Contents & Goals

Last Lecture:
« State Machines and OCL

. .. + Hierarchical State Machines Syntax .
Sdtware Design, Modelli ng andAnalysisin UML T Composite Sates
(formali sation foll ows [ Dammet al., 2003 )

This Lecture:
« Educational Objectives: Capabilities for following tasks/questions.
© What does this State Machine mean? What happens if | inject this event?
« Can you please model the following behaviour.

201401-20 « What does this hierarchical State Machine mean? What may happen if |
inject this event?

© What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state,

Ledure 17: Hierarchical State Machines |

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal § o Content: .
- « Composite State Semantics B
Albert-Ludwigs-Universitit Freiburg, Germany w © The Rest w
- 2 B 3jaa
Composite States Composite States Reall: yntax — —_— =, — _— — -
\
« In a sense, composite states are about and instead of (
abbreviation, structuring, and avoiding redundancy. |
[ ﬁ
« Idea: in Tron, for the Player's Statemachine, | |
instead of A |
write N L
translates to ~ - —
. ({(top, st). (s, st), (1, st) (s} st)(s2, 5t) (55, st) (3, st) (s}, 1)},
S.kind
N 1
write {top = {s},5 = {5151}, {52, 5}, {5, 54 }}, 51 = 0,51 = 0.},
L . i region
5/as ! 6/4s

s



Composite Sates: Blessng o Curse?

States:

« what are legal state
configurations?

« what is the type of the
implicit st attribute?

Transitions:

« what are legal

£ transitions? « what may happen on E?

2| '+ when is a transition = what may happen on E, F’?

g enabled? « can E, G kill the object?

Z| « what effects do transi- .

| tions have?

0 844

R i
i

NEw): 225 <— sefs o stkes

Z@ \ st = {s,4%f

e —— w

d={gs &} equivaleat
ﬁ\icx»x?..
t={Hsc.5 - 20 {5,567
15, s, -

§ %55 5, 6p]
=% (NcovIsTEVT

Syntax: Fork/Join

o For brevity, we always consider transitions with (possibly) multiple

sources and targets, i.e. seb %Mﬂ ut&_ \.&m A H&s\ oE .
Pi(=) = (25\0) x (2%\0) SPECI4L

« For instance, assuss: ot qumel, fpec “thee”
ik

translates to

(S, kind, region, {t:}, {tr — ({52, 53}, {5, 56})}, {t1 > (¢r, gd, act)})
~~ 7

- M annot

« Naming convention: t(t) = (source(t), target(t)).

Sate Configuation

» The type of st is from now on a set of states, i.e. st : 25

o Aset S C S is called (legal) state configurations if and only if
o top € S1, and

« for each state s € Sy, for each non-empty region 0 # R € region(s),

exactly one (non pseudo-state) child of s (from R) is in Sy

[{s0 € R | kind(so) € {st, fin}} N S| = 1.

9jua
A Partial Order on Sates
The substate- (or child-) relation induces a partial order on states:
o top <s, forallses,
o s < forall s € child(s),
« transitive, reflexive, antisymmetric,
o ' <sands” <simplies s’ <s” or s < s
< s’
" a
oo g'=<" < o
o = A L
s < s s
' 10/



A Partial Order on Sates

The substate- (or cl ) relation induces a partial order on states:
o top <s, forallse s, Vse sts

28’ <&
.« s<s forall § € child(s), wnb s2s g ses

ve, reflexive, antisymmetric,

o tran:

7

o5 <sands” <simpliess’ <s”ors” <.

10748

Least Comnon Ancestor and Ting

« A set of states S; C S is called consistent, denoted by | S,
if and only if for each s,s" € Sy,
e s5<s, or
e s <5 0r
o sls

! 132

Least Comnon Ancestor and Ting

« The least common ancestor is the function ica : 25\ {§} — S such that
» The states in S; are (transitive) children of lca(S;),

lea(8y) < s, for alls € S, C S,

 lea(Sy) is minimal, i.e. if § < s for all s € Sy, then § < lca(S1)
« Note: lca(S)) exists for all §; C S (last candidate: top).

&p

lka NM.\

'
[
I
|
1
|
!

&

11/

Legal Transitions

A hiearchical state-machine (S, kind, region, —, v, annot) is called well

formed if and only if for all transitions ¢ €—,

. | source(t) and | target(t),]

source (and destination) states are pairwise orthogonal, i
o forall sts’ € source(t) (€ target(t)), s L s,

neither Banple:

MS source and destination are consistent, i

the top state

source nor destination, i.e. O
o top ¢ source(t) U poured (t) & ) iz
basgek
+ Recall: final states are
not sources of transitions. (bt byt

1472

Least Comnon Ancestor and Ting

« Two states s1, sy € S are called orthogonal, denoted s; L sy, if and only if
« they are unordered, i.e. s; £ 52 and s £ s1, and
« they "live” in different regions of an AND-state,

Is,region(s) = {S1,..., 5.} 3L < i # j <m:sy € child™(Si) A sz € child™(S;),

12/

Lega Transitions

A hiearchical state-machine (S, kind, region, —, 1, annot) is called well-
formed if and only if for all transitions t €—,
(i) source and destination are consistent, i.e. | source(t) and | target(t),

ise orthogonal, i

(ii) source (and destination) states are pail
o forall s¢s’ € source(t) (€ target(t)), s L s',

the top state is neither

source nor destination,
o top ¢ source(t) U posred(t) |

o Recall: final states are

not sources of tran

Example:

1476



The Depth of States

« depth(top) =0,
o depth(s') = depth(s) + 1, for all §' € child(s)

Example:

Entry/Do/Exit Actions, Internal Transitions

Enabednessin Hierarchical Sate-Machines

» The scope (“set of possibly affected states”) of a transition ¢ is the least
common region of
source(t) U target(t).

» Two transitions 1,t, are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

« The priority of transition ¢ is the depth of its innermost source state, i

prio(t) := max{depth(s) | s € source(t)}

« A set of transitions 7' C— is enabled in an object u if and only if
« T'is consistent,
« T is maximal wrt. priority,
o all transitions in T" share the same trigger,

« all guards are satisfied by o(u), and
« for all t € T, the source states are ac

0140120

source(t) C o(u)(st) (C S).

15/ 16/

Entry/Do/Exit Actions
( 51
ety
« In general, with each state mﬁia«m? 59
s € S there is associated dof act{ trlgd)/act [entry/acte™
it/ acteit B
« an entry, a do, and an exit wz /acty dof actge

action (default: skip) 1/act, exit/act

* a possibly empty set of

E,/actp,

trigger/action pairs called
internal transitions,

(default: empty). E1,....E, € &, ‘entry’, 'do’, ‘exit’ are reserved names!

Recall: each action’s supposed to have a transformer. Here: ¢, £yoieit, -
« Taking the transition above then amounts to applying

tgepenty © tact © Lgepeni
acty” © Lact © Lactey

instead of only

tact

~ adjust (2.), (3.) accordingly.

184 19724

Transitions in Hierarchical Sate-Machines

o Let T be a set of transitions enabled in u.
o Then (0,¢) L5, (51 o1y if
« o’(u)(st) consists of the target states of t,
e. for simple states the simple states themselves, for composite
states the initial states,

« o/, &', cons, and Snd are the effect of firing each transition ¢ € T
one by one, in any order, i.e. for each ¢ € T,
« the exit transformer of all affected states, highest depth first, -
» the transformer of ¢, lakes
+ the entry transformer of all affected states, lowest depth first.”

: ~ adjust (2.), (3.), (5.) accordingly.

' 17/

Internal Transitions

entry/act{""™
S2

do/ act§° o
e trlgd)/act [ antryTaci™

g o
Eyactn do/act

e exit/ actg

E,/actp,

For internal transitions, taking the one for Ey, for instance, still
amounts to taking only tacts, -
Intuition: The state is neither left nor entered, so: no exit, no entry.

gly.
» Note: internal transitions also start a run-to-completion step.

~ adjust (2.) accor

Note: the standard seems not to clarify whether internal transitions have
priority over regular transitions with the same trigger at the same state.

! Some code generators assume that internal transitions have priority!
! 20/



Do Actions

Alternative View: Entry/Exit/Internal as Abbreviations
51

antry

entry/act{
do/ acte

exit/ act$t
By /actp,

52
Tlgdl/act | antryjacis
dofueti? References

exit/act§

z I

trolgdol/acto [“entry/act?™ | trilgdi]/acts =

L — et ot entry/acty™
?

exit/ actgt

En/acts,

n: after entering a state, start its do-ac

o Intui
o If the do-action terminates,

© ... as abbrevation for ...
edt 9\-\
. Tyl act]  act,, at;
o then the state is considered completed,

« otherwise,
the state is left before termination, the do-action is stopped.

\. act,
o That is: Entry/Internal /Exit don't add expressivépbper o Core State Machines.
If internal actions should have priority, s1 can be embedded into an OR-state

0 - main -

« Recall the overall UML State Machine philosophy:
“An object is either idle or doing a run-to-completion step.”

1601

a2

(see later).
« Now, what is it exactly while the do action is executing...?

430

i

al states (see later).

f

« Abbreviation may avoid confusion in context of hierarcl
22/

214

References

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody
statecharts: not all models are created equal. Software and Systems Modeling,
6(4):415-435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal
semantics for a UML kernel language 1.2. IST/33522/WP 1.1/D1.1.2-Part1, Version 1.2.

[Fecher and Schénborn, 2007] Fecher, H. and Schonborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L., Haverkort,

B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS,
pages 244-260. Springer.

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with
statecharts. IEEE Computer, 30(7):31-42.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of
statecharts. In Ehrig, H., Damm, W., GroBe-Rhode, M., Reif, W., Schnieder, E., and
Westka , E., editors, ion of Software d ion Techniques for Applic
in Engineering, number 3147 in LNCS, pages 325-354. Springer-Verlag.

: [OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2.
. Technical Report formal /07-11-02




