— 20 — 2014-02-03 — main —

Software Design, Modelling and Analysis in UML

Lecture 20: Inheritance |

2014-02-03

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 20 — 2014-02-03 — Sprelim —

Last Lecture:

Live Sequence Charts Semantics

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
What's the Liskov Substitution Principle?
What is late/early binding?
What is the subset, what the uplink semantics of inheritance?
What's the effect of inheritance on LSCs, State Machines, System States?

What's the idea of Meta-Modelling?

Content:
Quickly: Behavioural Features, Active vs. Passive
Inheritance in UML: concrete syntax
Liskov Substitution Principle — desired semantics

Two approaches to obtain desired semantics
The UML Meta Model

2/99

— 20 - 2014-02-03 — main —

Active and Passive Objedidarel and Gery, 1997]

3/99

What about non-Active Objects?

— 20 — 2014-02-03 — Sactpass —

Recall:

We're still working under the assumption that all classes in the class
diagram (and thus all objects) are active.

That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.

But the world doesn’t consist of only active objects.

For instance, in the crossing controller from the exercises we could wish to have
the whole system live in one thread of control.

So we have to address questions like:
Can we send events to a non-active object?
And if so, when are these events processed?

etc.

4/99

Active and Passive Objects: Nomenclature

— 20 — 2014-02-03 — Sactpass —

[Harel and Gery, 1997] propose the following (orthogonal!) notions:

A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.

An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

A passive object doesn't.

A class is either reactive or non-reactive.
A reactive class has a (non-trivial) state machine.

A non-reactive one hasn't.

Which combinations do we understand?

active | passive
reactive vV L
non-reactive | (V) (v)

5/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Passive and Reactive

— 20 — 2014-02-03 — Sactpass —

So why don't we understand passive/reactive?

Assume passive objects u; and us, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

Reasonable Approaches:

Avoid — for instance, by
require that reactive implies active for model well-formedness.

requiring for model well-formedness that events are never sent to
instances of non-reactive classes.

Explain — here: (following [Harel and Gery, 1997])
Delegate all dispatching of events to the active objects.

6,99

Passive Reactive Classes

— 20 — 2014-02-03 — Sactpass —

Firstly, establish that each object u knows, via (implicit) link itsAct,
the active object u,.: which is responsible for dispatching events to w.

If w is an instance of an active class, then u, = u.

itsAct

dest

1

n

0.1

7| OHReachve [—Ticet ongiual CD
| T /
1
Cs >“ D i i itsAct
itsAct B 1
1 1
dest dest
((signal)) : ((signal))
Ec, /? Ep
added
[»\F&'o.‘
)93 Rlepso
(Luzy-c: Ls{‘{('o " l,ur'/auce/

1/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Passive Reactive Classes

Firstly, establish that each object u knows, via (implicit) link itsAct,
the active object u,.: which is responsible for dispatching events to w.

If v is an instance of an active class, then u, = wu. (&
/ — — — — — —
itsAct /
(] |

[mn

uy : Cq ug : Co Ug - D :‘ itsAct
(- itsAct
o N
|
e :Ec (dest

Sending an event: Dispatching an event:

— 20 — 2014-02-03 — Sactpass —

Establish that of each signal we
have a version E¢- with an
association dest : Cp,1, C € €.

Then n!E in u; : C1 becomes:

Create an instance u. of Ec, and
set u.'s dest to uq := o(u1)(n).

Send to u, := o(o(u1)(n))(itsAct),
e, e =D (Ua, Ue).

Observation: the ether only has
W & . .
events for active objects.

Say u. is ready in the ether for u,.

Then u, asks o(ue)(dest) = ugq to
process 1. — and waits until
completion of corresponding RTC.

uq may in particular discard event.

1 /99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

— 20 - 2014-02-03 — main —

And What About Methods?

8/99

And What About Methods?

— 20 — 2014-02-03 — Smethods —

In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

In general, there are also methods.

UML follows an approach to separate
the interface declaration from
the implementation.
In C4++ lingo: distinguish declaration and definition of method.

In UML, the former is C
called behavioural feature
and can (roughly) be & F(Tityee o Tim) 71 Py
a call interface f(m,,...,7n,) : T §2 F(T2,1,- 3 T2my) 1 T2 Py
(stgnal)) E

a signal name FE

Note: The signal list is redundant as it can be looked up in the state machine
of the class. But: certainly useful for documentation.

0/99

Behavioural Features C

— 20 — 2014-02-03 — Smethods —

51 f(T]_,lj-"yT]_,’l’L]_) | P1
gg F(Tg,l,.. . ,TQ,nQ) . T2 P2
(signal)) F

Semantics:
The implementation of a behavioural feature can be provided by:

An operation.

In our setting, we simply assume a transformer like T%.

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

E/x=0, [()
-, Ny

-

In a setting with Java as action language: operation is a method body. pt :=0F

! . [} - - 1 F/ -—7
The class' state-machine (“triggered operation”). H
4
Calling F' with ngo parameters for a stable instance of C - oTE '

creates an auxiliary event F' and dispatches it (bypassing the ether).
Transition actions may fill in the return value.
On completion of the RTC step, the call returns.

For a non-stable instance, the caller blocks until stability is reached again.

10/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Behavioural Features: Visibility and Properties

— 20 — 2014-02-03 — Smethods —

C

& f(m, .
52 F(Tz,l, -

-,Tl,nl) . T1 P1

. ,TQ,n2) . T2 P2

/

(signal)) FE

Visibility:

7

d

oo CL

Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

Useful properties:

concurrency
concurrent — is thread safe

guarded — some mechanism ensures/should ensure mutual exclusion

sequential — is not thread safe, users have to ensure mutual exclusion

isQuery — doesn't modify the state space (thus thread safe)

For simplicity, we leave the notion of steps untouched, we construct our

semantics around state machines.

Yet we could explain pre/post in OCL (if we wanted to).

11 /99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

— 20 — 2014-02-03 — main

State Machines: Discussion.

12/99

Semantic Variation Points

Pessimistic view: They are legion...
For instance,

allow absence of initial pseudo-states
can then “be” in enclosing state without being in any substate; or assume
one of the children states non-deterministically

(implicitly) enforce determinism, e.g.
by considering the order in which things have been added to the CASE
tool's repository, or graphical order

allow true concurrency

Exercise: Search the standard for “semantical variation point”.

[Crane and Dingel, 2007], e.g., provide an in-depth comparison of
Statemate, UML, and Rhapsody state machines — the bottom line is:

the intersection is not empty
(i.e. there are pictures that mean the same thing to all three communities)

none is the subset of another
(i.e. for each pair of communities exist pictures meaning different things)

— 20 — 2014-02-03 — Ssemvar —

Optimistic view: tools exist with complete and consistent code generation.

13/99

Course Map

CD, SD S

l

<, 5D

i

B = (QSD;q(hAya _>SD7FSD

%D
(consp,Sndg)

™ = (0'0,50) 0'1751 N Wy = 027 Consg, Snd))zG]N
G = (N,E, f)
L]
OD

— 20 — 2014-02-03 — main

14/99

— 20 — 2014-02-03 — main

Inheritance: Syntax

15/99

bebavi owval

Rl ADSHract SYNtax i e wiisd

— 20 — 2014-02-03 — Ssyntax —

&‘um'ii i

T,6,V,atr, &).
- inhacitomce reldia,

S = (9,6,V, atr, &, F, mth, <)

Recall: a signature (with signals) is a tuple .¥

Now (finally): extend to

where F'/mth are methods, analogously to attributes and

Q9 C [T (6 x &) u(C\E X E\E)

is a generalisation relation such that C' <™ C for no C' € € (“acyclic").

—

C <& D reads as

C' is a generalisation of D,

D is a specialisation of C),

D inherits from C,) C — ‘
D is a sub-class of C, [g
C' is a super-class of D,

16/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

CRC,
D4AG i

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Recall: Reflexive, Transitive Closure of Generalisation

— 20 — 2014-02-03 — Ssyntax —

7

U

N

Definition. Given classes Cy, C, D € €, we say D inherits from
Cp via C; if and only if there are Cj,...C%,Cq,...CT € € such

that

Co <Cy<...Cra Cp <«C{<...C7" < D.

We use ‘=<' to denote the reflexive, transitive closure of ‘<.

In the following, we assume

that all attribute (method) names are of the form

C:w, CeFUE (C:f, CeF),

that we have C::v € atr(C) resp. C::f € mth(C) if and only if v (f)
appears in an attribute (method) compartment of C' in a class diagram.

We still want to accept “context C inv:v < 0", which v is meant? Later!

17 /99

— 20 — 2014-02-03 — main

Inheritance: Desired Semantics

18/99

— 20 — 2014-02-03 — Ssem —

19/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Desired Semantics of Specialisation: Subtyping

— 20 — 2014-02-03 — Ssem —

There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994].
(Liskov Substitution Principle (LSP).)

“If for each object 0 of type S there is an object 05 of type 1" such that
for all programs P defined in terms of 1,
the behavior of P is unchanged when o7 is substituted for o5
then S is a subtype of T'."

S wh-tpe of T:&D Vo, €530, e TV e [AJG,)= B-[()

20/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Desired Semantics of Specialisation: Subtyping

— 20 — 2014-02-03 — Ssem —

There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994].
(Liskov Substitution Principle (LSP).)

“If for each object 0 of type S there is an object 05 of type 1" such that
for all programs P defined in terms of T’
the behavior of P is unchanged when o7 is substituted for o5
then S is a subtype of T'."

In other words: [Fischer and Wehrheim, 2000]

“An instance of the sub-type shall be usable whenever an instance
of the supertype was expected,
without a client being able to tell the difference.”

So, what's “usable”? Who's a “client” 7 And what's a “difference” ?

20/99

“...shall be usable..?

— 20 — 2014-02-03 — Ssem —

e AT

! A ’ x : Int o (signal)) E
. = . f(Int) : Int i
s L ‘/ M\.%lsd N /\
Ui - C U D
D (signal)) F
wilue v O
TCPICs it ud) @7 ung e
s. G)TTHEY (v, {‘q'l_wﬁ) but (*} ‘
OCL: wwst be dluel! Sequence Diagrams:
context C inv:x >0
:C : D
Actions: / S R
itsC.x =0) wwst deonld wjjﬁ)
itsC.£(0 b biad k\ .
, ;f() defined o up a5 | | SM' bind o
itsC' | F well oS F inStowrces
vz as
Triggers:

21/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

“...aclient..”?

— 20 — 2014-02-03 — Ssem —

“An instance of the sub-type shall be usable whenever an instance of the supertype
was expected, without a client being able to tell the difference.”

Narrow interpretation: another object in the model.

Wide interpretation: another modeler.

C
x: Int
f(Int) : Int

AN

D

22/99

“...can't tell difference..”? -

— 20 — 2014-02-03 — Ssem —

x : Int {(signal)) FE
f(Int) : Int
~ /\
Ui - C U D
D (signal)) F
OCL:

I[context C inv : z > 0](o1,0) vs. I[context C inv : z > 0](02,)

23/99

“...can't tell difference..”? -

— 20 — 2014-02-03 — Ssem —

x : Int {(signal)) FE
f(Int) : Int A
/\
Ui - C U D
D (signal)) F

Triggers, Actions: if

(oo, <o) (consi’jndO)> (01 [2Eg) s 1)
SXD) /LSP

is possible, then LUZ/UaI [z /vy |
(consO,Sndo)\ LY*J
(00, €0) - > (01, €1)

should be possible — sub-type does less on inputs of super-type. j

[oe SPuL U1 eDCd) and o peogas o@ém'f‘ma of -[-/]

24 /99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

“...can't tell difference..”? -

— 20 — 2014-02-03 — Ssem —

u1:C’ UQZD

x: Int

f(Int) : Int

AN

D

Sequence Diagram: w|i 5%

{(signal)) FE

(signal)) F

L.e L(Br) implies w € L(By).

[Uz/u&:l
7
W) BDC)

25/99

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Motivations for Generalisation

— 20 — 2014-02-03 — Ssem —

Re-use,

Sharing,

Avoiding Redundancy,
Modularisation,
Separation of Concerns,
Abstraction,

Extensibility,

— See W on object-oriented analysis, development, programming.

26/99

westphal
Bleistift

What DoedFischer and Wehrheim, 2000 lean for UML?

— 20 — 2014-02-03 — Ssem —

“An instance of the sub-type shall be usable whenever an instance of the supertype
was expected, without a client being able to tell the difference.”

Wanted: sub-typing for UML.
With

C D,

we don’'t even have usability.

It would be nice, if the well-formedness rules and semantics of

C

AN

D1 D2

would ensure Dy is a sub-type of C:

that D; objects can be used interchangeably by everyone who is using C's,

is not able to tell the difference (i.e. see unexpected behaviour).

27 /99

— 20 — 2014-02-03 — main

“...shall be usable..” for UML

28/99

— 20 — 2014-02-03 — Sstatic —

(signal)) F

Easy: Static Typing ¢ G
"[,S(/‘l x: Int x: Int
v f(nt) : Int f(Int) : Int
o AN AN
: Dl D2
Given: ZZSD] x : Bool
f(Float) : Int

(signal)) F

Wanted:
x > 0 also well-typed for D,
assignment ¢tsC1 := itsD1 being well-typed

itsC1.x =0, itsC1.f(0), itsC1 | F
being well-typed (and doing the right thing).

Approach:
Simply define it as being well-typed,

adjust system state definition to do the right thing.

29/99

Static Typing Cont'd

— 20 — 2014-02-03 — Sstatic —

Ch Cy
x: Int x: Int
f(nt) : Int f(Int) : Int (signal)) E
/N AN /\
D1 D2
x : Bool {(signal)) F
f(Float) : Int

Notions (from category theory):
invariance,
covariance,

contravariance.
We could call, e.g. a method, sub-type preserving, if and only if it

accepts more general types as input (contravariant),

provides a more specialised type as output (covariant).

This is a notion used by many programming languages — and easily type-checked.
30/99

— 20 — 2014-02-03 — main

Excursus: Late Binding of Behavioural Features

31/99

Late Binding

— 20 — 2014-02-03 — Slatebind —

What transformer applies in what situation? (Early (compile time) binding.)

f not overridden in D [overridden in D

c ¢ value
someC fO: It of
| Q) : Int X someC/
Co ‘w) Zli D someD
fO : Int

someC -> £()

someD -> ()

someC —> £()

What one could want is something different: (Late binding.)

someC -> ()

someD -> £()

someC —-> £()

32/99

Late Binding in the Standard and Programming Lang.

— 20 — 2014-02-03 — Slatebind —

In the standard, Section 11.3.10, “CallOperationAction”:

“Semantic Variation Points
The mechanism for determining the method to be invoked as a
result of a call operation is unspecified.” [OMG, 2007b, 247]

In C++,
methods are by default “(early) compile time binding”,
can be declared to be “late binding” by keyword “virtual”,

the declaration applies to all inheriting classes.

In Java,
methods are “late binding”;

there are patterns to imitate the effect of “early binding”

Exercise: What could have driven the designers of C++ to take that approach?

33/99

Late Binding in the Standard and Programming Lang.

— 20 — 2014-02-03 — Slatebind —

In the standard, Section 11.3.10, “CallOperationAction”:

“Semantic Variation Points
The mechanism for determining the method to be invoked as a
result of a call operation is unspecified.” [OMG, 2007b, 247]

In C++,
methods are by default “(early) compile time binding”,
can be declared to be “late binding” by keyword “virtual”,

the declaration applies to all inheriting classes.

In Java,
methods are “late binding”;

there are patterns to imitate the effect of “early binding”

Exercise: What could have driven the designers of C++ to take that approach?

Note: late binding typically applies only to methods, not to attributes.
(But: getter/setter methods have been invented recently.)

33/99

— 20 - 2014-02-03 — main —

Back to the Main Track: “...tell the difference..” for UML

34 /99

With Only Early Binding...

— 20 — 2014-02-03 — Ssubtyping —

...we're done (if we realise it correctly in the framework).

Then

if we're calling method f of an object wu,

which is an instance of D with C' < D

via a C-link,

then we (by definition) only see and change the C-part.

We cannot tell whether w is a C or an D instance.

So we immediately also have behavioural /dynamic subtyping.

35/99

Difficult: Dynamic Subtyping

— 20 — 2014-02-03 — Ssubtyping —

C::f and D::f are type compatible,
but D is not necessarily a sub-type of C.

Examples: (C++)

int C::f(int) {
return O;

¥

VS.

f(Int) : Int

o>

f(Int) : Int

int D::f(int) {

I¥

return 1;

36,99

Difficult: Dynamic Subtyping

— 20 — 2014-02-03 — Ssubtyping —

C::f and D::f are type compatible,
but D is not necessarily a sub-type of C.

Examples: (C++)

int C::f(int) {
return O;

¥

int C::f(int) {
return (rand() % 2);

¥

VS.

VS.

f(Int) : Int

b

f(Int) : Int

int D::f(int) {

I¥

return 1;

int D::f(int x) {

}s

return (x % 2);

36,99

Sub-Typing Principles Cont’d

— 20 — 2014-02-03 — Ssubtyping —

In the standard, Section 7.3.36, “Operation”:

“Semantic Variation Points

[...] When operations are redefined in a specialization, rules regarding
invariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

3799

Sub-Typing Principles Cont’d

— 20 — 2014-02-03 — Ssubtyping —

In the standard, Section 7.3.36, “Operation”:

“Semantic Variation Points

[...] When operations are redefined in a specialization, rules regarding
invariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

So, better: call a method sub-type preserving, if and only if it
(i) accepts more input values (contravariant),
(i) on the old values, has fewer behaviour (covariant).

Note: Fhis (ii) is no longer a matter of simple type-checking!

3799

Sub-Typing Principles Cont’d

In the standard, Section 7.3.36, “Operation”:
“Semantic Variation Points
[...] When operations are redefined in a specialization, rules regarding
invariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

So, better: call a method sub-type preserving, if and only if it

(i) accepts more input values (contravariant),

(i) on the old values, has fewer behaviour (covariant).

Note: Fhis (ii) is no longer a matter of simple type-checking!

And not necessarily the end of the story:
One could, e.g. want to consider execution time.

Or, like [Fischer and Wehrheim, 2000], relax to “fewer observable
behaviour”, thus admitting the sub-type to do more work on inputs.

— 20 — 2014-02-03 — Ssubtyping —

Note: “testing” differences depends on the granularity of the semantics.

3799

Sub-Typing Principles Cont’d

In the standard, Section 7.3.36, “Operation”:
“Semantic Variation Points
[...] When operations are redefined in a specialization, rules regarding
invariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

So, better: call a method sub-type preserving, if and only if it

(i) accepts more input values (contravariant),

(i) on the old values, has fewer behaviour (covariant).

Note: Fhis (ii) is no longer a matter of simple type-checking!

And not necessarily the end of the story:
One could, e.g. want to consider execution time.

Or, like [Fischer and Wehrheim, 2000], relax to “fewer observable
behaviour”, thus admitting the sub-type to do more work on inputs.

Note: “testing” differences depends on the granularity of the semantics.

Related: “has a weaker pre-condition,” (contravariant),
“has a stronger post-condition.” (covariant).

— 20 — 2014-02-03 — Ssubtyping —

3799

Ensuring Sub-Typing for State Machines

— 20 — 2014-02-03 — Ssubtyping —

In the CASE tool we consider, multiple classes
in an inheritance hierarchy can have state machines.

O

38,99

Ensuring Sub-Typing for State Machines

— 20 — 2014-02-03 — Ssubtyping —

C
In the CASE tool we consider, multiple classes ﬁl
in an inheritance hierarchy can have state machines. 5

But the state machine of a sub-class cannot be drawn from scratch.

Instead, the state machine of a sub-class can only be obtained by
applying actions from a restricted set to a copy of the original one.

Roughly (cf. User Guide, p. 760, for details),

add things into (hierarchical) states,
add more states,

attach a transition to a different target (limited).

38,99

Ensuring Sub-Typing for State Machines

— 20 — 2014-02-03 — Ssubtyping —

C
In the CASE tool we consider, multiple classes ﬁl
in an inheritance hierarchy can have state machines. 5

But the state machine of a sub-class cannot be drawn from scratch.

Instead, the state machine of a sub-class can only be obtained by
applying actions from a restricted set to a copy of the original one.

Roughly (cf. User Guide, p. 760, for details),

add things into (hierarchical) states,
add more states,

attach a transition to a different target (limited).

They ensure, that the sub-class is a behavioural sub-type of the super
class. (But method implementations can still destroy that property.)

Technically, the idea is that (by late binding) only the state machine of the most
specialised classes are running.
By knowledge of the framework, the (code for) state machines of super-classes is still

accessible — but using it is hardly a good idea...
38,99

Towards System States

— 20 — 2014-02-03 — Ssubtyping —

Wanted: a formal representation of “if C' < D then D ‘is a' (", that is,
(i) D has the same attributes and behavioural features as C, and

(ii) D objects (identities) can replace C' objects.

39/99

Towards System States

— 20 — 2014-02-03 — Ssubtyping —

Wanted: a formal representation of “if C' < D then D ‘is a' (", that is,
(i) D has the same attributes and behavioural features as C, and

(ii) D objects (identities) can replace C' objects.

We'll discuss two approaches to semantics:

Domain-inclusion Semantics (more theoretical)

Uplink Semantics (more technical)

39/99

— 20 — 2014-02-03 — main

Domain Inclusion Semantics

40/99

Domain Inclusion Structure

— 20 — 2014-02-03 — Sdomincl —

Let . = (,6,V, atr, &, F, mth, <) be a signature.

Now a structure ¥
[as before] maps types, classes, associations to domains,

for completeness] methods to transformers,

[as before] indentities of instances of classes not (transitively) related by
generalisation are disjoint,

[changed] the indentities of a super-class comprise all identities of
sub-classes, i.e.

vCe€:2(C)2 |) 2(D)

C<D

Note: the old setting coincides with the special case << = ().

41 /99

Domain Inclusion System States

— 20 — 2014-02-03 — Sdomincl —

Now: a system state of . wrt. Z is a type-consistent mapping
0:9(€) + (V+ (2(T)UD(61)UD(¢.)))
that is, for all u € dom(o) N Z2(C),
[as before] o(u)(v) € (1) ifv:7, 7€ T or 7 € {Cs,Co1}.
[changed] dom (o (u)) = g, <c atr(Co),

Example:

0,1

x : Int

SH>

x : Int

y : Int

Note: the old setting still coincides with the special case < = ().

42 /99

Preliminaries:. Expression Normalisation

— 20 — 2014-02-03 — Sdomincl —

Recall:
we want to allow, e.g., “context D inv:v <0".
we assume fully qualified names, e.g. C::v.

Intuitively, v shall denote the
“most special more general” C::v according to <.

0,1

43/99

— 20 — 2014-02-03 — Sdomincl —

A
Preliminaries:. Expression Normalisation v Int
Recall: 4
we want to allow, e.g., “context D inv:v <0". 0,1 —]C;

we assume fully qualified names, e.g. C:v. "
Intuitively, v shall denote the T
“most special more general” C::v according to <. D

To keep this out of typing rules, we assume that the following normalisation
has been applied to all OCL expressions and all actions.

Given expression v (or f) in context of class D, as determined by, e.g.
by the (type of the) navigation expression prefix, or

by the class, the state-machine where the action occcurs belongs to,

similar for method bodies,
normalise v to (= replace by) C::v,

where C' is the greatest class wrt. “<" such that
C' < D and C:v € atr(C).

43/99

— 20 — 2014-02-03 — Sdomincl —

A
Preliminaries:. Expression Normalisation v Int
Recall: 4
we want to allow, e.g., “context D inv:v <0". 0,1 —]C;

we assume fully qualified names, e.g. C:v. "
Intuitively, v shall denote the T
“most special more general” C::v according to <. D

To keep this out of typing rules, we assume that the following normalisation
has been applied to all OCL expressions and all actions.

Given expression v (or f) in context of class D, as determined by, e.g.
by the (type of the) navigation expression prefix, or

by the class, the state-machine where the action occcurs belongs to,

similar for method bodies,

normalise v to (= replace by) C::v,

where C' is the greatest class wrt. “<" such that
C' < D and C:v € atr(C).

If no (unique) such class exists, the model is considered not well-formed; the

expression is ambiguous. Then: explicitly provide the qualified name. 43
/99

OCL Syntax and Typing

— 20 — 2014-02-03 — Sdomincl —

Recall (part of the) OCL syntax and typing: v,reV,C,De¥
expr = v(expry) :T1c — T(V), fv:re I
| r(expry) :7c — TD, if : Do

| r(expry) :7c — Set(tp), ifr:D,

The definition of the semantics remains (textually) the same.

44 /99

More Interesting: Well-Typed-ness

— 20 — 2014-02-03 — Sdomincl —

C

We want v: Int
context D inv:v <0

to be well-typed. ZF

Currently it isn't because D

v(expry) : ¢ — 7(v)
but A F self : mp.
(Because 7p and 7¢ are still different types, although dom(7p) C dom(7¢).)
So, add a (first) new typing rule

Al expr:mp

if C < D. Inh
Al—exp'r:T(;’l — (Inh)

Which is correct in the sense that, if ‘expr’ is of type 7p, then we can use it
everywhere, where a 7¢ is allowed.

The system state is prepared for that.

45 /99

Well-Typed-ness with Visibility Cont'd

— 20 — 2014-02-03 — Sdomincl

A, DF expr: o

= Pub
A, DF C:v(expr) : 7’ c=F (Pub)
A, DF expr: o
= Prot
A, Dt C:o(expr) : 7’ S = (Prot)
A, Dl expr: o _
=——, C=D P
A, DF C:v(expr) : 7’ . ’ (Priv)
(Cv 1€ v9, P) € atr(C).
C
Example: — 1 : Int
vo : Int
con.’rc]ext/ (nJvy <0 | (n)ve <0 | (n.)vs <0 AL
nv
c s
5 D
0,11 n
B
B

46,99

Satisfying OCL Constraints (Domain Inclusion)

— 20 — 2014-02-03 — Sdomincl

Let M = (9,09, S#,.%) be a UML model, and Z a structure.

We (continue to) say M = expr for context C' inv : expr, € Inv(M) iff

Vv
=expr

V= (O'z',gi)iE]N - [[./\/l]] VieI N VYuce dOl’Il(O'?;) M @(C) :
Teaprol(ow, {self —u}) =1

M is (still) consistent if and only if it satisfies all constraints in Inv(M).

Example:
0,1 ¢
x . Int
n
D

47 /99

Transformers (Domain Inclusion)

— 20 — 2014-02-03 — Sdomincl —

Transformers also remain the same, e.g. [VL 12, p. 18]
update(expry,v, expry) : (o,€) — (o', ¢)

with
o' = ofu — o(u)lv — Ifexpry](o)]]

where u = I[expr,](o).

48,99

Semantics of Method Calls

— 20 — 2014-02-03 — Sdomincl —

Non late-binding: clear, by normalisation.

Late-binding:
Construct a method call transformer, which is applied to all method calls.

49/99

Inheritance and State Machines: Triggers

— 20 — 2014-02-03 — Sdomincl —

Wanted: triggers shall also be sensitive for inherited events,
sub-class shall execute super-class’ state-machine (unless overridden).

(cons,Snd)

(0,€) - (o’ ") if

Ju € dom(o) N Z(C) Jug € Z(&) : up € ready(e,u)
w is stable and in state machine state s, i.e. o(u)(stable) =1 and o(u)(st) = s,

a transition is enabled, i.e.
3 (s, F, expr, act,s’) €= (SMc¢) : F = E A Iexpr](c) =1

where 6 = o[u.params g — u.].
and

(o',€") results from applying t..: to (o,€) and removing ug from the ether, i.e.
(O_//’ 8,) — ta,ct(5-7 £ @ UE),
o' = (0" [u.st — ', u.stable — b, u.params g — 0])|2(€)\ (up)

where b depends:

If u becomes stable in s’, then b = 1. It does become stable if and only if there
is no transition without trigger enabled for u in (¢’,&").

Otherwise b = 0.

Consumption of ug and the side effects of the action are observed, i.e.

cons = {(u, (F,o(ug)))}, Snd = Obst,., (6,6 O ug).

50/99

Domain Inclusion and Interactions

— 20 — 2014-02-03 — Sdomincl —

C D C E
o /\ /\
\
F C F
/

Similar to satisfaction of OCL expressions above:

An instance line stands for all instances of C' (exact or inheriting).

Satisfaction of event observation has to take inheritance
into account, too, so we have to fix, e.g.

g, cons, Snd =g E:'Uy
if and only if
B(x) sends an F-event to By where £ < F'.

Note: C-instance line also binds to C’-objects.

51,99

— 20 — 2014-02-03 — main

Uplink Semantics

52/99

Uplink Semantics

— 20 — 2014-02-03 — Suplink —

ldea:

Continue with the existing definition of structure, i.e. disjoint
domains for identities.

Have an implicit association from the child to each parent part
(similar to the implicit attribute for stability).

C

x: Int

VAN

D

Apply (a different) pre-processing to make appropriate use of that
association, e.g. rewrite (C++)

x = 0;
in D to

uplink, ->x = 0; 5390

Pre-Processing for the Uplink Semantics

— 20 — 2014-02-03 — Suplink —

For each pair C' < D, extend D by a (fresh) association
uplink : C' with p = [1,1], £ = +

(Exercise: public necessary?)

Given expression v (or f) in the context of class D,

let C' be the smallest class wrt. “<" such that
C < D, and
C:w € atr(D)

then there exists (by definition) C < Cy < ... < C), < D,
normalise v to (= replace by)

uplinko =>---=> uplinks, .C:v

Again: if no (unique) smallest class exists,

the model is considered not well-formed; the expression is ambiguous.

54 /99

Uplink Structure, System State, Typing

— 20 — 2014-02-03 — Suplink —

Definition of structure remains unchanged.
Definition of system state remains unchanged.

Typing and transformers remain unchanged —
the preprocessing has put everything in shape.

55/99

Satisfying OCL Constraints (Uplink)

— 20 — 2014-02-03 — Suplink —

Let M = (9,09, S#,.%) be a UML model, and Z a structure.

We (continue to) say

M = expr
for
context C' inv : expr, € Inv(M)
N —~—)
if and only if

V= (0i)ien € [M]
Vie N
Vu € dom(o;) N 2(C) :
I[expryl(o;, {self — u}) = 1.

M is (still) consistent if and only if it satisfies all constraints in /nv(M).

56,99

Transformers (Uplink)

— 20 — 2014-02-03 — Suplink —

What has to change is the create transformer:
create(C', expr, v)
Assume, (s inheritance relations are as follows.

01,1 <...< Cl,nl < O,

Cmi<...<Chpn, <C.

Then, we have to

create one fresh object for each part, e.g.

ul,l,...,ul,nl,...,um,l,...,um,nm,

set up the uplinks recursively, e.g.

o(u1,2)(uplinke,) = u1 1.

And, if we had constructors, be careful with their order.

57 /99

Late Binding (Uplink)

— 20 — 2014-02-03 — Suplink —

Employ something similar to the “mostspec” trick (in a minute!). But the result
is typically far from concise.

(Related to OCL's isKind0f () function, and RTTI in C4++.)

58,99

— 20 — 2014-02-03 — main

Domain Inclusion vs. Uplink Semantics

59/99

Cast-Transformers

— 20 — 2014-02-03 — Sdiff —

C c:
D d;
Identity upcast (C++):

Cx cp = &4, // assign address of ‘d’ to pointer ‘cp’

Identity downcast (C++):
Dx dp = (Dx*)cp; // assign address of ‘d’ to pointer ‘dp’

Value upcast (C++):

xC = xd; // copy attribute values of ‘d’ into ‘c’, or,
// more precise, the values of the C-part of ‘d’

60,99

Casts in Domain Inclusion and Uplink Semantics

— 20 — 2014-02-03 — Sdiff —

Domain Inclusion

Uplink

Cx cp easy: immediately compatible | easy: By pre-processing,
= &d; (in underlying system state) be- | Cx cp = d.uplink,;
cause &d yields an identity from
2(D) C 2(C).
Dk dp = easy: thevalueof cpisin Z(D)N | difficult: we need the identity
(Dx)cp; 2(C') because the pointed-to ob- | of the D whose C-slice is de-
jectisa D. noted by cp.
Otherwise, error condition. (See next slide.)
c=d; bit difficult: set (for all C' < D) | easy: By pre-processing,

(C)(-,) : ™D X X = Elur(o)
(u,0) = U(u)|atr(C)

Note: ¢’ = oluc — o(up)] is
not type-compatible!

c = *(d.uplink,);

61,99

ldentity Downcast with Uplink Semantics

— 20 — 2014-02-03 — Sdiff —

Recall (C+4): Dd; Cx cp=&d; Dx dp = (Dx)cp;
Problem: we need the identity of the D whose C-slice is denoted by cp.

One technical solution:

Give up disjointness of domains for one additional type comprising all
identities, i.e. have

alle 7, 9(a11)= |] 2(C)
ceE
In each <-minimal class have associations “mostspec” pointing to most
specialised slices, plus information of which type that slice is.

Then downcast means, depending on the mostspec type (only finitely
many possibilities), going down and then up as necessary, e.g.

switch(mostspec_type){
case C :
dp = cp ->mostspec ->uplink, ->...->uplink, ->uplinkp;

62/99

Domain Inclusion vs. Uplink Semantics: Differences

— 20 — 2014-02-03 — Sdiff —

Note: The uplink semantics views inheritance as an abbreviation:

We only need to touch transformers (create) — and if we had constructors, we
didn't even needed that (we could encode the recursive construction of the upper
slices by a transformation of the existing constructors.)

So:
Inheritance doesn’t add expressive power.

And it also doesn’t improve conciseness soo dramatically.

As long as we're “early binding”, that is...

63,99

Domain Inclusion vs. Uplink Semantics

: Motives

— 20 — 2014-02-03 — Sdiff —

o Exercise:

What's the point of

o having the tedious adjustments of the theory

if it can be approached technically?

e having the tedious technical pre-processing

if it can be approached cleanly in the theory?

64 /99

— 20 — 2014-02-03 — main

Meta-Modelling: Idea and Example

65/99

Meta-Modelling: Why and What

— 20 — 2014-02-03 — Smm —

Meta-Modelling is one major prerequisite for understanding
the standard documents [OMG, 2007a, OMG, 2007b], and
the MDA ideas of the OMG.

The idea is simple:
if a modelling language is about modelling things,
and if UML models are and comprise things,
then why not model those in a modelling language?

66,99

Meta-Modelling: Why and What

— 20 — 2014-02-03 — Smm —

Meta-Modelling is one major prerequisite for understanding
the standard documents [OMG, 2007a, OMG, 2007b], and
the MDA ideas of the OMG.

The idea is simple:
if a modelling language is about modelling things,
and if UML models are and comprise things,
then why not model those in a modelling language?

In other words:

Why not have a model My such that

the set of legal instances of My,

the set of well-formed (!) UML models.

66,99

Meta-Modelling: Example

— 20 — 2014-02-03 — Smm —

For example, let's consider a class.

A class has (on a superficial level)
a name,

any number of attributes,

any number of behavioural features.

Each of the latter two has
a name and
a visibility.
Behavioural features in addition have
a boolean attribute isQuery,
any number of parameters,

a return type.

Can we model this (in UML, for a start)?

67/99

UML Meta-Model: Extract

Comment

4 Element

AN

NamedElement

name

visibility

JZaN

Type

type

0..1

type

TypedElement

RedefElement

Classifier

Class

0..1

*

Feature

redefdElem

Namespace

StructFeature

BehavFeature

Operation

— 20 — 2014-02-03 — Sumlmm —

49— Parameter

0..1

68,99

Classesioma, 2007b, 32

— 20 — 2014-02-03 — Sumlmm -

Classifier

{redefines general}
t+ /superClass

Class

*

{subsets classifier,
subsets namespace,
subsets featuringClassifier}

* +subsettedProperty

StructuralFeature

Property

{subsets member, ordered}
+memberEnd

isDerived : Boolean
isReadOnly : Boolean

| . . ;
isDerivedUnion : Boolean

/default : String

{subsets attribute,

/IsComposite : Boolean

{subsets namespace,
subsets redefinitionContext}
+class

|

¥ class subsets ownedMember,
ordered}
+ownedAttribute
*
0..1

{subsets redefinedElement}
+ redefinedProperty

aggregation : AggregationKind

Relationship Classifier

+association

Association

2“*

{subsets memberEnd,
subsets feature, subsets

ownedMember, ordered}
+ownedEnd

{subsets association,|
subsets namespace,
subsets featuringClassifier}
+owningAssociation

0.1
isDerived : Boolean

subsets owner}
navigableOwnedEnd

-
0..1

*

{subsets owner}
+owningProperty

(subsets ownedElement}
+defaultValue

0.1

0.1

{subsets redefinitionContext,
subsets namespace,
subsets featuringClassifier}
+class

-

0.1

+/opposite
0.1
{subsets ownedMember, ordered}
+nestedClassifier
Classifier

*
{subsets feature, subsets
ownedMember, ordered}
+ownedOperation

Operation
*

Figure 7.12 - Classes diagram of the Kernel package

ValueSpecification
0..1 0.1
0.1
<<enumeration>>
AggregationKind
none
shared
composite

{readOnly, odered}
+/lendType

Type

69,99

Operations[omec, 2007b, 31]

— 20 — 2014-02-03 — Sumlmm -

RefhavioraiFeature
T {subsets namespace} {fredefines ownedParametert
- - operstion + ownedParameter Parameter
Operation) N
i=Cery - Boolean
fizCrdered ; Boolean {subsgts context} {subsets ownedRule}
st inicue - Boalzan + preEnnterP + precondition - pp——
Novaver ; Integer [0.11 0.1 *
Jupper ;- Unlimitediatural [0..1]
{subsets context} Teubsets ownedRulel
+ postConte:d + posteondition
0.1 =7
{subsets context} {eubsets ownedRule}
: + hodyContext + bodyCondition -
0.4 0.1 -
+ ype Type
-
* 0.1
redefines raisedExceptio
* 1 ¥ rali:'sec%gcn:e on
-
*

+ redefinedCperation
-

-‘,‘*

{eubsets redefinedElement}

Figure 7.11 - Operations diagram of the Kernel package

70/99

Operations[ome, 2007b, 30]

freadCnly, union}

Classifier

+ MesturingClassifier

freadOnly, union}
+ feature

| RoedefinableFlomont

Foature

*

JsStatic ;| Boolean

Fiy

MuitiplicityElomont

TypedEfonront

— 20 — 2014-02-03 — Sumlmm -

StructuraiFeatare

isRegdOnly . Boolean

Namespace

|

RefavioraiFeature

zenumeration:s

ParameterDirectionKind

MuftiplicityElomont

I

Parameter

in

inoLt

out

return

TypedEfemant
fsubsets o
ownedtemher, Idefault @ String
orcered}
0.4 + ownedParameter .

+ owvnerFormalParam
{subsets namespace’

+ raizedException

ol
%

direction : ParameterDirectionking

Figure 7.10 - Features diagram of the Kernel package

Type

*

{subsets ownert

0.1 |+ owningParameter

{subsets ownedElernent}

0.4 |+ defaultvalue

VaineSpecification

71/99

Classifiersijoma, 2007b, 29]

NamedEfomant I RedefinableElemont Namespace Type DirectedRelationship
‘T‘ ? {Subzetzl target} *
— + genersl
Classifior .
{readOnly, union} lsfl batract : Booleah 1 Generalization
+ fredefinitionContext - ' Tsubsets izSubstitutable | Boalean

; subsets source
RedefinableFlontont - 1 ! owhedElement

* *
isLeaf : Boolean TreadOnly, union} sybssp%gfﬁlgwner} + generalization
+ fredefinedElement 1 *

*

freadOnly, subsets member}
+ finheritediemier,

N - }! NamoedEfemant
*
{subsets redefinedElement}
IreadCnly, union, {subsets + redefinedClazsifier

subsets feature} redefinitionContext: *
Property + fattribte + classifier
* 0.1

. L '

+ fgeneral |*

Figure 7.9 - Classifiers diagram of the Kernel package

— 20 — 2014-02-03 — Sumlmm -

72/99

Namespacegma, 2007b, 26]

— 20 — 2014-02-03 — Sumlmm -

Element

<<enumeration>>
VisibilityKind
NamedElement
public
Name : String [O..l] private
visibility : VisibilityKind 0.1 protected
/qualifiedName : String [0.1] package
readOnly, union
{readOnly, subsets member} +§membery N) = :
i amedElemen
PackageableElement |fMPortedMember | Namespace | * 7
. * | +/ownedMember
{readOnly, union,
visibility : VisibilityKind subsets owner} {readOnly, union, subsets
+/namespace member, subsets ownedElement}
S
0.1 DirectedRelationship
{subsets source, subsets owner} subsets target}
+ importingNamespace + importedElement
*
Elementimport | <[p