— 17 — 2014-01-27 — main —

Sdtware Design, Modelling andAnalysisin UML

Ledure 17: Refledive Description o Behaviour,
Live Sequence Charts |

201401-27

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 17 — 2014-01-27 — Sprelim —

Last Lecture:
Hierarchical State Machines

Later: active vs. passive; behavioural feature (aka. methods).

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.

What does this LSC mean?
Are this UML model’s state machines consistent with the interactions?

Please provide a UML model which is consistent with this LSC.

What is: activation, hot/cold condition, pre-chart, etc.?

Content:
Remaining pseudo-states, such as shallow/deep history
Reflective description of behaviour.
LSC concrete and abstract syntax.
LSC intuitive semantics.
Symbolic Biichi Automata (TBA) and its (accepted) language.

2/37

— 17 — 2014-01-27 — main

The Concept of History, and Other Pseudo-Sates

History and Deep History: By Example

— 17 — 2014-01-27 — Shist —

5/ SUSp R,/ |50

/(ﬁf::sl

337

What happens on... (nglt <f Avation)

R?

So. Sz

R4?

Sp' Sy

A, B,C, S, R?

So, Sf,fa,fjl Sldfl S2
P =

A,BSS, Ry?

$9,51,S2,$3, fap, $3

A,B,C,D,ESR.? .

So, 59,82, Sy, Sg, Sesp, S(/.
Eg
A,B,C,D,Rq?
So; Sy, S2 Su, S5, m5p, Ssm
»

Junction andChoice

Junction (“static conditional branch”):

Choice: (“dynamic conditional branch”)

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round...

— 17 — 2014-01-27 — Shist —

Junction andChoice

Junction (“static conditional branch”):

good: abbreviation

\/
VAN

N
A\

@,
%

-

N
ol

M

VAN

8
R
N\

\ .

/’

/Q
C’le

unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

at best, start with trigger, branch into conditions, then apply actions

Choice: (“dynamic conditional branch”)

— 17 — 2014-01-27 — Shist —

I’d guessed it was just the other way round...

Note: not so sure about naming and symbols, e.g.,

7

ﬁ<>\

5/37

537

— 17 — 2014-01-27 — Shist —

. . 3 , [x#2—> 7
Junction andChoice o€ ‘%U 2

2

5“0]-’(l \\ O-O‘A

3y
¢

Junction (“static conditional branch”): N
-
9@1/

good: abbreviation Q/Q%

unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

at best, start with trigger, branch into conditions, then apply actions

N

Choice: (“dynamic conditional branch”) ﬁ<>/ [:«:‘J\,D
N

evil: may get stuck

enters the transition without knowing whether there's an enabled path
at best, use “else” and convince yourself that it cannot get stuck
maybe even better: avoid

Note: not so sure about naming and symbols, e.g.,

I’d guessed it was just the other way round...
5/'37

— 17 — 2014-01-27 — Shist —

Entry and Exit Point, Submachine Sate, Terminate s gi\,b

Hierarchical states can be “folded” for readability. — e
(but: this can also hinder readability.) @\D =Es -0
Can even be taken from a different state-machine for re-use.

Entry/exit points O ®
{ ion i current level,

Provide connection points for fine
than just via initial state.

Semantically a bit tricky:
First the exit action of the exiting state,
then the actions of the transition,
then the entry actions of the entered state,

then action of the transition from
the entry point to an internal state,

and then that internal state's entry action.

Terminate Pseudo-State X

When a terminate pseudo-state is reached,
the object taking the transition is immediately killed. 6/37

— 17 — 2014-01-27 — main

Deferred Events in Sate-Machines

737

Deferred Events: | dea

— 17 — 2014-01-27 — Sdefer —

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:
Consider the following state machine:

F/

Assume we're stable in s, and F' is ready in the ether.
In the framework of the course, I is discarded.

But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in sa,
in other words, defer it.

General options to satisfy such needs:
Provide a pattern how to “program” this (use self-loops and helper attributes).

Turn it into an original language concept. (< OMG's choice)
8/37

Deferred Events. Syntax and Smantics

— 17 — 2014-01-27 — Sdefer —

— 17 — 2014-01-27 — main

Syntactically,
Each state has (in addition to the name) a set of deferred events.

Default: the empty set.

The semantics is a bit intricate, something like
if an event E is dispatched,
and there is no transition enabled to consume FE,
and FE is in the deferred set of the current state configuration,
then stuff E into some “deferred events space” of the object, (e.g. into the
ether (= extend €) or into the local state of the object (= extend o))

and turn attention to the next event.

Not so obvious:
Is there a priority between deferred and regular events?

Is the order of deferred events preserved?

[Fecher and Schénborn, 2007], e.g., claim to provide semantics for the complete
Hierarchical State Machine language, including deferred events.

You ae here.

9/' 37

10/37

Course Map

— 17 — 2014-01-27 — main

— 17 - 2014-01-27 — main

cD, SM » € OCL D, SD 5
e
S = (T.G,V, atr), SM capr #,SD
: o
M= (23, Ay, —sum) B = (Qsp:90: A, —sp, Fsp)
D 0 0

(consg,Sndo)
e

(01,€1) -+ <> wr = ((03, cons;, Snd;)) ;e

w\:‘; 0

G=(N,E.f)

oD

11/37

Motivation: Refledive, Dynamic Descriptions of Behaviour

12/37

Reall: Constructive \s. Refledive Descriptions

— 17 — 2014-01-27 — Sbehav —

[Harel, 1997] proposes to distinguish constructive and reflective descriptions:

“A language is constructive if it contributes to the dynamic semantics
of the model. That is, its constructs contain information needed in
executing the model or in translating it into executable code.”

A constructive description tells how things are computed (which can
then be desired or undesired).

“Other languages are reflective or assertive, and can be used by the
system modeler to capture parts of the thinking that go into building the
model — behavior included —, to derive and present views of the model,
statically or during execution, or to set constraints on behavior in
preparation for verification.”

A reflective description tells what shall or shall not be computed.
Note: No sharp boundaries!

13/'37

Reall: What is a Requirement?

— 17 — 2014-01-27 — Sreflective —

Recall:

The semantics of the UML model M = (¥2, %4 ,02) is the transition
system (S, —, Sp) constructed according to discard/dispatch/commence-rules.

The computations of M, denoted by [M], are the computations of (.S, —, So).
Now:
A reflective description tells what shall or shall not be computed.

More formally: a requirement 1 is a property of computations, sth. which is
either satisfied or not satisfied by a computation

,Snd ,Snd
o (0'0,80) (comsg,Sndg) (0'1,81) (cons1,Sndy) e [M]],

denoted by 7 = ¢ and 7 [~ ¥, resp.

1437

OCL as Refledive Description o Certain Properties

— 17 — 2014-01-27 — Sreflective —

He 1-H (6,£)- paic
e invariants: f ia T

MUEV Ml VreM[VieN: ' 9,
e non-reachability of configurations:
Ire[M]PieN: a9
= Vre[M]VieN: 7"
e reachability of configurations:
IJre[M]IieN: 7' =9
— ~(Vre[M]VieN:a" = —v)
where

e 19 is an OCL expression or an object diagram and

e “E" is the corresponding OCL satisfaction
or the "“is represented by object diagram” relation.

15/37

In General Not OCL: Temporal Properties

— 17 — 2014-01-27 — Sreflective —

Dynamic (by example)
e reactive behaviour
e “for each C instance, each reception of F is finally answered by F

Vre[M]:mE9

e non-reachability of system configuration sequences
e “there mustn’t be a system run where C first receives F and then sends I

IreM]:mY

» reachability of system configuration sequences

e “there must be a system run where C first receives £ and then sends F”

dre[M]:m =9
But: what is “=" and what is “0"?

16/37

Interactions. Problem andPlan

In general: V(3) m € [M] : m =(}%) ¢
Problem: what is “I=" and what is “9"?

Plan:
@ o Define the language L£(Z) of an interaction Z — via Biichi automata.

®-° Define the language £(M) of a model M — basically its computations.
Each computation 7 € [M] corresponds to a word w,.

o Then (conceptually) 7 = o if and only if w, € L(Z).

ﬁ I
CD, SM ¢ e OCL CD, SD

B = (Qsp,q0, Az, —sD, Fsp)

(consu Sndo) Q;z«

T = (00,60) ———— (01,€1)" wr = ((0, consy, Snd;)) ;e

% O 17/37

M= (5%,As,—su)

— 17 — 2014-01-27 — Sreflective —

Interactions: Plan

o In the following, we consider Sequence Diagrams as interaction Z,
o more precisely: Live Sequence Charts [Damm and Harel, 2001]. |
« We define the language £(Z) of an LSC — via Biichi automata. “"
_ _ pca/‘a”&[u
o Then (conceptually) 7 = ¥ if and only if w, € L(Z).

Why LSC, relation LSCs/UML SDs, other kinds of interactions: later.

CD, SM p € OCL CD, D
rg ik % #
& =(T,6,V,atr), SM expr &, 58D

2

B = (Qsp,q0, A, —sp, Fsp)

Eza

7= (00,60) ———— (01,€1)- -+ <> wr = ((0, consi, Snd;)) ;e

w 0
‘%MQW;WEﬁ

M= (3%,As,—sm)

— 17 — 2014-01-27 — Sreflective —

1837

Live Sequence Charts — Concrete Syntax

— 17 — 2014-01-27 — main —

19/37

ADVER TISEZEN T~

Example

Lectufe
Ko —Tjue :S)ﬁéu!

sc: Stevnv-ee 23/;

AC: actcond

AM: invariant |: strict

,,,,,,,,,,,,,,,,,, N
/
,/ ’Environment‘ ’ : LightsCtrl ‘ ’: CrossingCtrI‘ ’ : BarrierCtrl ‘ \\\
S : E—
\ T
A\ 4 L i £(10) 4‘ /

/ - . |
7 ' lights_on barrier_ down !
/ ST T TN SN
; <. Operational > I
7 P ’ !
D) e |) [
; lights ok !
7/ ™ parrier_ok
? w - ‘
7 ddne t |
o [‘ [
7 | | |

Lsyual ;
| Uglts -ou
CrossingCtrl

LightsCtrl ‘ BarrierCtrl

I

— 17 — 2014-01-27 — Slscsyn —

20/37

Example: What Is Required?

LSC: L CrossingCtrl
AC: actcond
AM: invariant I strict) 1\
,,,,,,,,,,,,,,,,,, 1 1
/ \
,/ ‘Environmen(‘ ‘ : LightsCtrl ‘ ‘: CrossingC(rI‘ ‘ : BarrierCtrl | ‘ LightsCtrl ‘ ‘ BarrierCtrl
“ s 1 /
N i +Xu(10) 1 ,
7 i |
7 o liENS-00 | barries oy |
,,,,,, y—2arrier_down
; (/Operarional:> |
7 N !
Z 3]) ! 11,5] ~MvUp >
7 lights ok .
7 | parrier_ok
7 ! o |
7 dohe 4t !
7 ! ! I
g | | I

Whenever the CrossingCtrl has consumed a ‘secreq’ event
then it shall finally send ‘lights_on’ and ‘barrier_down’ to LightsCtrl and BarrierCtrl,

if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there's another LSC for that case.

if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights_ok’ within 1-3 time units,

I
? the BarrierCtrl shall reply with ‘barrier_ok’ within 1-5 time units, during this time
& (dispatch time not included) it shall not be in state ‘MvUp’,
Z{ ‘lights_ok’ and ‘barrier_ok’ may occur in any order.
I
= After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.
[21/'37
Buil ding Blocks
LSC: L CrossingCtrl
AC: actcond I : '”f\{‘
AM: invariant I strict
- N 1 1
,/ ‘Env'\ronment‘ ‘ : LightsCtrl ‘ ‘: CrossingCtvl‘ ‘ : BarrierCtrl | ‘ LightsCtrl ‘ ‘ BarrierCtrl
{ 7 sedeq : ;)
. 2\1«._@(10) 3 /
2 . ‘77’1&’”570’7 barrier_down 1
; /\\Operatr'onal> 1
2 wa| } Ml
a lights_ok .
7 -
2 | = |
Z/Idd"e//‘HO !
7 | ! |
2 | | |
. 8(-}761“!1 : (Orca(veasbles
Instance Lines:
Environment c:C
| / ‘
< /
) /
) 7z
%]
|
|
I

22/37

Building Blocks

CrossingCtrl

LsC: L
AC: actcond
AM: invariant I: strict Y/ 1\1
y - \
// ‘Environment‘ ‘ : LightsCtrl ‘ ‘: CvossingCtrl‘ ‘ : BarrierCtrl \\ ‘ LightsCtrl ‘ BarrierCtrl
< T ! ;
\ /
N / ! $—X t(10) L /
7 j i |
7 \._lights.on barrier_down !
e atateinte =,
; ‘. Operatr‘onal>
7 N
/ 3 ' ~MvUp >
; lights ok .
7 | =
/ |
{»//do,"e//‘?%(
7 |
/ I

Messages: (asynchronous or synchronous/instantaneous)

st
s

§ €
F le\'v

o

|
ES
3 a
n
|
8
s
<
N
|
=
‘ 2337
Buil ding Blocks
LSC: L CrossingCtrl
AC: actcond
AM: invariant I strict | A 1\1
// ‘Env'\ronment‘ ‘ : LightsCtrl ‘ ‘: CrossingCtvl‘ ‘ : BarrierCtrl \\\ ‘ LightsCtrl ‘ BarrierCtrl
‘ pa seq‘req } : /\
N s e e
2 o ‘77@"”570“ barrier_down 1
; /\/Operatr'onal> |
N I
7 wa| } (L.5] M
7 lights_ok .
z ™| parrier.ok
/ | - |
2 |
2 1 1 1
Conditions and er, expry, exprs € Expr .y,)
| (/ W \/
% ”Tﬁ expry @
|
5 <) % |
e & g
<
g
|
~
|

2437

Intuitive Semantics; A Partial Order on Smclasses

— 17 — 2014-01-27 — Slscsyn —

(i) Strictl

After:

(i) Simultaneously: (Wn)

d NN

| a

expry

I I

(iii) Explicitly Unordered: (co-region)

Intuition: A computation path violates an LSC if the occurrence of some events
doesn’t adhere to the partial order obtained as the transitive closure of (i) to (iii).

LSC Spedalty: Modes

With LSCs,

o whole charts,

o locations, and

o elements

have a mode — one of hot or cold (graphically indicated by outline).

25/37

hot:

chart

=T

L — — — —

always vs. at
least once

location
il

must vs. may
progress

message

mustn’t vs.
may get lost

condition/

local inv.

Q?

N
/
N /

L1
p -

necessary vs.
legal exit

— 17 — 2014-01-27 — Slscsyn —

2737

LSC Spedalty: Activation

LSCs: Activation condition (AC € Expr),
activation mode (AM € {init, inv}),
and pre-chart.

One major defect of MSCs and SDs:
they don’t say when the scenario has
to/may be observed.

— 17 — 2014-01-27 — Slscsyn —

LSC: L
G‘Q &4\ k —_— AC: expr
! AM: invariant |: strict
. , ’ ‘ N
\

:D
T

T e R

\ |
a \ M /
\ /
\ /

(s.lc-u:ih) t:mq } i ’ 2)
b i(’ : lb/{

Intuition: (universal case)
given a computation 7, whenever ezpr holds in a configuration (o, £f) of £
(AM = initial)
(AM = invariant)

which is initial, i.e. k=0, or
whose k is not further restricted,
and if the pre-chart is observed from k to k +m

then the main-chart has to follow from k + m-+ 1.
29/37

— 17 — 2014-01-27 — main —

Course Map
-
¥ -
CD, SM p € OCL CD, SD s
| 0 a &
' =(T,6,V, atr), SM expr <, SD
0 0 1
M= (22,As,—su) N B =(Qsp;q0, A»,—sp, Fsp)
O 0
0
m = (00,20) M» (01,€1) - wr = ((0;, cons;, S"di))i,e]N
g*]
G=(N,E,f)
]
0D

3137

Live Sequence Charts — Abstract Syntax

|
I
|
Example
LSC: L
AC: actcond
AM: invariant |: strict
i — — o ——
, ’Enwronment‘ ’ : LightsCtrl ‘ ’: CrossmgCtrI‘ ’ : BarrierCtrl N
N pa seq‘req ! } ,/
\ T
A z L _ %t(lO) 4‘ //
4 T |
; ' lights_on barrier down |
Vdntmtaial e
; ‘. Operational\> I
v e !
; [1,3] I [1,5] -MvUp >
7 ’ lights ok !
7 ™ parrier_ok
/ i
T e 4 |
o I I I
7 | | |
I
é CrossingCtrl
%]
| 2N
& 1 1
g ‘ LightsCtrl ‘ ‘ BarrierCtrl ‘
|
I

32/37

3337

LSC Body: Abstract Syntax H"Z

— 17 - 2014-01-27 — Slscasyn —

Let © = {hot,cold}. An LSC body is a tuple ’(“:0:I
®
(I,(%,=%),~,.¥, Msg, Cond, Loclnv)

I is a finite set of instance lines, €"3 gf%%
|~ 1
(&, =) is a finite, non-empty, & L z%w
T=5h, iz, 13§ < G,y

partially ordered set of locations;
each | € £ is associated with a temperature &€ = 56}, Ve, (3’45, £44< by 6, 4KC,
v

0(1) € © and an instance line 4; € I, €425 03 0 o
€12 <6, WHCs

~C ¥ x £ is an equivalence relation

on locations, the simultaneity relation, /{% - ; (e” /4 ez,) E
1, 4 1/~
S =(9,%,V,atr, &) is a signature,

Msg C .Z x & x £ is a set of asynchronous _ 3
messages with (1,b,1') € Msg only if [</, Cowd {({ez'zil x> ,Loé)/ " ?

Not: instantaneous messages —
. . =z =0 "
could be linked to method/operation calls. LOCI“'V {(27-4 1 0 V=G ?,,z' .)/ ' f

Cond C (2% \ 0) x Expr, x © is a set of conditions
where Ezpr ., are OCL expressions over W = I U {self }
with (L, ezpr,0) € Cond only if [~ 1’ for all I,I' € L,

Loclnv C .Z x {o,e} X Ezpro, x © x £ x {o,e}

— 17 - 2014-01-27 — Slscasyn —

is a set of local invariants, 3437
WEll -Formedness
Bondedness/no floating conditions: (could be relaxed a little if we wanted to)
For each location [€ &, if | is the location of ADT E/’I[/“Q'A’y
a condition, i.e. e
(L, expr,0) € Cond: 1 € L, or x
>

a local invariant, i.e.

A(ly, i1, expr,0,la,i2) € Loclnv : 1 € {l1,12}, or
then there is a location I’ equivalent to [, i.e. [~ {’, which is the location of

an instance head, i.e. I’ is minimal wrt. <, or
a message, i.e. 8

(l1,0,12) € Msg : L € {l1,12}. 5

Note: if messages in a chart are cyclic, then there doesn't exist a partial order
(so such charts don’t even have an abstract syntax).

3537

— 17 — 2014-01-27 — main —

— 17 — 2014-01-27 — main —

References

36/37

References

[Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into
Message Sequence Charts. Formal Methods in System Design, 19(1):45-80.

[Fecher and Schénborn, 2007] Fecher, H. and Schénborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L., Haverkort,
B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS,
pages 244-260. Springer.

[Harel, 1997] Harel, D. (1997). Some thoughts on statecharts, 13 years later. In Grumberg,
0., editor, CAV, volume 1254 of LNCS, pages 226—231. Springer-Verlag.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2.
Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal/07-11-02.

3737

