Contents & Goals

Last Lecture:
« Hierarchical State Machines

© Later: active vs. passive; behavioural feature (aka. methods).

Sdtware Design, Modelling andAnalysisin UML The Concept of History, and Other Pseudo-States

This Lecture:
Ledure 17: Refledive Descri ption o WOIQSOC_..A « Educational O_“.:.mnn?mm" Capabilities for following tasks/questions.
a * What does this LSC mean?
|<mwncmsnm Charts| © Are this UML model’s state machines consistent with the interactions?

» Please provide a UML model which is consistent with this LSC.

» What is: activation, hot/cold con n, pre-chart, etc.?

201401-27 « Content:

» Remaining pseudo-states, such as shallow/deep history
 Reflective description of behaviour.

+ LSC concrete and abstract syntax.

+ LSC intuitive semantics.

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

e
o012

5 iy, Gy : « Symbolic Biichi Automata (TBA) and its (accepted) language. :

Albert-Ludwigs-Univer

' 2/ 3
History and Deep History: By Example Junction andChoice Junction andChoice
What happens on... (bt ol confim)
« Junction (“static conditional branch”): + Junction (“static conditional branch”):

« R

So. 52 « good: abbreviation
. Ra? » unfolds to so many similar transitions with different guards,

So S2 the unfolded transitions are then checked for enabledness

« at best, start with trigger, branch into conditions, then apply actions

* A B,C,S R;?

Sou $1,52,53, %P 53 .
. Pm&% Ra? « Choice: (“dynamic conditional branch™) —O7 » Choice: (“dynamic conditional branch™)

$0.59S2, %3, ap, §3

apooERy
S0,51,52, 54, S5, 95p,Sg

[AN
A.B.C. DR P W

So1 1,52 S0, 55, S0P, S5

top”

27— Shist -

Note: not so sure about naming and symbols, e.g., Note: not so sure about naming and symbols, e.g.,

. . I'd guessed it was just the other way round... . ©I'd guessed it was just the other way round.. s

. . 3 Lo (erd . . .
Junction andChoice Dmkﬂ. O e e = Entry and Exit Point, Submachine State, Terminate 2
P e o = £
3 : . “ "
“ N N . o « Hierarchical states can be “folded” for readability. 5 .
+ Junction (“static conditional branch”): »}N ; (but: this can also hinder readability.) =G0
lo,
« good: abbreviation w\\eﬁ\ « Can even be taken from a different state-machine for re-use. I . .
+ unfolds o so many similar transitions with different guards, o Deferred Eventsin Sate-Machines
« Entry/exit points o ®

the unfolded transitions are then checked for enabledness
© at best, start with trigger, branch into conditions, then apply actions

he current level,

« Provide connection points for fi
than just via initial state.

« Semantically a bit tricky:
« First the exit action of the exiting state,

Choice: (“dynamic conditional branch™)

o then the actions of the transition,

o evil: may get stuck « then the entry actions of the entered state,

« enters the transition without knowing whether there’s an enabled path + then action of the transition from

« at best, use “else” and convince yourself that it cannot get stuck the entry point to an internal state,

« maybe even better: avoid E « and then that internal state’s entry action.

= Note: not so sure about naming and symbols, e.g., g o Terminate Pseudo-State X
£ I'd guessed it was just the other way round... B » When a terminate pseudo-state is reached, =
! 551 the object taking the transition is immediately killed. 63 7
Deferred Events: | dea Deferred Events: Syntax and $mantics
For ages, UML state machines comprises the feature of deferred events. » Syntactically,
) » Each state has (in addition to the name) a set of deferred events.
The idea is as follows: « Default: the empty set. Y h
« Consider the following state macl o o . Ou ae here.
» The semantics is a bit intricate, something like
E/ « if an event E is dispatched,
« and there is no transition enabled to consume £,
« and E is in the deferred set of the current state configuration,
+ Assume we're stable in 51, and F is ready in the ether. o then stuff E into some “deferred events space” of the object, (e.g. into the
+ In the framework of the course, F is discarded. ether (= extend ¢) or into the local state of the object (= extend o))
o X « and turn attention to the next event.
« But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in 52, + Not so obvious:
in other words, defer it. . o Is there a priority between deferred and regular events? :
o Is the order of deferred events preserved?
General options to satisfy such need 5 . .
= Provide a pattern how to “program” this (use self-loops and helper attributes) H [Fecher and Schénborn, 2007], e.g., claim to provide semantics for the complete H
o Turn it into an original language concept. (— OMG's choice) : Hierarchical State Machine language, including deferred events.
9 1037

Reall: Constructive \s. Refledive Descriptions

Course Map
w . [Harel, 1997] proposes to distinguish constructive and reflective descriptions:
oeocL D, SD b « “A language is constructive if it contributes to the dynamic semantics
7_O:<mﬂ_0_‘._. Em:mg_<ﬂ _Uv\jm:.‘.o _Ummu_‘_ U:O_‘.m Oﬁ WQ‘._QSOC_‘ of the model. That is, its constructs contain information needed in
W O . executing the model or in translating it into executable code.”
H%.w V.atr), SM i? D.Y. .w&, A constructive description tells how things are computed (which can
M 0 L/w FK,N\V then be desired or undesired).
s
« “Other languages are reflective or assertive, and can be used by the

—sp. Fsp)

= (Qsp. %
O system modeler to capture parts of the thinking that go into building the
model — behavior included -, to derive and present views of the model,
<A wr = (03, consi, Sndi)) ;e statically or during execution, or to set constraints on behavior in
preparation for verification.”

0
] A reflective description tells what shall or shall not be computed.

, G=(NE.f)
O%
3 op 5 Note: No sharp boundaries!
0 1137 b 123 ' 1337
Reaall: What is a Reguirement? OCL as Refledive Description of Certain Properties In General Not OCL: Temporal Properties
Hee iAo (0e)- pic
Recal o invariants: I’ a T Dynamic (by example)
 The semantics of the UML model M = (€2,.%4, 07) is the transition MEV . Vre[M]VieN: ' |0, « reactive behaviour
system (S, —, So) constructed according to discard/dispatch/commence-rules. « non-reachability of configurations: o “for each C instance, each reception of E is finally answered by "
« The computations of M, denoted by [M], are the computations of (S, —, So). .
v Ml ? (&= %) Are M BieN |0 vreMlmED
Now: = Vre[M]VieN:n' =~
A reflective description tells what shall or shall not be computed. + reachability of configurations: « non-reachability of system configuration sequences
o “there mustn’t be a system run where C first receives E and then sends F"
More formally: a requirement ¥ is a property of computations, sth. which is Ire[M]3ieN:n' |=d dreMl:nED
either satisfied or not satisfied by a computation ~(VreMIVieN: i £ -d)
7 = (00,0) (conso,Sndo) (o1,e1) (cons1,Sndy) e M]))
| where | « reachability of system ion
- denoted by 7 |=) and % 0, resp. © e @isan OCL expression or an object diagram and “there must be a system run where C first receives £ and then sends /"
N 7« "K" s the corresponding OCL satisfaction IreM]:nEY
i § or the “is represented by object diagram” relation. g
i H © But: whatis “&" and what is “J"?
15/37 1637

1473

Interactions: ProblemandPlan

Example

In general: V(3) 7 € [M] : 7 =(F) ¥
Problem: what is “" and what is “0"?

Plan:
@ « Define the language £(Z) of an interaction Z — via Biichi automata.

@. Define the language £(M) of a model M — basically its computations.

Each computation 7 € [M] corresponds to a word wy.
« Then (conceptually) 7 |= 9 if and only if w, € £(Z)

B = (Qsp,q0: Az, —sp, Fsp)

G L
AC. acteond
AM: invariant_I: _strict

\\ [Environment | [- LightsCurl | [CrossingCrl] [: Ba
{

T
\ sedreq
N T

|

! lights on
PP S LA
< Operational >,

AR

CrossingCtrl

:

oo |

173

ADVERTISEHEN T

2037

Interactions: Plan

In the following, we consider Sequence Diagrams as interaction Z,

more precisely: Live Sequence Charts [Damm and Harel, 2001]. —

© We define the language £(Z) of an LSC — via Biichi automata. SMN.E\..
« Then (conceptually) 7 |= ¥ if and only if w, € £(T). rectangls
Why LSC, relation LSCs/UML SDs, other kinds of interactions: later.
183

Example: What |Is Required?

© Whenever the CrossingCtrl has consumed a ‘secreq’ event
then it shall finally send ‘lights_on’ and ‘barrier_down’ to LightsCtrl and BarrierCtrl,

o if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn't apply; maybe there's another LSC for that case.

if LightsCt

‘operational’ when receiving that event,
it shall reply with

n 1-3 time units,

_ok' within 1-5 time units, during this time
state "MvUp',

o the BarrierCtrl shall reply with ‘ba
(dispatch time not included) it shall not be

ights ok’ and "barrier ok’ may occur in any order.

o After having consumed both, CrossingCtrl may reply with ‘done’ to the environment
23

Live Sequence Charts — Concrete Syntax

1937
Buil ding Blocks
", $Re19)
N
« Instance Lines: sgoval: bpieal veaiables
' 22/

Buil ding Blocks

R0

s, does wé
« Messages: (asynchronous or synchronous/instantaneous)

— o i

2337
LSC Spedalty: Modes
With LSCs,
« whole charts,
« locations, and
© elements
have a mode — one of hot or cold (graphically indicated by outline).
chart location message condition/
v local inv.
- o ¢ .
hot: JV.N‘) vli %
< R A
1d ! I b o
cold:
| I
- !
H always vs. at must vs. may mustn’t vs. necessary vs.
least once progress may get lost legal exit
P

ez

Buil ding Blocks

VN

. Local Invariants: (expr,, expry, expry € Expry,)

2473

LSC Spedalty: Activation

One major defect of MSCs and SDs: LSCs: Activation condition (AC € Erpr),
they don't say when the scenario has activation mode (AM € {init, inv}),
to/may be observed and pre-chart.

@ﬁfsw? > : wb
N |

Intuition: (universal case)
o given a computation 7, whenever expr holds in a configuration (o4, c4) of £
e k=0,o0r (AM = initial)
« whose k is not further restricted, (AM = invariant)
and if the pre-chart is observed from k to k +m
then the main-chart has to follow from & + m-+ 1.

« which i

29737

Intuitive Semantics. A Partial Order on Smclasses

(i) Strictly After:

C | |

(iii) Explicitly Unordered: (co-region)
o ,w
b

Intuition: A computation path violates an LSC if the occurrence of some events
doesn't adhere to the partial order obtained as the transitive closure of (i) to

2537

Course Map
\
¥ -
w .
CD, SM we oCL €D, SD s
Od 20 4 y
AR o
S = (F.%.,V,atr), SM expr #, 8D
% s Oy S
u} , Mm i} ¢ = ,J%Zf
M=(2 40§ H B = Qs Az a0 Foo)

31w

Live Sequence Charts — Abstract Syntax

32w

\W&ll-Formedness

Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

NOT= - § \‘\\o&w

« For each location I € ., if [is the location of

« a condition,
3(L, eapr,0) € Cond : 1 € L, or *

variant, i.e.

3Ly, iv, eapr, 0,1, i) € Lochnv : 1 € {Iy,la}, or

e alocal

i.e. I ~ ', which is the location of

then there is a location I’ equivalent to

e. I’ is minimal wrt. <, or

« an instance head,

2 e

» a message,
(b, L) € Msg s 1 € {1, 1o}]

Note: if messages in a chart are cyclic, then there doesn’t exist a partial order
(so such charts don’t even have an abstract syntax).

3537

e

Example

LsC: L
AC: actcond
AM:_imvariant_1:_stiee |
/" [Environment | [LightsCtrl | [: CrossingCtl] [: BarrierCtrl | "\
i N
seqreq | S
L,/l.lm%s i /
| lights.on |
= b EMEOD |
\/Onmwm:nSw\\v

LightsCurl BarrierCtrl

References

333

36/37

LSC Body: Abstract Syntax

Let © = {hot, cold}. An LSC body is a tuple <=7

(I,(&,=),~, %, Msg, Cond, LocInv)

« I's a finite set of instance lines, Ma @
« (&, =) is a finite, non-empty, W
T=fn, iz i3f <G

partially ordered set of locations;
each | € . s associated with a temperature &€= §6,,.., 65,49, 1< b 4,5kE,
(1) € © and an instance line i; € I, 0240,z m e
. s <6, WG,
o ~C & x & is an equivalence relation iid
on locations, the simultaneity relation, \bmu,m «m} A 0,) w
o S =(F,%,V,alr, &) is a signature, ! !

Msg C & x & x £ is a set of asynchronous 3
messages with (1, b,') € Msg only if [< I, Gl =] (8223, x>3/ ekl
Not: instantaneous messages —

could be linked to method /operation calls. Locla={ (€ 10,v=0,byz, 0
Cond C (2% \ 0) x Ezpr, x © is a set of conditions

where Erpr ,, are OCL expressions over W = I U {self}

with (L, expr,8) € Cond only if L ~ ' for all L, € L,

o Loclny C .2 x {o,#} x Eapr_, x © x £ x {o,e}
is a set of local invari 3

variants,

References

[Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into
Message Sequence Charts. Formal Methods in System Design, 19(1):45-80

[Fecher and Schénborn, 2007] Fecher, H. and Schanborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L., Haverkort,
B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS,
pages 244-260. Springer.

[Harel, 1997] Harel, D. (1997). Some thoughts on statecharts, 13 years later. In Grumberg,
0., editor, CAV, volume 1254 of LNCS, pages 226-231. Springer-Verlag.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2
Technical Report formal/07-11-04

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2
Technical Report formal/07-11-02

37w

