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UML Sate Machines
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Brief History:

« Rooted in Moore/Mealy mac

o [Harel, 1987]: Statecharts as a concise notation,
introduces in particular hi

.

Manifest in tool Statemate [Harel et al., 1990] (simulation, code-generation);
nowadays also in Matlab/Simulink, etc.

From UML 1.x on: State Machines (u Sk Chort Dirgous)
(not the official name, but understood: UML- msﬂmn:m:&
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Note: there is a common core, but each dialect interprets some constructs
subtly different [Crane and Dingel, 2007].  (Would be too easy otherwise. .. )

Contents & Goals

Last Lecture:

» Core State Macl
* UML State Machine syntax

es

« State machines belong to classes.

T

is Lecture:

« Educational Objectives: Capabilities for following tasks/questions.
» What does this State Machine mean? What happens if | inject this event?
» Can you please model the following behaviour.
» What is: Signal, Event, Ether, Transformer, Step, RTC.

« Content:
= UML Core State Machines (first half)
« Ether, System Configuration, Transformer
+ Run-to-completion Step
« Putting It All Together

3120

Roadmap: Chronologically

What do we (have to) cover?
UML State Machine Diagrams Syntax,

Def.: Signature with signals.

Def.: Core state macl

Map UML State Machine Diagram
to core state machines.

e.
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Semantics: o
The Basic Causality Model 2

: Ether (aka. event pool)

: System configura

 Event. 7

: Transformer.

RG]

Def.; step, run-to-completion step.

(xii) Later: Hierarchical state machines. 5m

UML State Machines

UML Sate Machines: Syntax
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UML State-Machines: What dg we have to cover?
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Core Sate Machine

UML Sate-Machines: What do we have to cover?

™ Proven approach: el

] Start out simple, consider the essence, namely ,,H,

W] o basic/leaf states .

Susi| e transitions, e
then extend to cover the complicated rest.

From UML to Core Sate Machines: By Example

Definition.
A core state machine over signature ¥ = (F,%,V, atr, &) is a
tuple
SM = (8,s0,—)
where
+ S'is a non-empty, finite set of (basic) states,
* sg € S is an initial state, sdls deshreatiod
souwste. \l&v.\ A shele.
cand gl N . 4
C S x (6U{}) x Bapry x Acty xS
wr it nim, 0 STRECLN X B x bt
&E trigger guard  action

is a labelled transition relation.

< be something else) and a set Act.» of actions over .7

We assume a set Ezpr ,, of boolean expressions (may be OCL, may

UML state machine diagram SM:

with
* event € &,

(default: true, assumed to be in Expr )

(

o guard € Ezpr g,

o action € Act» default: skip, assumed to be in Act)

maps to

SM(SM) = 2«?&?/&\_@Tmeg?wﬁsi_ action, s3))
3 P
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Sgnature With Sgnals

Definition. A tuple
S = (F,,V. atr, &), C 26 a set of signals,
is called signature (with signals) if and only if
(7,42, V, atr)

is a signature (as before).

Note: Thus conceptually, a signal is a class and can have attributes of plain
type and associations.

8m
Annotations and Defaults in the Standard
Reconsider the syntax of transition annotations:
annot = [ (event)[ "' (event)]” [ [ (guard) ‘'] [/’ (action)] ]
44 ol achia,
and let’s play a bit with the defaults: W! \. 4
Hue ew, = ~ }R\ hﬁ\
awet o, / - —_—
B/ E e, skp
ceck Jact ~s o~ twe, act
act e Acts E[act ~ £ e, at
s € Epry Lepd  ~> -, ey hp é?t b
<CBs et
In the standard, the syntax is even more elaborate: bt
« E(v) — when consuming E in object u, i Rugpody \
attribute v of u is assigned the %)) v
corresponding attribute of E. mi\m\xv.lkmbx
o B(vi7)—si but v is a local variable,
scope is the transition
11m



Sate-Machines belong to Classes

s shee )
7o) “licoke ot e g What is that useful for?
7 A:.\..z f
s « No Event: « In the following, we assume that a UML models consists of a set ¢ of class
Xt L33/ diagrams and a set .%/ of state chart diagrams (each comprising one state
machines SM).
. &/ [ bt LA
« Furthermore, we assume that each state machine SM € 24

associated with a class Csm € €(7).

) Vact,
&/ D\ G ~) NI .
Dl.w » For simplicity, we even assume a bijection, i.e. we assume that each class
&k, et C € () has a state machine SMc: and that its class Cisu,. is C-

If not explicitly given, then this one:

&: n
Jr St oy St ot
« No annotation:

UML _ .
o - SMo = ({0}, 50,0).

We'll see later that, semantically, this choice does no harm.

wumMmM&W ; M&um.n:nraux& <,
7,
MLI“«;R}&:W 1ae M.“»%\»F{S\ “% s, . o Intuition 1: SMc describes the behaviour of the instances of class C.
{¢m3nn, (s, o2, xe4, 55 Intuition 2: Each instance of C executes SMc: with own “program counter

o ) ; :

f. 1 Amu. F) e “ MLW Note: we don’t consider multiple state machines per class.
= mm.ﬂwd [ ] = (Because later (when we have AND-states) we'll see that this case can be viewed as

~  asingle state machine with as many AND-states.)
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