— 07 — 2013-11-18 — main —

Sdtware Design, Modelling andAnalysisin UML

Leaure 07: A Type System for Visihility
201311-18

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

- 07 — 2013-11-18 — Sprelim —

Last Lecture:

Representing class diagrams as (extended) signatures — for the moment
without associations (see Lecture 08).

And: in Lecture 03, implicit assumption of well-typedness of OCL expressions.

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
Is this OCL expression well-typed or not? Why?
How /in what form did we define well-definedness?

What is visibility good for?

Content:
Recall: type theory/static type systems.
Well-typedness for OCL expression.

Visibility as a matter of well-typedness.

2/37

— 07 — 2013-11-18 — main

— 07 — 2013-11-18 — main —

Reall: From ClassBoxes to Extended Sgnaures

3/' 37

Extended Classs

— 06 — 2013-11-11 — Sextsig —

From now on, we assume that each class C' € € has:
a finite (possibly empty) set S of stereotypes,
a boolean flag a € B indicating whether C' is abstract,
a boolean flag t € B indicating whether C is active.

We use S¢ to denote the set UCe% Sc of stereotypes in 7.

(Alternatively, we could add a set St as 5-th component to .¥ to provides the stereo-
types (names of stereotypes) to choose from. But: too unimportant to care.)

Convention:

We write
(C,Sc,a,t) €€

when we want to refer to all aspects of C.

If the new aspects are irrelevant (for a given context),
we simply write C' € € i.e. old definitions are still valid.

9/40

qA737

— 07 — 2013-11-18 — main

— 07 — 2013-11-18 — main —

Extended Attributes

— 06 — 2013-11-11 — Sextsig —

From now on, we assume that each attribute v € V' has
(in addition to the type):

a visibility
¢ € {public, private, protected, package}
—— —— ——_—— ——
=4 = =F# =

an initial value expr, given as a word from language for initial
values, e.g. OCL expresions.
(If using Java as action language (later) Java expressions would be fine.)
a finite (possibly empty) set of properties P,,.
We define Pg analogously to stereotypes.

Vv

Convention:
We write (v : 7,&, expry, P,) € V when we want to refer to all aspects of v.

Write only v : 7 or v if details are irrelevant.
10/40

5/37

From ClassBoxes to Extended Sgnatures

— 06 — 2013-11-11 — Scdmap —

A class box n induces an (extended) signature class as follows:

n.
L € (n
Vi(n) = {(v1:70,&,v01, o Pema 1)}

where
“abstract” is determined by the font:

a(n)_{true ,ifn=orn= t(n)_{true ,ifnzorn:

“active” is determined by the frame:

false , otherwise false , otherwise

13/40

6/37

— 07 — 2013-11-18 — main

Excursus: Type Theory (cf. Thiemann 2008

7/31

— 07 — 2013-11-18 — Stypth —

Type Theory
Recall: In lecture 03, we introduced OCL expressions with types, for instance:
erpr = w iT ... logical variable w
| true | false : Bool ...constants
|0 —=1]1]... :Int ...constants
| expry + expry @ Int x Int — Int ...operation
| size(expry) : Set(1) — Int
| wot expe« ¢ Bool —> B
Wanted: A procedure to tell well-typed, such as (w : Bool)
not w

from not well-typed, such as,
size(w).

Approach: Derivation System, that is, a finite set of derivation rules.
We then say expr is well-typed if and only if we can derive
A CtFexpr:T (read: “expression expr has type 7")

for some OCL type 7, i.e. 7 € T UTw U {Set(ry) | 70 € T UTw}, C € F. 5
37

— 07 — 2013-11-18 — main

A Type System for OCL

— 07 — 2013-11-18 — Socltyp —

A Type System for OCL
We will give a finite set of type rules (a type system) of the form
“premises”
(“name” p—| “side condition”
conclusion
These rules will establish well-typedness statements (type sentences)
of three different “qualities”:
(i) Universal well-typedness:
Foexpr:T
F142:Int
(i) Well-typedness in a type environment A: (for logical variables)
At expr:T
self 1 1o & self.v: Int
(i) Well-typedness in type environment A and context B: (for visibility)

A Bt expr:T
self :17¢,CFself .r.v: Int

9/37

10/37

Constants and Operations

- 07 - 2013-11-18 - Socltyp —

o If expr is a boolean constant, then expr is of type Bool:

(BOOL) m, B e {true, false}

o If expr is an integer constant, then ezpr is of type Int:
INT) ——, Ne{0,1,—1,...
UNT) N T €l }

o If expr is the application of operation w: 7 X -+ X 7, — T to expressions

expry, ..., expr, which are of type 71,...,7,, then expr is of type 7:
Fexpri:m ... Fexpr, T
(Funo) l_p(l ! p)n. n, W:iTL X+ X Ty — T,
w(expry,...,expr,) T n>1,wé atr(€)

(Note: this rule also covers ‘=", ‘isEmpty’, and ‘size’.)

11/37

Constants and Operations Example

— 07 - 2013-11-18 — Socltyp —

(BOOL) m, B e {true, false}
(INT) TN It Ne{0,1,-1,...}
(Funo) l—ixprl T ... F ezprn.:Tn 999 5% e Ry —
w(expry,...,expr,) : T n>1,w¢ atr()
Example:
e not true
(8w¢) .
- : Boo
_ ot Bl Besl
(Gotns) - no& (e« Boo(

o true+ 3 got stuck — we Cirot
O deset Hus fon e neles

‘ T3 (wr)
ke ve aid +hd xbod > 1€

e +3 (gt
© G fue+3 & uob well-fyped

(R

12/37

Type Environment

— 07 — 2013-11-18 — Socltyp —

Problem: Whether
w—+ 3

is well-typed or not depends on the type of logical variable w € W.

Approach: Type Environments

.)

Definition. A type environment is a (possibly empty) finite se-

quence of type declarations.
The set of type environments for a given set W of logical variables

and types T is defined by the grammar
Aw=0|Aw:T

where w e W, 7 €T.

\ J

Clear: We use this definition for the set of OCL logical variables W and
the types T =Tp U Ty U {Set(To) | 0 €T U T<g}

1337
Environment Introduction andLogical Variables
If expr is of type 7, then it is of type 7 in any type environment:
Fexpr:T

Envl _

(EnvIntro) Al expr:T
Care for logical variables in sub-expressions of operator application:

Atrexpri:m ... Atk expr, 7, wiT XX

Funy)
(At w(expry,...,expr,) T n>1, wé atr(%)

If expr is a logical variable such that w : 7 occurs in A,
then we say w is of type T,
w:T €A
(Var)

Artw:T

— 07 — 2013-11-18 — Socltyp —

1437

Type Environment Example

- 07 - 2013-11-18 - Socltyp —

Fexpr:T
Envl —_—
(Envintro) Al expr:T
(Funy) Al;le'a_cprl ST ... Al—empr.nsrn wiTiX X T T
w(expry,...,expr,): T n>1 w¢ atr(®)
w:T €A
(Var) AFwr
Example:

o w+3, A=w: Int

(wr)
LJ"”{éA FS"("‘E A
W A
. F Sl
At ol (Fhen,) #iktxclé = bt

QR s ke Ny
+, 1L
= A ;‘:‘5% L pe{;x notunal from NW_ fb'::/

w oy g,
15/37

All Instances and Attributes in Type Environment

— 07 - 2013-11-18 — Socltyp —

o If expr refers to all instances of class C, then it is of type Set(7¢),

AllInst
(Allnst) F alllnstancesc : Set(7¢)

o If expr is an attribute access of an attribute of type 7 for an object of
C as denoted by ezpry, then the premise is that expr; is of type 7¢:

Ak :
N C, v:7 € atr(C), 1€ T

(Attro) A Fw

At expr, : ¢
Attrd! L : D ¢
e g
AF :
eIy - TC . ro: D, € atr(C)

A *
(Attrg) At ro(expry) : Set(Tp)

16/37

Attributes in Type Environment Example

— 07 — 2013-11-18 — Socltyp

Al expry : ¢)
(Attro) AT oleapry) : v:t €atr(C), 7€ T

A& expr, : 1c
Attrd? B : D
(Attry™) Y e r—" r1: Do € atr(C)
N Al expr, : ¢) YA
(Attrg) AT ra(eapry) : Set(rn)’ ro : Dy € atr(C) o X7
VeEekt Do glhf
¢ , D ()= §s0f
x:Int y: Int >
0,1 sell T F S&f:

o self : 1o F self.y : Int '——’\/”‘ti;:/f:z;f &;m;&;
G wt w4 desimil
14
o self : 7o &= self . : Int well ¢oped by (Ac,), (vos)

o self 1o b self. r:7Tp weld J—nfe«l (AkeY"), (vas)

o self : 7o & self .r.w : Int net M-J:*'AI gt shucke qfbo Aoty iy (Ate)
o el T gL g LE wel-tuped by (AKGY), (4,), ()

17/37

Iterate

o If expr is an iterate expression, then
o the iterator variable has to be type consistent with the base set, and
e initial and update expressions have to be consistent with the result

variable: welt <{ypedws ¢ opa v inits Scope
dapends dn wh&:fv‘ \
At o Setlca) arepeT. Arepsin

It
(Tter) A& expri—>iterate(wy : Ty ; wa @ To = expry | exprs) : To
where A" = A ® (wq : 71) B (w2 : 72).
,/7/4@ ol sepe
/

ev:'uri&b "5?"*3 ti :,:::,4 Wy "i.u(llt, Al
(Pwnito, LT bé ~eope) Ce>cmle (; " h})
firers Stoyte

1837

- 07 - 2013-11-18 - Socltyp —

|terate Example

AF expr, : ¢

Alllnst —
(Allnst) F alllnstancesc : Set(7¢) (Attr) At ov(expry): 7
(Iter) A& expr, : Set(t1) A Fexpry:me Al expry:m

A& expr,->iterate(wy : 71 ; w2 : T2 = expry | expry) : T2

where A/ =A D (’LU1 B 7'1) (&) (’U)z 8 Tz).

Example: (& = ({Int},{C},{x: Int},{C — {z}))

iz e
Alrsl:t Loy
rtole A Avsdf) b Ao
1 —\
; il = U W U
aﬂlk}}m wio) AL "‘MLB@(‘V’;sov/,%-’fcf‘md(ﬂ‘-‘(ﬂ{((kl,o))

v dllbsheces, - idesat, (seig :dl; ¢ Bl =Hue | = (self (), 0),
\\\r__/ =\AI

A+ context Cinv:z =0)
ane{ (4,
(e el ~typed 10

— 07 —2013-11-18 - S

First Recapitulation

I only defined for well-typed expressions.

What can hinder something, which looks like a well-typed OCL
expression, from being a well-typed OCL expression...?

& = {Int},{C,D},{z : Int,n: Do 1},{C — {n},{D +— {z})
Plonn Synli e v Y pusseny
context C': false

SubsHe .svvn"bw e (a(yemls m S}‘j“@ wle o P

context C'inv:y =0

qu.o_ enes(s Doa e

context self : C'inv: self .n=self .n.x

— 07 — 2013-11-18 — Socltyp —

20/37

— 07 — 2013-11-18 — main

Casting in the Type System

One Possble Extension: I mplicit Casts

— 07 — 2013-11-18 — Scast —

We may wish to have
1 and false : Bool (%)

In other words: We may wish that the type system allows to use
0,1 : Int instead of true and false without breaking well-typedness.

Then just have a rule:
At expr: Int
At expr : Bool

(Cast)

With (Cast) (and (Int), and (Bool), and (Funy)),
we can derive the sentence (), thus conclude well-typedness.

But: that's only half of the story — the definition of the interpretation
function I that we have is not prepared, it doesn't tell us what () means...

2 1/'37

22/37

Impli cit Casts Cont’d

— 07 — 2013-11-18 — Scast

So, why isn’t there an interpretation for (1 and false)?

First of all, we have (syntax)

expr, and expry : Bool x Bool — Bool

Thus,

I(and) : I(Bool) x I(Bool) — I(Bool)

where I(Bool) = {true, false} U {Lpoo}-

By definition,

I[1and false] (o, B) = I(and)(I[1](c,5), I[false](s,8)),

and there we’re stuck.

Implicit Casts: Quickfix

— 07 — 2013-11-18 — Scast —

Explicitly define

b1 N by
J—Bool

I[and(ezpry, exprsy)](o, B) == {

where

by := toBool(I[expr,] (o, 3)),
by := toBool(I[exprs] (o, 3)),

and where
toBool : I(Int) U I(Bool) — I(Bool)

true ,if
T — < false ,if
1 Boor . Otherwise

' if bl 7é J—Bool 7é b2
, otherwise

2337

2437

Bottomline

— 07 — 2013-11-18 — Scast —

— 07 — 2013-11-18 — main —

There are wishes for the type-system which require changes in both,
the definition of I and the type system.
In most cases not difficult, but tedious.

Note: the extension is still a basic type system.

Note: OCL has a far more elaborate type system which in particular
addresses the relation between Bool and Int (cf. [OMG, 2006]).

Misihility in the Type System

25]/’37

26/37

ag wgqs . 5’: In ,C,D7HID0,1,
MVisibility — The Intuition ({m %gl (x};]{nt,g, expro,)},

{C = {n}, D= {z,m}}

Let's study an Example:

D
n
C & x: Int = expr,
1

and

c:C " d:D m da: D
r=1

Assume w1 : 7 and ws : Tp are logical variables. Which of the following syntacti-
cally correct (?) OCL expressions shall we consider to be well-typed?

£ of x: Apublic private protected package
wy.n.x=0 (D_) a- later not
0 Quet | pavedenss s by class,
5 ? 7wk ol by sbject
3 wy.m.x=0 @) Lkt later not
% x(w(l—oz»=0 u 0l
5 ? ? ij
1 27/37
Context = (4§ 3GD3, 0Dy, v bt
5(.(=) 5:5’,
Example: A problem? D, "35’)
r D
0,1
0,1
:tb :ED

— 07 — 2013-11-18 — Svisityp —

self:TDI—self.rp;‘v>0 v/
self:ch/silf.r.v>0 X

:td
That is, whether an expression involving attributes with visibility is
well-typed depends on the class of objects for which it is evaluated.

Therefore: well-typedness in type environment A and context B € €:

A BF expr:T

In particular: prepare to treat “protected” later (when doing inheritance).

2837

Attribute Accessin Context

— 07 — 2013-11-18 — Svisityp —

If expr is of type T in a type environment, then it is in any context:

8
Al expr:T
text
(Contex §> AR expr: T

Accessing attribute v of a C-object via logical variable w is well-typed if

\=i=pERiT—or w is of type T3

AFw:
YT, (v:T1,& expry, Pg) € atr(B)

Att)
(Attry) A,,Qw
Accessing attribute C-object of via expression ezpr; is

well-typed in context 3 if
v is public, or expr; denotes an object of class B:

A, BF :
, eIPTy 1 TC. <U T, €, expry, P<g> € at’l’(C),

Attr '
(2) A, Bt wv(expry) : 7 E=+,0rC=DB

Acessing Cy 1- or C,-typed attributes: similar. 20/

Contex in Operator Application

— 07 — 2013-11-18 — Svisityp —

Operator Application:

A Bt expry:m ... A Bl expr, : 7,

(Funz) -) WiIT] X X Tp — T,
A, BFw(expry,...,expr,): T w1 atr(®)
Iterate:
(Ftery) A,BF expry : Set(r)) A, Bt expry:7o A',BF expry:m

A, B | expri->iterate(wy : 71 ; we : To = expry | €xpry) 1 T2

where A’ = A® (w1 : 71) & (wa : T2).

30/37

Attribute Accessin Context Example

A‘Q— expr : T
(Contezt o) ABRT eapr T
A,BF expr,: T
(Attry) YN U(ez; ;) .CT . (v:T,& expry, Pg) € atr(C),
, P E=+,0or{=—and C=B

T
0,1

Example:

- 07 - 2013-11-18 — Svisityp —

self : 1o

The Semantics of Visibility

e Observation:

0,1

Fself .r.v>0

3137

o Whether an expression does or does not respect visibility is a matter
of well-typedness only.

» We only evaluate (= apply I to) well-typed expressions.

— We need not adjust the interpretation function I to support visibility.

— 07 - 2013-11-18 — Svisityp —

3237

What is Visihility Good For? A

— 07 — 2013-11-18 — Svisityp —

— 07 — 2013-11-18 — main

0,1

Visibility is a property of attributes —
n
is it useful to consider it in OCL? H

In other words: given the picture above,
is it useful to state the following invariant (even though z is private in D)

context Cinv:n.xz >07

It depends. (cf. [OMG, 2006], Sect. 12 and 9.2.2)

Constraints and pre/post conditions:
Visibility is sometimes not taken into account. To state “global” requirements,
it may be adequate to have a “global view", be able to look into all objects.

But: visibility supports “narrow interfaces”, “information hiding”, and
similar good design practices. To be more robust against changes, try to
state requirements only in the terms which are visible to a class.

Rule-of-thumb: if attributes are important to state requirements on design
models, leave them public or provide get-methods (later).

Guards and operation bodies:
If in doubt, yes (= do take visibility into account).

Any so-called action language typically takes visibility into account. 3337

Recpitulation

3437

Recpitulation

— 07 — 2013-11-18 — Srecap —

— 07 — 2013-11-18 — main

Class Diagrams €2
% induces
extended (!) signature ¥ (€' 2)
% gives rise to

Basic Type System

We extended the type system for .
casts (requires change of T) and <{ See calies Shies

visibility (no change of I).

Later: navigability of associations.

Good: well-typedness is decidable for these type-systems. That is, we can have
automatic tools that check, whether OCL expressions in a model are well-typed.

References

35]/’37

36/37

References

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical
Report formal/06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

— 07 — 2013-11-18 — main

37,37

