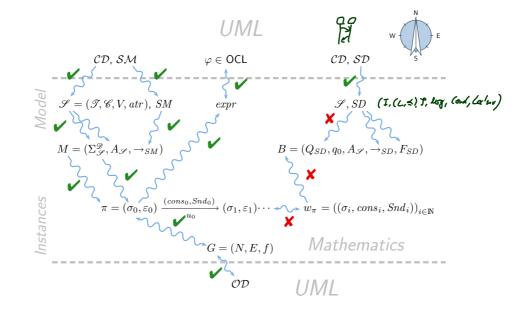
Software Design, Modelling and Analysis in UML

Lecture 19: Live Sequence Charts II

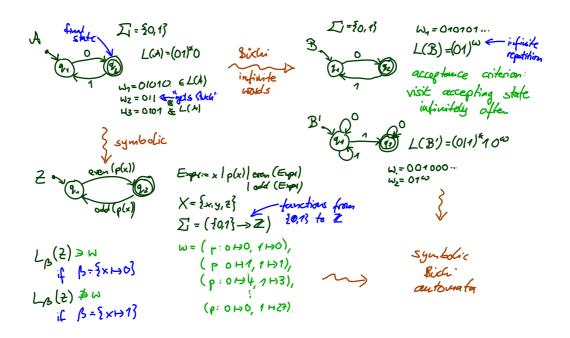
2014-01-29

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany


Contents & Goals

Last Lecture:

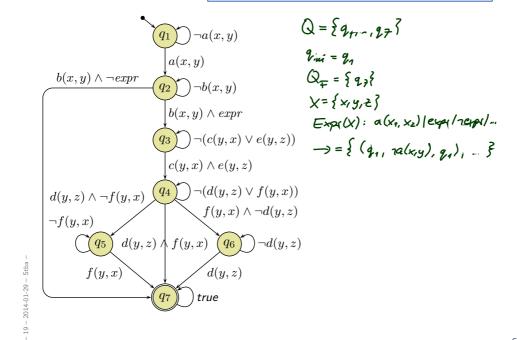

- LSC intuition
- LSC abstract syntax

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What does this LSC mean?
 - Are this UML model's state machines consistent with the interactions?
 - Please provide a UML model which is consistent with this LSC.
 - What is: activation, hot/cold condition, pre-chart, etc.?
- Content:
 - Symbolic Büchi Automata (TBA) and its (accepted) language.
 - Words of a model.
 - LSC formal semantics.

3/65

Symbolic Büchi Automata


Definition. A Symbolic Büchi Automaton (TBA) is a tuple

$$\mathcal{B} = (Expr_{\mathcal{B}}(X), X, Q, q_{ini}, \rightarrow, Q_F)$$

where

- X is a set of logical variables,
- $Expr_{\mathcal{B}}(X)$ is a set of Boolean expressions over X,
- ullet Q is a finite set of **states**,
- $q_{ini} \in Q$ is the initial state,
- $\rightarrow \subseteq Q \times Expr_{\mathcal{B}}(X) \times Q$ is the transition relation. Transitions (q, ψ, q') from q to q' are labelled with an expression $\psi \in Expr_{\mathcal{B}}(X)$.
- $Q_F \subseteq Q$ is the set of **fair** (or accepting) states.

- 19 - 2014-01-29 - Stha -

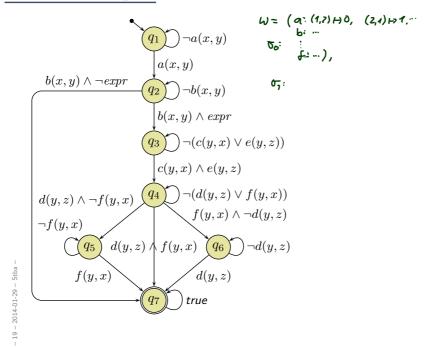
6/65

Word

Definition. Let X be a set of logical variables and let $Expr_{\mathcal{B}}(X)$ be a set of Boolean expressions over X.

A set $(\Sigma,\cdot\models.\cdot)$ is called an **alphabet** for $Expr_{\mathcal{B}}(X)$ if and only if

- for each $\sigma \in \Sigma$,
- for each expression $expr \in Expr_{\mathcal{B}}$, and
- for each valuation $\beta: X \to \mathcal{D}(X)$ of logical variables to domain $\mathcal{D}(X)$,


either $\sigma \models_{\beta} expr$ or $\sigma \not\models_{\beta} expr$.

An infinite sequence

$$w = (\sigma_i)_{i \in \mathbb{N}_0} \in \Sigma^{\omega}$$

over $(\Sigma, \cdot \models ...)$ is called **word** for $Expr_{\mathcal{B}}(X)$.

Word Example

8/65

Run of TBA over Word

Definition. Let $\mathcal{B}=(Expr_{\mathcal{B}}(X),X,Q,q_{ini},\rightarrow,Q_F)$ be a TBA and

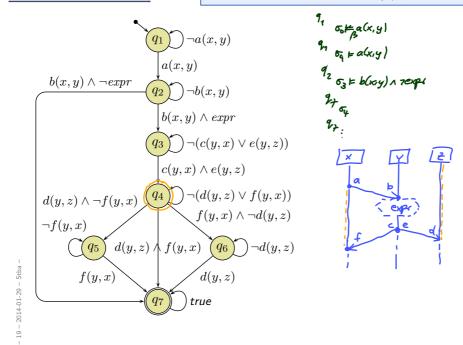
$$w = \sigma_1, \sigma_2, \sigma_3, \dots$$

a word for $Expr_{\mathcal{B}}(X)$.

An infinite sequence

 $g_2,\ldots\in Q^\omega$

 $\varrho = q_0, q_1, q_2, \ldots \in Q^{\omega}$


is called ${\bf run}$ of ${\mathcal B}$ over w under valuation $\beta:X\to {\mathscr D}(X)$ if and only if

- $q_0 = q_{ini}$
- for each $i \in \mathbb{N}_0$ there is a transition $(q_i, \psi_i, q_{i+1}) \in \rightarrow$ of \mathcal{B} such that $\sigma_i \models_{\beta} \psi_i$.

- 19 - 2014-01-29 - Stba -

Run Example

$\varrho = q_0, q_1, q_2, \ldots \in Q^{\omega}$ s.t. $\sigma_i \models_{\beta} \psi_i, i \in \mathbb{N}_0$.

10/65

The Language of a TBA

Definition.

We say ${\mathcal B}$ accepts word w (under $\beta)$ if and only if ${\mathcal B}$ has a run

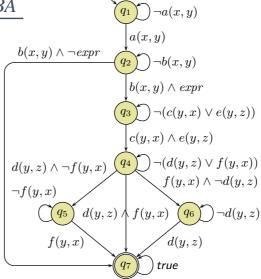
$$\varrho = (q_i)_{i \in \mathbb{N}_0}$$

over w such that fair (or accepting) states are **visited infinitely often** by ϱ , i.e., such that

$$\forall i \in \mathbb{N}_0 \ \exists j > i : q_j \in Q_F.$$

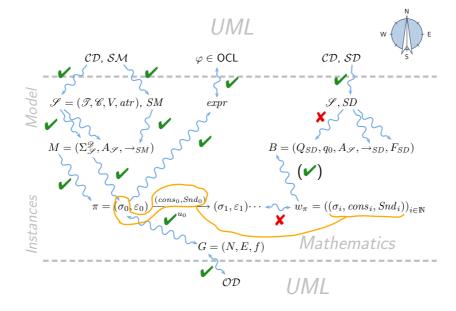
We call the set $\mathcal{L}_{\beta}(\mathcal{B}) \subseteq \Sigma^{\omega}$ of words for $Expr_{\mathcal{B}}(X)$ that are accepted by \mathcal{B} the **language of** \mathcal{B} .

Language of the Example TBA


 $\mathcal{L}_{eta}(\mathcal{B})$ consists of the words

$$w = (\sigma_i)_{i \in \mathbb{N}_0}$$

where for $0 \le n < m < k < \ell$ we have


- for $0 \leq i < n$, $\sigma_i \not\models_{\beta} E^1_{x,y}$
- $\sigma_n \models_{\beta} E_{x,i}^!$
- for n < i < m, $\sigma_i \not\models_\beta E_q^?$
- \bullet $\sigma_m \models_{\beta} E_i$
- for m < i < k, $\sigma_i \not\models_{\scriptscriptstyle{eta}} F_{u,s}^1$
- $\sigma_k \models_{\beta} F_n^1$
- for $k < i < \ell$, $\sigma_i \not\models_{\beta} F_{x,y}^2$

. . . .

12/65

Course Map

9 - 2014-01-29 - Stha -

Words over Signature

Definition. Let $\mathscr{S}=(\mathscr{T},\mathscr{C},V,atr,\mathscr{E})$ be a signature and \mathscr{D} a structure of $\mathscr{S}.$ A **word** over \mathscr{S} and \mathscr{D} is an infinite sequence

$$\begin{split} &(\sigma_i, cons_i, Snd_i)_{i \in \mathbb{N}_0} \\ &\in \left(\Sigma_{\mathscr{S}}^{\mathscr{D}} \times 2^{\mathscr{D}(\mathscr{C}) \times Evs(\mathscr{E}, \mathscr{D}) \times \mathscr{D}(\mathscr{C})} \times 2^{\mathscr{D}(\mathscr{C}) \times Evs(\mathscr{E}, \mathscr{D}) \times \mathscr{D}(\mathscr{C})}\right)^{\omega}. \end{split}$$

- 19 - 2014-01-29 - Smodellang -

The Language of a Model

Recall: A UML model $\mathcal{M} = (\mathscr{CD}, \mathscr{SM}, \mathscr{OD})$ and a structure \mathscr{D} denotes a set $\llbracket \mathcal{M} \rrbracket$ of (initial and consecutive) **computations** of the form

$$(\sigma_0,\varepsilon_0) \xrightarrow{a_0} (\sigma_1,\varepsilon_1) \xrightarrow{a_1} (\sigma_2,\varepsilon_2) \xrightarrow{a_2} \dots \text{ where}$$

$$a_i = (cons_i, Snd_i, u_i) \in \underbrace{2^{\mathscr{D}(\mathscr{C}) \times Evs(\mathscr{E},\mathscr{D}) \times \mathscr{D}(\mathscr{C})} \times 2^{\mathscr{D}(\mathscr{C}) \times Evs(\mathscr{E},\mathscr{D}) \times \mathscr{D}(\mathscr{C})}}_{=:\tilde{A}} \times \mathscr{D}(\mathscr{C}).$$

For the connection between models and interactions, we **disregard** the configuration of **the ether** and **who** made the step, and define as follows:

Definition. Let $\mathcal{M}=(\mathscr{CD},\mathscr{SM},\mathscr{OD})$ be a UML model and \mathscr{D} a structure. Then

$$\mathcal{L}(\mathcal{M}) := \{ (\underbrace{\sigma_i, cons_i, Snd_i}_{i \in \mathbb{N}_0})_{i \in \mathbb{N}_0} \in (\Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A})^{\omega} \mid \exists (\varepsilon_i, u_i)_{i \in \mathbb{N}_0} : (\sigma_0, \varepsilon_0) \xrightarrow[u_0]{(cons_0, Snd_0)} (\sigma_1, \varepsilon_1) \cdots \in \llbracket \mathcal{M} \rrbracket \}$$

is the **language** of \mathcal{M} .

16/65

Example: The Language of a Model

$$\mathcal{L}(\mathcal{M}) := \{ (\sigma_i, cons_i, Snd_i)_{i \in \mathbb{N}_0} \in (\Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A})^{\omega} \mid \\ \exists (\varepsilon_i, u_i)_{i \in \mathbb{N}_0} : (\sigma_0, \varepsilon_0) \xrightarrow[u_0]{(cons_0, Snd_0)} (\sigma_1, \varepsilon_1) \cdots \in \llbracket \mathcal{M} \rrbracket \}$$

19 - 2014-01-29 - Smodellang -

- Let $\mathscr{S}=(\mathscr{T},\mathscr{C},V,atr,\mathscr{E})$ be a signature and X a set of logical variables,
- The signal and attribute expressions $Expr_{\mathscr{S}}(\mathscr{E},X)$ are defined by the grammar:

$$\psi ::= true \mid expr \mid E_{x,y}^{\mathbf{I}} \mid E_{x,y}^{\mathbf{I}} \mid \neg \psi \mid \psi_1 \lor \psi_2,$$

where $expr: Bool \in Expr_{\mathscr{S}}$, $E \in \mathscr{E}$, $x, y \in X$.

19 - 2014-01-29 - Smodellang -

18/65

Satisfaction of Signal and Attribute Expressions

- Let $(\sigma, cons, Snd) \in \Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A}$ be a triple consisting of system state, consume set, and send set.
- Let $\beta: X \to \mathscr{D}(\mathscr{C})$ be a valuation of the logical variables.

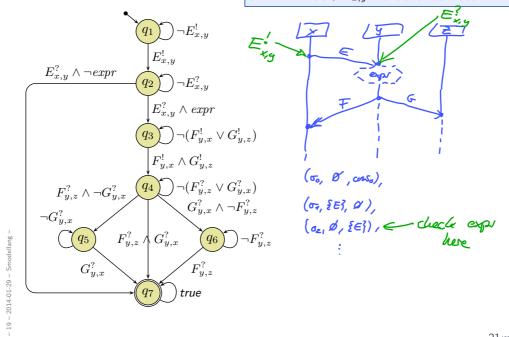
Then

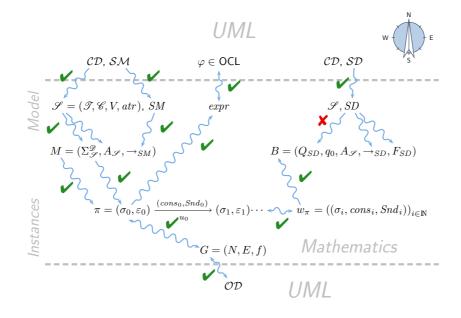
- $(\sigma, cons, Snd) \models_{\beta} true$
- $(\sigma, cons, Snd) \models_{\beta} \neg \psi$ if and only if not $(\sigma, cons, Snd) \models_{\beta} \psi$
- $(\sigma, cons, Snd) \models_{\beta} \psi_1 \lor \psi_2$ if and only if $(\sigma, cons, Snd) \models_{\beta} \psi_1$ or $(\sigma, cons, Snd) \models_{\beta} \psi_2$
- $(\sigma, cons, Snd) \models_{\beta} expr$ if and only if $I[[expr]](\sigma, \beta) = 1$
- $(\sigma, cons, Snd) \models_{\beta} E_{x,y}^!$ if and only if $\exists \vec{d} \bullet (\beta(x), (E, \vec{d}), \beta(y)) \in Snd$
- $(\sigma, cons, Snd) \models_{\beta} E_{x,y}^{?}$ if and only if $\exists \vec{d} \bullet (\beta(x), (E, \vec{d}), \beta(y)) \in cons$

Observation: semantics of models **keeps track** of sender and receiver at sending and consumption time. We disregard the event identity.

Alternative: keep track of event identities.

Definition. A TBA


$$\mathcal{B} = (Expr_{\mathcal{B}}(X), X, Q, q_{ini}, \rightarrow, Q_F)$$


where $Expr_{\mathcal{B}}(X)$ is the set of signal and attribute expressions $\mathit{Expr}_{\mathscr{S}}(\mathscr{E},X)$ over signature \mathscr{S} is called **TBA over** $\mathscr{S}.$

- Any word over $\mathscr S$ and $\mathscr D$ is then a word for $\mathcal B$. (By the satisfaction relation defined on the previous slide; $\mathscr{D}(X) = \mathscr{D}(\mathscr{C})$.)
- Thus a TBA over ${\mathscr S}$ accepts words of models with signature ${\mathscr S}.$ (By the previous definition of TBA.)

20/65

TBA over Signature Examp $(\sigma, cons, Snd) \models_{\beta} expr \text{ iff } I[expr](\sigma, \beta) = 1;$ $(\sigma, cons, Snd) \models_{\beta} E^!_{x,y} \text{ iff } (\beta(x), (E, \vec{d}), \beta(y)) \in Snd$

23/65

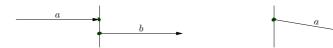
Live Sequence Charts Semantics

TBA-based Semantics of LSCs

Plan:

ullet Given an LSC L with body

$$(I,(\mathscr{L},\preceq),\sim,\mathscr{S},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv}),$$


- ullet construct a TBA \mathcal{B}_L , and
- define $\mathcal{L}(L)$ in terms of $\mathcal{L}(\mathcal{B}_L)$, in particular taking activation condition and activation mode into account.
- Then $\mathcal{M} \models L$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(L)$.

25/65

Recall: Intuitive Semantics

(i) Strictly After:

(ii) Simultaneously: (simultaneous region)

(iii) Explicitly Unordered: (co-region)

Intuition: A computation path **violates** an LSC if the occurrence of some events doesn't adhere to the partial order obtained as the **transitive closure** of (i) to (iii).

27/65

Formal LSC Semantics: It's in the Cuts!

Definition.

Let $(I,(\mathscr{L},\preceq),\sim,\mathscr{S},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv})$ be an LSC body.

A non-empty set $\emptyset \neq C \subseteq \mathscr{L}$ is called a **cut** of the LSC body iff

• it is downward closed, i.e.

$$\forall l, l' : l' \in C \land l \leq l' \implies l \in C,$$

• it is closed under simultaneity, i.e.

$$\forall l, l': l' \in C \land l \sim l' \implies l \in C$$
, and

• it comprises at least one location per instance line, i.e.

$$\forall i \in I \ \exists \ l \in C : i_l = i.$$

A cut C is called **hot**, denoted by $\theta(C)=$ hot, if and only if at least one of its maximal elements is hot, i.e. if

$$\exists l \in C : \theta(l) = \mathsf{hot} \land \nexists l' \in C : l \prec l'$$

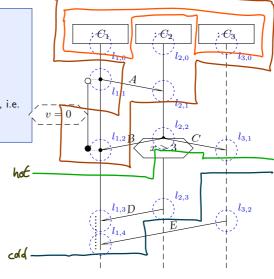
Otherwise, C is called **cold**, denoted by $\theta(C) = \text{cold}$.

Examples: Cut or Not Cut? Hot/Cold?

- (i) non-empty set $\emptyset \neq C \subseteq \mathscr{L}$,
- (ii) downward closed, i.e. $\forall l, l' : l' \in C \land l \leq l' \implies l \in C$
- (iii) closed under simultaneity, i.e. $\forall l, l': l' \in C \land l \sim l' \implies l \in C$
- (iv) at least one location per instance line, i.e. $\forall i \in I \exists l \in C : i_l = i,$

•
$$C_1 = \{l_{1,0}, l_{2,0}, l_{3,0}\}$$

•
$$C_2 = \{l_{1,1}, l_{2,1}, l_{3,0}\}$$


•
$$C_3 = \{l_{1,0}, l_{1,1}\}$$

•
$$C_4 = \{l_{1,0}, l_{1,1}, l_{2,0}, l_{3,0}\}$$

•
$$C_5 = \{l_{1,0}, l_{1,1}, l_{2,0}, l_{2,1}, l_{3,0}\}$$

•
$$C_6 = \mathcal{L} \setminus \{l_{1,3}, l_{2,3}\}$$

•
$$C_7 = \mathcal{L}$$

29/65

A Successor Relation on Cuts

The partial order of (\mathcal{L}, \preceq) and the simultaneity relation " \sim " induce a **direct successor relation** on cuts of \mathcal{L} as follows:

Definition. Let $C,C'\subseteq \mathscr{L}$ bet cuts of an LSC body with locations (\mathscr{L},\preceq) and messages Msg.

C' is called $\mbox{direct successor}$ of C via $\mbox{fired-set}\ F,$ denoted by $C \leadsto_F C',$ if and only if

•
$$F \neq \emptyset$$
,

•
$$C' \setminus C = F$$
,

• for each message reception in F, the corresponding sending is already in C,

$$\forall (l, E, l') \in \mathsf{Msg} : l' \in F \implies l \in C$$
, and

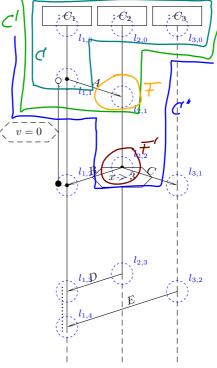
• locations in F, that lie on the same instance line, are pairwise unordered, i.e.

$$\forall l, l' \in F : l \neq l' \land i_l = i_{l'} \implies l \not\preceq l' \land l' \not\preceq l$$

Properties of the Fired-set

 $C \leadsto_F C'$ if and only if

- $F \neq \emptyset$,
- $C' \setminus C = F$,
- $\forall (l, E, l') \in \mathsf{Msg} : l' \in F \implies l \in C$, and
- $\forall l, l' \in F : l \neq l' \land i_l = i_{l'} \implies l \not\preceq l' \land l' \not\preceq l$
- Note: F is closed under simultaneity.
- Note: locations in F are direct \leq -successors of locations in C, i.e.

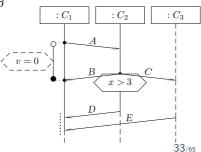

$$\forall l' \in F \ \exists l \in C : l \prec l' \land \nexists l'' \in C : l' \prec l'' \prec l$$

31/65

Successor Cut Examples

- (i) $F \neq \emptyset$, (ii) $C' \setminus C = F$,
- (iii) $\forall (l, E, l') \in \mathsf{Msg} : l' \in F \implies l \in C$, and
- (iv) $\forall l, l' \in F : l \neq l' \land i_l = i_{l'} \implies l \not\preceq l' \land l' \not\preceq l$

C'~>+C"


2014-01-29 - Slscsem -

- Let $w = (\sigma_0, cons_0, Snd_0), (\sigma_1, cons_1, Snd_1), (\sigma_2, cons_2, Snd_2), \dots$ be a word of a UML model and β a valuation of $I \cup \{self\}$.
- Intuitively (and for now disregarding cold conditions), an LSC body $(I, (\mathcal{L}, \preceq), \sim, \mathcal{S}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv})$ is supposed to accept w if and only if there exists a sequence

$$C_0 \leadsto_{F_1} C_1 \leadsto_{F_2} C_2 \cdots \leadsto_{F_n} C_n$$

and indices $0 = i_0 < i_1 < \cdots < i_n$ such that for all $0 \le j < n$,

- for all $i_j \leq k < i_{j+1}$, $(\sigma_k, cons_k, Snd_k)$, β satisfies the **hold condition** of C_j ,
- $(\sigma_{i_j}, cons_{i_j}, Snd_{i_j})$, β satisfies the transition condition of F_j , v=0
- C_n is cold,
- for all $i_n < k$, $(\sigma_k, cons_{i_j}, Snd_{i_j})$, β satisfies the **hold condition** of C_n .

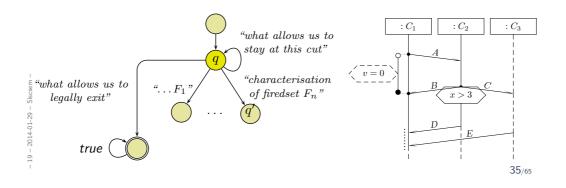
Language of LSC Body

The language of the body

$$(I, (\mathcal{L}, \preceq), \sim, \mathcal{S}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv})$$

of LSC ${\it L}$ is the language of the TBA

$$\mathcal{B}_L = (Expr_{\mathcal{B}}(X), X, Q, q_{ini}, \rightarrow, Q_F)$$

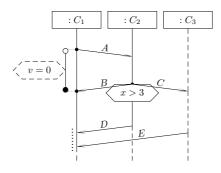

with

- $Expr_{\mathcal{B}}(X) = Expr_{\mathscr{S}}(\mathscr{S}, X)$
- Q is the set of cuts of (\mathcal{L}, \preceq) , q_{ini} is the instance heads cut,
- $F = \{C \in Q \mid \theta(C) = \operatorname{cold}\}$ is the set of cold cuts of (\mathscr{L}, \preceq) ,
- ullet ightarrow as defined in the following, consisting of
 - loops (q, ψ, q) ,
 - progress transitions (q, ψ, q') corresponding to $q \leadsto_F q'$, and
 - legal exits (q, ψ, \mathcal{L}) .

Language of LSC Body: Intuition

$$\mathcal{B}_L = (\mathit{Expr}_{\mathcal{B}}(X), X, Q, q_{ini}, \rightarrow, Q_F)$$
 with

- $Expr_{\mathcal{B}}(X) = Expr_{\mathscr{S}}(\mathscr{S}, X)$
- Q is the set of cuts of (\mathscr{L}, \preceq) , q_{ini} is the instance heads cut,
- $F = \{C \in Q \mid \theta(C) = \operatorname{cold}\}$ is the set of cold cuts,
- ullet \rightarrow consists of
 - loops (q, ψ, q) ,
 - progress transitions (q, ψ, q') corresponding to $q \leadsto_F q'$, and
 - legal exits (q, ψ, \mathcal{L}) .


Step I: Only Messages

- 19 - 2014-01-29 - Slscsem -

Some Helper Functions

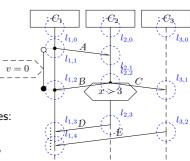
• Message-expressions of a location:

$$\mathscr{E}(l) := \{E^!_{i_l,i_{l'}} \mid (l,E,l') \in \mathsf{Msg}\} \cup \{E^?_{i_{l'},i_l} \mid (l',E,l) \in \mathsf{Msg}\},$$

$$\mathscr{E}(\{l_1,\ldots,l_n\}) := \mathscr{E}(l_1) \cup \cdots \cup \mathscr{E}(l_n).$$

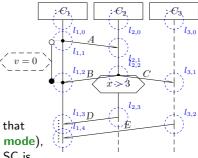
$$\bigvee \emptyset := \mathit{true}; \bigvee \{E^!_{i_{11},i_{12}},\ldots F^?_{k^?_{i_{k1},i_{k2}}},\ldots\} := \bigvee_{1 \leq j < k} E^!_{i_{j_1},i_{j_2}} \vee \bigvee_{k \leq j} F^?_{j^?_{i_{j_1},i_{j_2}}}$$

37/65


Loops

- How long may we **legally** stay at a cut q?
- **Intuition**: those $(\sigma_i, cons_i, Snd_i)$ are allowed to fire the self-loop (q, ψ, q) where
 - $cons_i \cup Snd_i$ comprises only irrelevant messages:
 - weak mode:
 - no message from a direct successor cut is in,
 - strict mode:
 no message occurring in the LSC is in,
 - sigma_i satisfies the local invariants active at q

And nothing else.

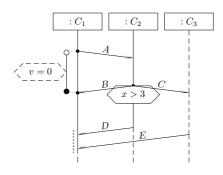

• Formally: Let $F := F_1 \cup \cdots \cup F_n$ be the union of the firedsets of q.

•
$$\psi := \underbrace{\neg(\bigvee \mathscr{E}(F))} \land \bigwedge \psi(q)$$

Progress

- When do we move from q to q'?
- Intuition: those $(\sigma_i, cons_i, Snd_i)$ fire the progress transition (q, ψ, q') for which there exists a firedset F such that $q \leadsto_F q'$ and
 - $cons_i \cup Snd_i$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in $cons_i \cup Snd_i$ (strict mode),

- sigma_i satisfies the local invariants and conditions relevant at q
- Formally: Let F, F_1, \ldots, F_n be the firedsets of q and let $q \leadsto_F q'$ (unique).
 - $\psi := \bigwedge \mathscr{E}(F) \land \neg (\bigvee (\mathscr{E}(F_1) \cup \cdots \cup \mathscr{E}(F_n)) \setminus \mathscr{E}(F)) \land \bigwedge \psi(g, g')$


39/65

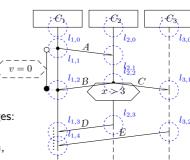
Step II: Conditions and Local Invariants

0 - 2014-01-20 - Slecsom -

Some More Helper Functions

• Constraints relevant at cut q:

41/65


Loops with Conditions

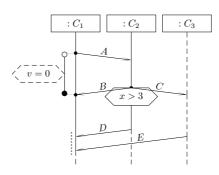
- How long may we **legally** stay at a cut q?
- **Intuition**: those $(\sigma_i, cons_i, Snd_i)$ are allowed to fire the self-loop (q, ψ, q) where
 - $cons_i \cup Snd_i$ comprises only irrelevant messages:
 - weak mode:
 - no message from a direct successor cut is in,
 - strict mode:
 no message occurring in the LSC is in,
 - σ_i satisfies the local invariants active at q

And nothing else.

• Formally: Let $F := F_1 \cup \cdots \cup F_n$ be the union of the firedsets of q.

•
$$\psi := \neg(\bigvee \mathscr{E}(F)) \land \bigwedge \psi(q)$$

- 19 - 2014-01-29 - Slscsem -

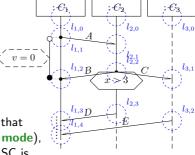

Even More Helper Functions

• Constraints relevant when moving from q to cut q':

$$\psi_{\theta}(q, q') = \{ \psi \mid \exists L \subseteq \mathcal{L} \mid (L, \psi, \theta) \in \mathsf{Cond} \land L \cap (q' \setminus q) \neq \emptyset \}$$

$$\cup \psi_{\theta}(q')$$

 $\setminus \{\psi \mid \exists \, l \in q' \setminus q, l' \in \mathcal{L} \mid (l, \circ, expr, \theta, l') \in \mathsf{LocInv} \lor (l', expr, \theta, \circ, l) \in \mathsf{LocInv} \}$ $\cup \{\psi \mid \exists \, l \in q' \setminus q, l' \in \mathcal{L} \mid (l, \bullet, expr, \theta, l') \in \mathsf{LocInv} \lor (l', expr, \theta, \bullet, l) \in \mathsf{LocInv} \}$

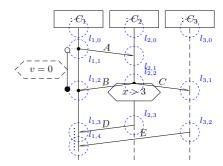

$$\psi(q,q') = \psi_{\mathsf{hot}}(q,q') \cup \psi_{\mathsf{cold}}(q,q')$$

43/65

Progress with Conditions

- When do we move from q to q'?
- Intuition: those $(\sigma_i, cons_i, Snd_i)$ fire the progress transition (q, ψ, q') for which there exists a firedset F such that $q \leadsto_F q'$ and
 - $cons_i \cup Snd_i$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in $cons_i \cup Snd_i$ (strict mode),

- σ_i satisfies the local invariants and conditions relevant at q'.
- Formally: Let F, F_1, \ldots, F_n be the firedsets of q and let $q \leadsto_F q'$ (unique).
 - $\psi := \bigwedge \mathscr{E}(F) \land \neg (\bigvee (\mathscr{E}(F_1) \cup \cdots \cup \mathscr{E}(F_n)) \setminus \mathscr{E}(F)) \land \bigwedge \psi(q, q').$


 $(l_{1,0}$

 $^{^{\prime}}l_{1,1}$

Legal Exits

- When do we take a legal exit from q?
- Intuition: those $(\sigma_i, cons_i, Snd_i)$ fire the legal exit transition (q, ψ, \mathcal{L})
 - for which there exists a firedset F and some q' such that $q \leadsto_F q'$ and
 - $cons_i \cup Snd_i$ comprises exactly the messages that distinguish F from other firedsets of q (weak mode), and in addition no message occurring in the LSC is in $cons_i \cup Snd_i$ (strict mode) and
 - \bullet at least one cold condition or local invariant relevant when moving to q' is violated, or
 - for which there is no matching firedset and at least one cold local invariant relevant at q is violated.
- Formally: Let F_1, \ldots, F_n be the firedsets of q with $q \leadsto_{F_i} q'_i$.
 - $\psi := \bigvee_{i=1}^{n} \bigwedge \mathscr{E}(F_i) \land \neg (\bigvee (\mathscr{E}(F_1) \cup \cdots \cup \mathscr{E}(F_n)) \setminus \mathscr{E}(F_i)) \land \bigvee \psi_{\mathsf{cold}}(q, q_i')$ $\lor \neg (\bigvee \mathscr{E}(F_i)) \land \bigvee \psi_{\mathsf{cold}}(q)$

Example

. 19 - 2014-01-29 - Slscsem -

47/65

Finally: The LSC Semantics

```
A full LSC L consist of
```

- a body $(I,(\mathscr{L},\preceq),\sim,\mathscr{S},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv}),$
- an activation condition (here: event) $\mathit{ac} = E_{i_1,i_2}^?$, $E \in \mathscr{E}$, $i_1,i_2 \in I$,
- an activation mode, either initial or invariant,
- a chart mode, either existential (cold) or universal (hot).

A set W of words over $\mathscr S$ and $\mathscr D$ satisfies L, denoted $W\models L$, iff L

- universal (= hot), initial, and
 - $\forall w \in W \ \forall \beta : I \to \text{dom}(\sigma(w^0)) \bullet w \text{ activates } L \implies w \in \mathcal{L}_{\beta}(\mathcal{B}_L).$
- existential (= cold), initial, and
 - $\exists w \in W \ \exists \beta : I \to \text{dom}(\sigma(w^0)) \bullet w \ \text{activates} \ L \land w \in \mathcal{L}_{\beta}(\mathcal{B}_L).$
- universal (= hot), invariant, and
 - $\forall w \in W \ \forall k \in \mathbb{N}_0 \ \forall \beta : I \to \text{dom}(\sigma(w^k)) \bullet w/k \text{ activates } L \implies w/k \in \mathcal{L}_{\beta}(\mathcal{B}_L).$
- existential (= cold), invariant, and
 - $\exists\, w\in W\,\,\exists\, k\in\mathbb{N}_0\,\,\exists\, \beta:I\to \mathrm{dom}(\sigma(w^k))\bullet w/k\,\,\mathrm{activates}\,\,L\wedge w/k\in\mathcal{L}_\beta(\mathcal{B}_L).$

- 10 - 2014-01-20 - Slecem -

Model Consistency wrt. Interaction

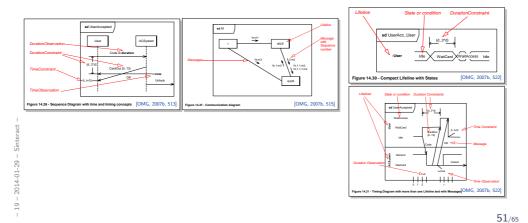
• We assume that the set of interactions \mathscr{I} is partitioned into two (possibly empty) sets of **universal** and **existential** interactions, i.e.

$$\mathscr{I} = \mathscr{I}_{\forall} \stackrel{.}{\cup} \mathscr{I}_{\exists}.$$

Definition. A model

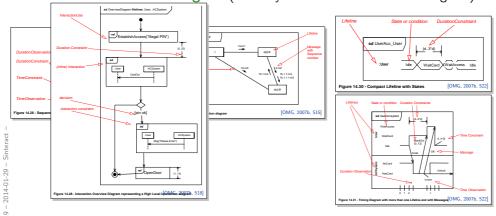
$$\mathcal{M} = (\mathscr{CD}, \mathscr{SM}, \mathscr{OD}, \mathscr{I})$$

is called **consistent** (more precise: the constructive description of behaviour is consistent with the reflective one) if and only if


$$\forall\,\mathcal{I}\in\mathscr{I}_\forall:\mathcal{L}(\mathcal{M})\subseteq\mathcal{L}(\mathcal{I})$$

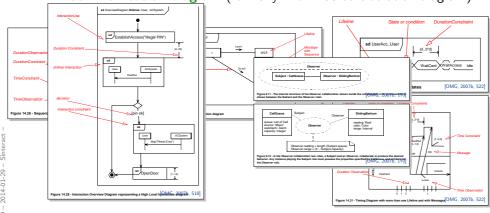
and

$$\forall \mathcal{I} \in \mathscr{I}_{\exists} : \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{I}) \neq \emptyset.$$


Interactions as Reflective Description

- In UML, reflective (temporal) descriptions are subsumed by interactions.
- A UML model $\mathcal{M} = (\mathscr{C}\mathscr{D}, \mathscr{SM}, \mathscr{O}\mathscr{D}, \mathscr{I})$ has a set of interactions $\mathscr{I}.$
- An interaction $\mathcal{I} \in \mathscr{I}$ can be (OMG claim: equivalently) diagrammed as
 - sequence diagram, timing diagram, or
 - communication diagram (formerly known as collaboration diagram).

Interactions as Reflective Description

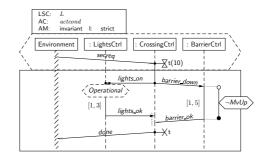

- In UML, reflective (temporal) descriptions are subsumed by **interactions**.
- A UML model $\mathcal{M} = (\mathscr{CD}, \mathscr{SM}, \mathscr{OD}, \mathscr{I})$ has a set of interactions \mathscr{I} .
- An interaction $\mathcal{I} \in \mathscr{I}$ can be (OMG claim: equivalently) diagrammed as
 - sequence diagram, timing diagram, or
 - communication diagram (formerly known as collaboration diagram).

51/65

Interactions as Reflective Description

- In UML, reflective (temporal) descriptions are subsumed by interactions.
- A UML model $\mathcal{M} = (\mathscr{C}\mathscr{D}, \mathscr{SM}, \mathscr{O}\mathscr{D}, \mathscr{I})$ has a set of interactions \mathscr{I} .
- An interaction $\mathcal{I} \in \mathscr{I}$ can be (OMG claim: equivalently) diagrammed as
 - sequence diagram, timing diagram, or
 - communication diagram (formerly known as collaboration diagram).

51/65


Why Sequence Diagrams?

Most Prominent: Sequence Diagrams — with **long history**:

- Message Sequence Charts, standardized by the ITU in different versions, often accused to lack a formal semantics.
- Sequence Diagrams of UML 1.x

Most severe drawbacks of these formalisms:

- unclear interpretation: example scenario or invariant?
- unclear activation: what triggers the requirement?
- unclear progress requirement: must all messages be observed?
- conditions merely comments
- no means to express forbidden scenarios

- 19 - 2014-01-29 - Sinteract -

Thus: Live Sequence Charts

- SDs of UML 2.x address some issues, yet the standard exhibits unclarities and even contradictions [Harel and Maoz, 2007, Störrle, 2003]
- For the lecture, we consider Live Sequence Charts (LSCs)
 [Damm and Harel, 2001, Klose, 2003, Harel and Marelly, 2003], who have a common fragment with UML 2.x SDs [Harel and Maoz, 2007]
- Modelling guideline: stick to that fragment.

19 - 2014-01-29 - Sinteract -

53/65

Side Note: Protocol Statemachines

Same direction: call orders on operations

• "for each C instance, method f() shall only be called after g() but before h()"

Can be formalised with protocol state machines.

19 - 2014-01-29 - main -

References

- [Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into Message Sequence Charts. Formal Methods in System Design, 19(1):45–80.
- [Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. *IEEE Computer*, 30(7):31–42.
- [Harel and Maoz, 2007] Harel, D. and Maoz, S. (2007). Assert and negate revisited: Modal semantics for UML sequence diagrams. *Software and System Modeling (SoSyM)*. To appear. (Early version in SCESM'06, 2006, pp. 13-20).
- [Harel and Marelly, 2003] Harel, D. and Marelly, R. (2003). Come, Let's Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag.
- [Klose, 2003] Klose, J. (2003). LSCs: A Graphical Formalism for the Specification of Communication Behavior. PhD thesis, Carl von Ossietzky Universität Oldenburg.
- [OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04.
- [OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.
- [Störrle, 2003] Störrle, H. (2003). Assert, negate and refinement in UML-2 interactions. In Jürjens, J., Rumpe, B., France, R., and Fernandez, E. B., editors, *CSDUML 2003*, number TUM-I0323. Technische Universität München.

9 - 2014-01-29 - main -