}(s) \mid s \in \operatorname{source}(t)\}
$$

- A set of transitions $T \subseteq \rightarrow$ is enabled in an object u if and only if
- T is consistent,
- T is maximal wrt. priority,
- all transitions in T share the same trigger,
- all guards are satisfied by $\sigma(u)$, and
- for all $t \in T$, the source states are active, i.e.

$$
\operatorname{source}(t) \subseteq \sigma(u)(s t)(\subseteq S)
$$

Transitions in Hierarchical State-Machines

- Let T be a set of transitions enabled in u.
- Then $(\sigma, \varepsilon) \xrightarrow{\text { (cons,Snd })}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ if
- $\sigma^{\prime}(u)(s t)$ consists of the target states of t,
i.e. for simple states the simple states themselves, for composite states the initial states,
- $\sigma^{\prime}, \varepsilon^{\prime}$, cons, and Snd are the effect of firing each transition $t \in T$ one by one, in any order, i.e. for each $t \in T$,
- the exit transformer of all affected states, highest depth first,
- the transformer of t,
- the entry transformer of all affected states, lowest depth first.
\rightsquigarrow adjust (2.), (3.), (5.) accordingly.

Entry/Do/Exit Actions, Internal Transitions

Entry/Do/Exit Actions

- In general, with each state $s \in S$ there is associated
- an entry, a do, and an exit action (default: skip)
- a possibly empty set of trigger/action pairs called
 internal transitions, (default: empty). $E_{1}, \ldots, E_{n} \in \mathscr{E}$, 'entry', 'do', 'exit' are reserved names!

Entry/Do/Exit Actions

- In general, with each state $s \in S$ there is associated
- an entry, a do, and an exit action (default: skip)
- a possibly empty set of trigger/action pairs called
 internal transitions, (default: empty). $E_{1}, \ldots, E_{n} \in \mathscr{E}$, 'entry', 'do', 'exit' are reserved names!
- Recall: each action's supposed to have a transformer. Here: $t_{a c t_{1}^{\text {entry }},} t_{\text {act }}^{\text {exit }}, \ldots$
- Taking the transition above then amounts to applying

$$
t_{a c t_{s_{2}}^{\text {entry }} \circ t_{a c t} \circ t_{a c t_{s_{1}}^{\text {exit }}},{ }_{\text {ent }}}
$$

instead of only

$$
t_{a c t}
$$

\rightsquigarrow adjust (2.), (3.) accordingly.

- For internal transitions, taking the one for E_{1}, for instance, still amounts to taking only $t_{a c t_{E_{1}}}$.
- Intuition: The state is neither left nor entered, so: no exit, no entry.
\rightsquigarrow adjust (2.) accordingly.
- Note: internal transitions also start a run-to-completion step.

- For internal transitions, taking the one for E_{1}, for instance, still amounts to taking only $t_{a c t_{E_{1}}}$.
- Intuition: The state is neither left nor entered, so: no exit, no entry. \rightsquigarrow adjust (2.) accordingly.
- Note: internal transitions also start a run-to-completion step.
- Note: the standard seems not to clarify whether internal transitions have priority over regular transitions with the same trigger at the same state. Some code generators assume that internal transitions have priority!

Alternative View: Entry/Exit/Internal as Abbreviations

- ... as abbrevation for ...
s_{0}
s_{1}
s_{2}

Alternative View: Entry/Exit/Internal as Abbreviations

- ... as abbrevation for ...

$$
s_{2}
$$

- That is: Entry/Internal/Exit don't add expressive power to Core State Machines. If internal actions should have priority, s_{1} can be embedded into an OR-state (see later).
- Abbreviation may avoid confusion in context of hierarchical states (see later).

Do Actions

- Intuition: after entering a state, start its do-action.
- If the do-action terminates,
- then the state is considered completed,
- otherwise,
- if the state is left before termination, the do-action is stopped.

- Intuition: after entering a state, start its do-action.
- If the do-action terminates,
- then the state is considered completed,
- otherwise,
- if the state is left before termination, the do-action is stopped.
- Recall the overall UML State Machine philosophy:
"An object is either idle or doing a run-to-completion step."
- Now, what is it exactly while the do action is executing...?

The Concept of History, and Other Pseudo-States

History and Deep History: By Example

What happens on...

- R_{s} ?
- R_{d} ?
- A, B, C, S, R_{s} ?
- A, B, S, R_{d} ?
- A, B, C, D, E, R_{s} ?
- A, B, C, D, R_{d} ?

Junction and Choice

- Junction ("static conditional branch"):

- Choice: ("dynamic conditional branch")

Note: not so sure about naming and symbols, e.g., I'd guessed it was just the other way round...

Junction and Choice

- Junction ("static conditional branch"):
- good: abbreviation

- unfolds to so many similar transitions with different guards, the unfolded transitions are then checked for enabledness
- at best, start with trigger, branch into conditions, then apply actions
- Choice: ("dynamic conditional branch")

Note: not so sure about naming and symbols, e.g., l'd guessed it was just the other way round...

Junction and Choice

- Junction ("static conditional branch"):
- good: abbreviation
- unfolds to so many similar transitions with different guards, the unfolded transitions are then checked for enabledness
- at best, start with trigger, branch into conditions, then apply actions
- Choice: ("dynamic conditional branch")

- evil: may get stuck
- enters the transition without knowing whether there's an enabled path
- at best, use "else" and convince yourself that it cannot get stuck
- maybe even better: avoid

Note: not so sure about naming and symbols, e.g., l'd guessed it was just the other way round...

Entry and Exit Point, Submachine State, Terminate

- Hierarchical states can be "folded" for readability. (but: this can also hinder readability.)
- Can even be taken from a different state-machine for re-use.

Entry and Exit Point, Submachine State, Terminate

- Hierarchical states can be "folded" for readability. (but: this can also hinder readability.)
- Can even be taken from a different state-machine for re-use.
- Entry/exit points
- Provide connection points for finer integration into the current level, than just via initial state.
- Semantically a bit tricky:
- First the exit action of the exiting state,
- then the actions of the transition,
- then the entry actions of the entered state,
- then action of the transition from the entry point to an internal state,
- and then that internal state's entry action.

Entry and Exit Point, Submachine State, Terminate

- Hierarchical states can be "folded" for readability. (but: this can also hinder readability.)
- Can even be taken from a different state-machine for re-use.
- Entry/exit points
- Provide connection points for finer integration into the current level, than just via initial state.
- Semantically a bit tricky:
- First the exit action of the exiting state,
- then the actions of the transition,
- then the entry actions of the entered state,
- then action of the transition from the entry point to an internal state,
- and then that internal state's entry action.
- Terminate Pseudo-State
- When a terminate pseudo-state is reached, the object taking the transition is immediately killed.

Deferred Events in State-Machines

Deferred Events: Idea

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:

- Consider the following state machine:

- Assume we're stable in s_{1}, and F is ready in the ether.
- In the framework of the course, F is discarded.

Deferred Events: Idea

For ages, UML state machines comprises the feature of deferred events.
The idea is as follows:

- Consider the following state machine:

- Assume we're stable in s_{1}, and F is ready in the ether.
- In the framework of the course, F is discarded.
- But we may find it a pity to discard the poor event and may want to remember it for later processing, e.g. in s_{2}, in other words, defer it.

Deferred Events: Idea

For ages, UML state machines comprises the feature of deferred events.
The idea is as follows:

- Consider the following state machine:

- Assume we're stable in s_{1}, and F is ready in the ether.
- In the framework of the course, F is discarded.
- But we may find it a pity to discard the poor event and may want to remember it for later processing, e.g. in s_{2}, in other words, defer it.

General options to satisfy such needs:

- Provide a pattern how to "program" this (use self-loops and helper attributes).
- Turn it into an original language concept.

Deferred Events: Idea

For ages, UML state machines comprises the feature of deferred events.
The idea is as follows:

- Consider the following state machine:

- Assume we're stable in s_{1}, and F is ready in the ether.
- In the framework of the course, F is discarded.
- But we may find it a pity to discard the poor event and may want to remember it for later processing, e.g. in s_{2}, in other words, defer it.

General options to satisfy such needs:

- Provide a pattern how to "program" this (use self-loops and helper attributes).
- Turn it into an original language concept. (\leftarrow OMG’s choice)

Deferred Events: Syntax and Semantics

- Syntactically,
- Each state has (in addition to the name) a set of deferred events.
- Default: the empty set.

Deferred Events: Syntax and Semantics

- Syntactically,
- Each state has (in addition to the name) a set of deferred events.
- Default: the empty set.
- The semantics is a bit intricate, something like
- if an event E is dispatched,
- and there is no transition enabled to consume E,
- and E is in the deferred set of the current state configuration,
- then stuff E into some "deferred events space" of the object, (e.g. into the ether $(=\operatorname{extend} \varepsilon)$ or into the local state of the object ($=$ extend σ))
- and turn attention to the next event.

Deferred Events: Syntax and Semantics

- Syntactically,
- Each state has (in addition to the name) a set of deferred events.
- Default: the empty set.
- The semantics is a bit intricate, something like
- if an event E is dispatched,
- and there is no transition enabled to consume E,
- and E is in the deferred set of the current state configuration,
- then stuff E into some "deferred events space" of the object, (e.g. into the ether $(=\operatorname{extend} \varepsilon)$ or into the local state of the object ($=$ extend σ))
- and turn attention to the next event.

- Not so obvious:

- Is there a priority between deferred and regular events?
- Is the order of deferred events preserved?
[Fecher and Schönborn, 2007], e.g., claim to provide semantics for the complete Hierarchical State Machine language, including deferred events.

Active and Passive Objects [Harel and Gery, 1997]

What about non-Active Objects?

Recall:

- We're still working under the assumption that all classes in the class diagram (and thus all objects) are active.
- That is, each object has its own thread of control and is (if stable) at any time ready to process an event from the ether.

What about non-Active Objects?

Recall:

- We're still working under the assumption that all classes in the class diagram (and thus all objects) are active.
- That is, each object has its own thread of control and is (if stable) at any time ready to process an event from the ether.

But the world doesn't consist of only active objects.
For instance, in the crossing controller from the exercises we could wish to have the whole system live in one thread of control.

So we have to address questions like:

- Can we send events to a non-active object?
- And if so, when are these events processed?
- etc.

Active and Passive Objects: Nomenclature

[Harel and Gery, 1997] propose the following (orthogonal!) notions:

- A class (and thus the instances of this class) is either active or passive as declared in the class diagram.
- An active object has (in the operating system sense) an own thread: an own program counter, an own stack, etc.
- A passive object doesn't.

Active and Passive Objects: Nomenclature

[Harel and Gery, 1997] propose the following (orthogonal!) notions:

- A class (and thus the instances of this class) is either active or passive as declared in the class diagram.
- An active object has (in the operating system sense) an own thread: an own program counter, an own stack, etc.
- A passive object doesn't.
- A class is either reactive or non-reactive.
- A reactive class has a (non-trivial) state machine.
- A non-reactive one hasn't.

Active and Passive Objects: Nomenclature

[Harel and Gery, 1997] propose the following (orthogonal!) notions:

- A class (and thus the instances of this class) is either active or passive as declared in the class diagram.
- An active object has (in the operating system sense) an own thread: an own program counter, an own stack, etc.
- A passive object doesn't.
- A class is either reactive or non-reactive.
- A reactive class has a (non-trivial) state machine.
- A non-reactive one hasn't.

Which combinations do we understand?

	active	passive
reactive		
non-reactive		

Passive and Reactive

- So why don't we understand passive/reactive?
- Assume passive objects u_{1} and u_{2}, and active object u, and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

Passive and Reactive

- So why don't we understand passive/reactive?
- Assume passive objects u_{1} and u_{2}, and active object u, and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

Reasonable Approaches:

- Avoid - for instance, by
- require that reactive implies active for model well-formedness.
- requiring for model well-formedness that events are never sent to instances of non-reactive classes.
- Explain - here: (following [Harel and Gery, 1997])
- Delegate all dispatching of events to the active objects.

Passive Reactive Classes

- Firstly, establish that each object u knows, via (implicit) link itsAct, the active object $u_{\text {act }}$ which is responsible for dispatching events to u.
- If u is an instance of an active class, then $u_{a}=u$.

Passive Reactive Classes

- Firstly, establish that each object u knows, via (implicit) link itsAct, the active object $u_{\text {act }}$ which is responsible for dispatching events to u.
- If u is an instance of an active class, then $u_{a}=u$.

Sending an event:

- Establish that of each signal we have a version E_{C} with an association dest : $C_{0,1}, C \in \mathscr{C}$.
- Then $n!E$ in $u_{1}: C_{1}$ becomes:
- Create an instance u_{e} of $E_{C_{2}}$ and set u_{e} 's dest to $u_{d}:=\sigma\left(u_{1}\right)(n)$.
- Send to $u_{a}:=\sigma\left(\sigma\left(u_{1}\right)(n)\right)(i t s A c t)$, i.e., $\varepsilon^{\prime}=\varepsilon \oplus\left(u_{a}, u_{e}\right)$.

Passive Reactive Classes

- Firstly, establish that each object u knows, via (implicit) link itsAct, the active object $u_{\text {act }}$ which is responsible for dispatching events to u.
- If u is an instance of an active class, then $u_{a}=u$.

Sending an event:

- Establish that of each signal we have a version E_{C} with an association dest : $C_{0,1}, C \in \mathscr{C}$.
- Then $n!E$ in $u_{1}: C_{1}$ becomes:
- Create an instance u_{e} of $E_{C_{2}}$ and set u_{e} 's dest to $u_{d}:=\sigma\left(u_{1}\right)(n)$.
- Send to $u_{a}:=\sigma\left(\sigma\left(u_{1}\right)(n)\right)(i t s A c t)$, i.e., $\varepsilon^{\prime}=\varepsilon \oplus\left(u_{a}, u_{e}\right)$.

Dispatching an event:

- Observation: the ether only has events for active objects.
- Say u_{e} is ready in the ether for u_{a}.
- Then u_{a} asks $\sigma\left(u_{e}\right)($ dest $)=u_{d}$ to process u_{e} - and waits until completion of corresponding RTC.
- u_{d} may in particular discard event.

And What About Methods?

And What About Methods?

- In the current setting, the (local) state of objects is only modified by actions of transitions, which we abstract to transformers.
- In general, there are also methods.
- UML follows an approach to separate
- the interface declaration from
- the implementation.

In C++ lingo: distinguish declaration and definition of method.

And What About Methods?

- In the current setting, the (local) state of objects is only modified by actions of transitions, which we abstract to transformers.
- In general, there are also methods.
- UML follows an approach to separate
- the interface declaration from
- the implementation.

In C++ lingo: distinguish declaration and definition of method.

- In UML, the former is called behavioural feature and can (roughly) be
- a call interface $f\left(\tau_{1_{1}}, \ldots, \tau_{n_{1}}\right): \tau_{1}$
- a signal name E

C
$\xi_{1} f\left(\tau_{1,1}, \ldots, \tau_{1, n_{1}}\right): \tau_{1} P_{1}$
$\xi_{2} F\left(\tau_{2,1}, \ldots, \tau_{2, n_{2}}\right): \tau_{2} P_{2}$
$\langle\langle$ signal $\rangle\rangle$

Note: The signal list is redundant as it can be looked up in the state machine of the class. But: certainly useful for documentation.

C
$\xi_{1} f\left(\tau_{1,1}, \ldots, \tau_{1, n_{1}}\right): \tau_{1} P_{1}$
$\xi_{2} F\left(\tau_{2,1}, \ldots, \tau_{2, n_{2}}\right): \tau_{2} P_{2}$
$\langle\langle$ signal $\rangle\rangle$

Semantics:

- The implementation of a behavioural feature can be provided by:
- An operation.
- The class' state-machine ("triggered operation").

Behavioural Features

C
$\xi_{1} f\left(\tau_{1,1}, \ldots, \tau_{1, n_{1}}\right): \tau_{1} P_{1}$
$\xi_{2} F\left(\tau_{2,1}, \ldots, \tau_{2, n_{2}}\right): \tau_{2} P_{2}$
$\langle\langle$ signal $\rangle E$

Semantics:

- The implementation of a behavioural feature can be provided by:
- An operation.

In our setting, we simply assume a transformer like T_{f}.
It is then, e.g. clear how to admit method calls as actions on transitions: function composition of transformers (clear but tedious: non-termination). In a setting with Java as action language: operation is a method body.

- The class' state-machine ("triggered operation").

Behavioural Features

C
$\xi_{1} f\left(\tau_{1,1}, \ldots, \tau_{1, n_{1}}\right): \tau_{1} P_{1}$
$\xi_{2} F\left(\tau_{2,1}, \ldots, \tau_{2, n_{2}}\right): \tau_{2} P_{2}$
$\langle\langle$ signal $\rangle\rangle E$

Semantics:

- The implementation of a behavioural feature can be provided by:
- An operation.

In our setting, we simply assume a transformer like T_{f}.
It is then, e.g. clear how to admit method calls as actions on transitions: function composition of transformers (clear but tedious: non-termination).
In a setting with Java as action language: operation is a method body.

- The class' state-machine ("triggered operation").
- Calling F with n_{2} parameters for a stable instance of C creates an auxiliary event F and dispatches it (bypassing the ether).
- Transition actions may fill in the return value.
- On completion of the RTC step, the call returns.
- For a non-stable instance, the caller blocks until stability is reached again.

Behavioural Features: Visibility and Properties

C
$\xi_{1} f\left(\tau_{1,1}, \ldots, \tau_{1, n_{1}}\right): \tau_{1} P_{1}$
$\xi_{2} F\left(\tau_{2,1}, \ldots, \tau_{2, n_{2}}\right): \tau_{2} P_{2}$
$\langle\langle$ signal $\rangle E$

- Visibility:
- Extend typing rules to sequences of actions such that a well-typed action sequence only calls visible methods.

Behavioural Features: Visibility and Properties

C
$\xi_{1} f\left(\tau_{1,1}, \ldots, \tau_{1, n_{1}}\right): \tau_{1} P_{1}$
$\xi_{2} F\left(\tau_{2,1}, \ldots, \tau_{2, n_{2}}\right): \tau_{2} P_{2}$
$\langle\langle$ signal $\rangle E$

- Visibility:
- Extend typing rules to sequences of actions such that a well-typed action sequence only calls visible methods.
- Useful properties:
- concurrency
- concurrent - is thread safe
- guarded - some mechanism ensures/should ensure mutual exclusion
- sequential - is not thread safe, users have to ensure mutual exclusion
- isQuery - doesn't modify the state space (thus thread safe)
- For simplicity, we leave the notion of steps untouched, we construct our semantics around state machines.
Yet we could explain pre/post in OCL (if we wanted to).

Discussion.

Semantic Variation Points

Pessimistic view: They are legion...

- For instance,
- allow absence of initial pseudo-states
can then "be" in enclosing state without being in any substate; or assume one of the children states non-deterministically
- (implicitly) enforce determinism, e.g.
by considering the order in which things have been added to the CASE tool's repository, or graphical order
- allow true concurrency

Exercise: Search the standard for "semantical variation point".

Semantic Variation Points

Pessimistic view: They are legion...

- For instance,
- allow absence of initial pseudo-states
can then "be" in enclosing state without being in any substate; or assume one of the children states non-deterministically
- (implicitly) enforce determinism, e.g.
by considering the order in which things have been added to the CASE tool's repository, or graphical order
- allow true concurrency

Exercise: Search the standard for "semantical variation point".

- [Crane and Dingel, 2007], e.g., provide an in-depth comparison of Statemate, UML, and Rhapsody state machines - the bottom line is:
- the intersection is not empty
(i.e. there are pictures that mean the same thing to all three communities)
- none is the subset of another
(i.e. for each pair of communities exist pictures meaning different things)

Semantic Variation Points

Pessimistic view: They are legion...

- For instance,
- allow absence of initial pseudo-states
can then "be" in enclosing state without being in any substate; or assume one of the children states non-deterministically
- (implicitly) enforce determinism, e.g.
by considering the order in which things have been added to the CASE tool's repository, or graphical order
- allow true concurrency

Exercise: Search the standard for "semantical variation point".

- [Crane and Dingel, 2007], e.g., provide an in-depth comparison of Statemate, UML, and Rhapsody state machines - the bottom line is:
- the intersection is not empty
(i.e. there are pictures that mean the same thing to all three communities)
- none is the subset of another
(i.e. for each pair of communities exist pictures meaning different things)

Optimistic view: tools exist with complete and consistent code generation.

You are here.

Course Map

References

References

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models are created equal. Software and Systems Modeling, 6(4):415-435.
[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal semantics for a UML kernel language 1.2. IST/33522/WP 1.1/D1.1.2-Part1, Version 1.2.
[Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state machines: Complete formal semantics via core state machines. In Brim, L., Haverkort, B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS, pages 244-260. Springer.
[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. IEEE Computer, 30(7):31-42.
[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of statecharts. In Ehrig, H., Damm, W., Große-Rhode, M., Reif, W., Schnieder, E., and Westkämper, E., editors, Integration of Software Specification Techniques for Applications in Engineering, number 3147 in LNCS, pages 325-354. Springer-Verlag.
[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.
[Störrle, 2005] Störrle, H. (2005). UML 2 für Studenten. Pearson Studium.

