Software Design, Modelling and Analysis in UML

Lecture 17: Hierarchical State Machines II

2014-01-20

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- State Machines and OCL
- Hierarchical State Machines Syntax
- Initial and Final State

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What does this State Machine mean? What happens if I inject this event?
 - Can you please model the following behaviour.
 - What does this hierarchical State Machine mean? What may happen if I inject this event?
 - What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...

Content

- Composite State Semantics
- The Rest

Composite States

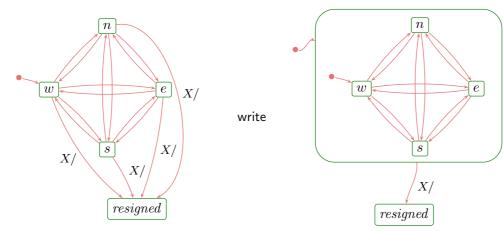
(formalisation follows [Damm et al., 2003])

17 - 2014-01-20 - main -

3/44

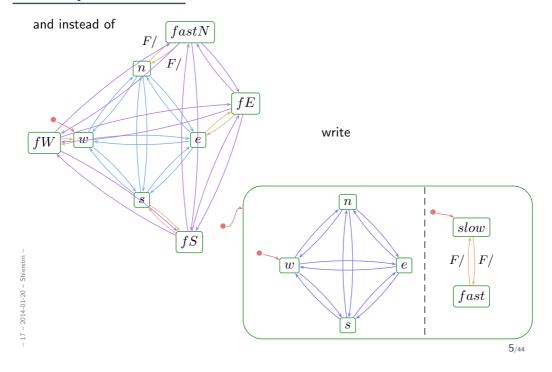
Composite States

- In a sense, composite states are about abbreviation, structuring, and avoiding redundancy.
- Idea: in Tron, for the Player's Statemachine, instead of



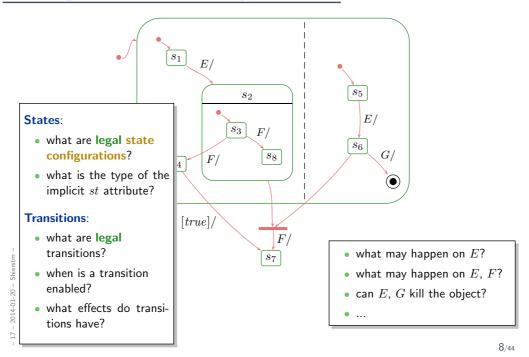
- 17 - 2014-01-20 - Shierstm -

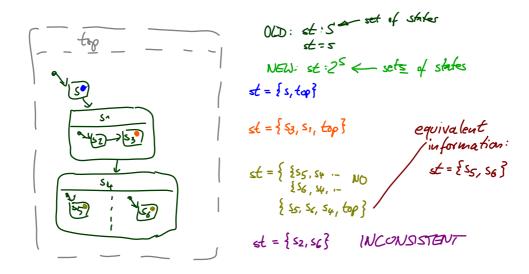
Composite States





Composite States: Blessing or Curse?



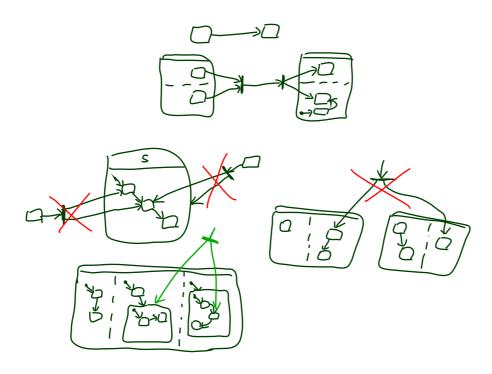


- The type of st is from now on a set of states, i.e. $st: 2^S$
- A set $S_1 \subseteq S$ is called (legal) state configurations if and only if
 - $top \in S_1$, and
 - for each state $s \in S_1$, for each non-empty region $\emptyset \neq R \in region(s)$, exactly one (non pseudo-state) child of s (from R) is in S_1 , i.e.

$$|\{s_0 \in R \mid kind(s_0) \in \{st, fin\}\} \cap S_1| = 1.$$

17 - 2014-01-20 - Shiesetm -

9/44

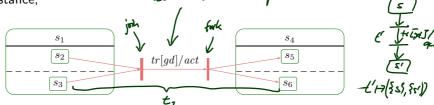


Syntax: Fork/Join

• For brevity, we always consider transitions with (possibly) multiple i.e. set of six states set of target or dest. $\psi: (\to) \to (2^S \setminus \emptyset) \times (2^S \setminus \emptyset)$ SPE sources and targets, i.e.

assure: one aunot. per "tree"

For instance,



translates to

$$(S, kind, region, \underbrace{\{t_1\}}_{\rightarrow}, \underbrace{\{t_1 \mapsto (\{s_2, s_3\}, \{s_5, s_6\})\}}_{\psi}, \underbrace{\{t_1 \mapsto (tr, gd, act)\}}_{annot})$$

• Naming convention: $\psi(t) = (source(t), target(t)).$

7/44

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- $top \leq s$, for all $s \in S$,
- $s \leq s'$, for all $s' \in child(s)$,
- transitive, reflexive, antisymmetric,
- $s' \leq s$ and $s'' \leq s$ implies $s' \leq s''$ or $s'' \leq s'$.

The substate- (or child-) relation induces a partial order on states:

- $top \le s$, for all $s \in S$,
- $s \le s'$, for all $s' \in child(s)$,
- ruje 2>2, if 2,77
- transitive, reflexive, antisymmetric,
- $s' \le s$ and $s'' \le s$ implies $s' \le s''$ or $s'' \le s'$.



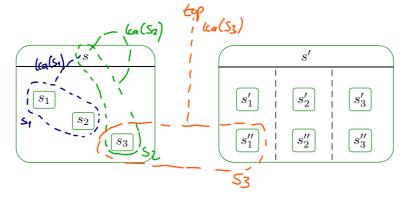
10/44

Least Common Ancestor and Ting

- The least common ancestor is the function $lca: 2^S \setminus \{\emptyset\} \to S$ such that
 - ullet The states in S_1 are (transitive) children of $lca(S_1)$, i.e.

$$lca(S_1) \leq s$$
, for all $s \in S_1 \subseteq S$,

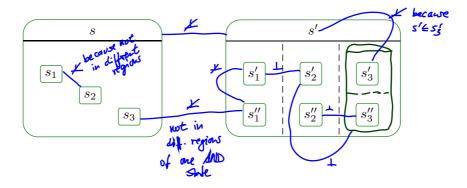
- $lca(S_1)$ is minimal, i.e. if $\hat{s} \leq s$ for all $s \in S_1$, then $\hat{s} \leq lca(S_1)$
- Note: $lca(S_1)$ exists for all $S_1 \subseteq S$ (last candidate: top).



Least Common Ancestor and Ting

- Two states $s_1, s_2 \in S$ are called **orthogonal**, denoted $s_1 \perp s_2$, if and only if
 - they are unordered, i.e. $s_1 \not \leq s_2$ and $s_2 \not \leq s_1$, and
 - they "live" in different regions of an AND-state, i.e.

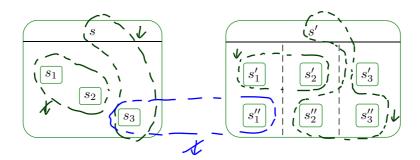
 $\exists s, region(s) = \{S_1, \dots, S_n\} \ \exists 1 \le i \ne j \le n : s_1 \in child^*(S_i) \land s_2 \in child^*(S_j),$



12/44

Least Common Ancestor and Ting

- A set of states $S_1 \subseteq S$ is called **consistent**, denoted by $\downarrow S_1$, if and only if for each $s,s' \in S_1$,
 - $\bullet \ \ s \leq s' \text{, or}$
 - $s' \leq s$, or
 - $s \perp s'$.

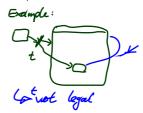


17 - 2014 01 20 - Shipmatin

Legal Transitions

A hiearchical state-machine $(S, kind, region, \rightarrow, \psi, annot)$ is called **well-formed** if and only if for all transitions $t \in \rightarrow$,

- (i) source and destination are consistent, i.e. $\downarrow source(t)$ and $\downarrow target(t)$,
- (ii) source (and destination) states are pairwise orthogonal, i.e.
 - forall $s \not + s' \in source(t)$ ($\in target(t)$), $s \perp s'$,
- (iii) the top state is neither source nor destination, i.e.
 - $top \notin source(t) \cup \text{source}(t)$.
 - Recall: final states are not sources of transitions.



- 17 - 2014 01 20 - Shipman

14/44

Legal Transitions

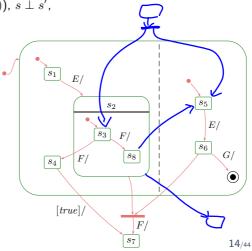
A hiearchical state-machine $(S, kind, region, \rightarrow, \psi, annot)$ is called **well-formed** if and only if for all transitions $t \in \rightarrow$,

- (i) source and destination are consistent, i.e. $\downarrow source(t)$ and $\downarrow target(t)$,
- (ii) source (and destination) states are pairwise orthogonal, i.e.

• forall $s \not\models s' \in source(t) \ (\in target(t)), \ s \perp s',$

- (iii) the top state is neither source nor destination, i.e.
 - $top \notin source(t) \cup$ pource(t).
 - Recall: final states are not sources of transitions.

Example:

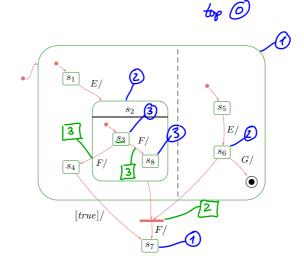


- 17 - 2014-01-20 - Shierstm -

The Depth of States

- depth(top) = 0,
- depth(s') = depth(s) + 1, for all $s' \in child(s)$

Example:



15/44

Enabledness in Hierarchical State-Machines

• The scope ("set of possibly affected states") of a transition t is the least common region of

$$source(t) \cup target(t)$$
.

- Two transitions t_1, t_2 are called **consistent** if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).
- ullet The **priority** of transition t is the depth of its innermost source state, i.e.

$$prio(t) := \max\{depth(s) \mid s \in source(t)\}\$$

- ullet A set of transitions $T\subseteq \to$ is **enabled** in an object u if and only if
 - T is consistent,
 - T is maximal wrt. priority,
 - ullet all transitions in T share the same trigger,
 - all guards are satisfied by $\sigma(u)$, and
 - for all $t \in T$, the source states are active, i.e.

$$source(t) \subseteq \sigma(u)(st) \ (\subseteq S).$$

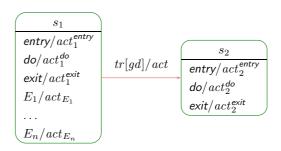
- ullet Let T be a set of transitions enabled in u.
- Then $(\sigma, \varepsilon) \xrightarrow{(cons, Snd)} (\sigma', \varepsilon')$ if
 - $\sigma'(u)(st)$ consists of the target states of t, i.e. for simple states the simple states themselves, for composite states the initial states,
 - σ' , ε' , cons, and Snd are the effect of firing each transition $t \in T$ one by one, in any order, i.e. for each $t \in T$,
 - the exit transformer of all affected states, highest depth first,
 - the transformer of t,
 - the entry transformer of all affected states, lowest depth first.
 - \rightsquigarrow adjust (2.), (3.), (5.) accordingly.

17/44

Entry/Do/Exit Actions, Internal Transitions

Entry/Do/Exit Actions

- In general, with each state $s \in S$ there is associated
 - an entry, a do, and an exit action (default: skip)
 - a possibly empty set of trigger/action pairs called internal transitions,



(default: empty). $E_1, \ldots, E_n \in \mathcal{E}$, 'entry', 'do', 'exit' are reserved names!

- \bullet Recall: each action's supposed to have a transformer. Here: $t_{act_1^{\textit{entry}}},\,t_{act_1^{\textit{exit}}},\,\dots$
- Taking the transition above then amounts to applying

$$t_{act_{s_2}^{\mathit{entry}}} \circ t_{act} \circ t_{act_{s_1}^{\mathit{exit}}}$$

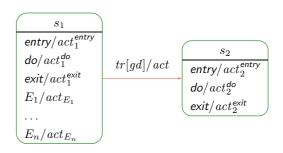
instead of only

 t_{act}

 \rightsquigarrow adjust (2.), (3.) accordingly.

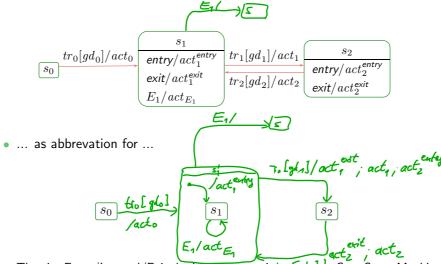
19/44

Internal Transitions



- For internal transitions, taking the one for E_1 , for instance, still amounts to taking only $t_{act_{E_1}}$.
- Intuition: The state is neither left nor entered, so: no exit, no entry.
 - \rightsquigarrow adjust (2.) accordingly.
- Note: internal transitions also start a run-to-completion step.
- Note: the standard seems not to clarify whether internal transitions have priority over regular transitions with the same trigger at the same state.
 - Some code generators assume that internal transitions have priority!

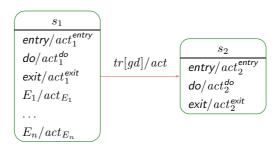
Alternative View: Entry/Exit/Internal as Abbreviations



- That is: Entry/Internal/Exit don't add expressive power to Core State Machines. If internal actions should have priority, s_1 can be embedded into an OR-state (see later).
- Abbreviation may avoid confusion in context of hierarchical states (see later).

21/44

Do Actions



- Intuition: after entering a state, start its do-action.
- If the do-action terminates,
 - then the state is considered completed,
- otherwise,
 - if the state is left before termination, the do-action is stopped.
- Recall the overall UML State Machine philosophy:
 - "An object is either idle or doing a run-to-completion step."
- Now, what is it exactly while the do action is executing...?

- 17 - 2014-01-20 - Ser

43/44

References

- [Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models are created equal. *Software and Systems Modeling*, 6(4):415–435.
- [Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal semantics for a UML kernel language 1.2. IST/33522/WP 1.1/D1.1.2-Part1, Version 1.2.
- [Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state machines: Complete formal semantics via core state machines. In Brim, L., Haverkort, B. R., Leucker, M., and van de Pol, J., editors, *FMICS/PDMC*, volume 4346 of *LNCS*, pages 244–260. Springer.
- [Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. *IEEE Computer*, 30(7):31–42.
- [Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of statecharts. In Ehrig, H., Damm, W., Große-Rhode, M., Reif, W., Schnieder, E., and Westkämper, E., editors, *Integration of Software Specification Techniques for Applications in Engineering*, number 3147 in LNCS, pages 325–354. Springer-Verlag.
- [OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

17 - 2014-01-20 - main -