— 21 — 2014-02-05 — main

Sdtware Design, Modelling andAnalysisin UML

Lecdure 21: Inheritancell

201402-63
10

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 21 — 2014-02-05 — Sprelim —

Last Lecture:
Behavioural Features
State Machines Variation Points
Inheritance in UML: concrete syntax

Liskov Substitution Principle — desired semantics

This Lecture:
Educational Objectives: Capabilities for following tasks/questions.
What's the Liskov Substitution Principle?
What is late/early binding?
What is the subset, what the uplink semantics of inheritance?
What's the effect of inheritance on LSCs, State Machines, System States?

What's the idea of Meta-Modelling?

Content:
Two approaches to obtain desired semantics

The UML Meta Model

2/74



— 21 — 2014-02-05 — main

“..shal beusable..” for UML

— 21 — 2014-02-05 — Sstatic —

374
Easy: Satic Typing G Gy
q',ts(/‘l x: Int z: Int
f(Int) : Int f(Int) : Int
- i D D
Given: “sD, : : Booz2 {(signal)) F
s N f(Float) : Int
mreE) o
Wanted: cowkn;‘f wv: isll.x 20 A::] Xehe€ | vieawnely
o x > 0 also well-typed for D, *g}_\cw% Pf %70 realvcd
ot )
o assignment itsC1 := itsD1 being well-typed &)  (4«)[B] LS T
R WX
o itsCl.a = 0, itsC1.£(0), itsC1 | F ‘e $ et iy wless
being well-typed (and doing the right thing). ) E:Z"'F
@
( s “uu ‘d’JﬂAQ/
Approach: ?:{x) ® xlet Hee
. - . 2l gedet. ace
o Simply define it as being well-typed, wlase x“<”
. L . . g (mast be
adjust system state definition to do the right thing. S egse)

OV i= &R, 5 wel/~Hygel ‘Z .. -
g, T TC ol epy i Ty avd TA"TY  concdert D iww: k<O Be)

474



Satic Typing Cont’d ASSAndng, Do) & Dldt) & D(Foats)

— 21 — 2014-02-05 — Sstatic —

— 21 - 2014-02-05 — main —

Plus émﬂhd;\? w, _ﬁ%"\

o] |
x: Int x: Int ( ;M
fnt) : Int : 3 ‘%\ {(signal)) E
T o
D,
W&
L] /(Float) - B =)
Notions (from category theory): aiphs whons edle 27
et less

e invariance,
e covariance,

e contravariance.
We could call, e.g. a method, sub-type preserving, if and only if it

o accepts more general types as input (contravariant),

« provides a more specialised type as output (covariant).

This is a notion used by many programming languages — and easily type-checked.

574

Excursus. Late Binding d Behavioural Features

6/74



Late Binding

What transformer applies in what situation? (Early (compile time) binding.)

f not overridden in D f overridden in D

“}‘“-W"l: C £

'JM. U-Jx /5°“‘eccg_m o 2l () : Int
v S = ==
Wid il Peim ]
is \JSUJ a{' someC —> £() C: F(} C: /t/
O (@u{, someC -> £() C: :_((') C‘ 3 #()
flfi.s’) -
What one could want is something different: (Late binding.)
. 4 # someC -> £() C‘i“{() @
;5 3{2@- someD -> £() D-‘-‘-l[(/ @
‘7’; WW someC —> £() D P() @
% wodk :‘v\e(. =
2 i ond

Late Binding in the Sandad andProgramming Lang

In the standard, Section 11.3.10, “CallOperationAction”:

“Semantic Variation Points
The mechanism for determining the method to be invoked as a
result of a call operation is unspecified.” [OMG, 2007b, 247]

In C++,
methods are by default “(early) compile time binding”,
can be declared to be “late binding” by keyword “virtual”,

the declaration applies to all inheriting classes.

In Java,
methods are “late binding”;
there are patterns to imitate the effect of “early binding”

Exercise: What could have driven the designers of C++ to take that approach?

Note: late binding typically applies only to methods, not to attributes.
(But: getter/setter methods have been invented recently.)

— 21 — 2014-02-05 — Slatebind —

T/74

8/74



Back to the Main Track “..tell thedifference.” for UML

— 21 — 2014-02-05 — main

9/74

With Only Early Binding...

...we're done (if we realise it correctly in the framework).
Then

if we're calling method f of an object u,

which is an instance of D with C < D

via a C-link,

then we (by definition) only see and change the C-part.

We cannot tell whether v is a C or an D instance.

So we immediately also have behavioural /dynamic subtyping.

— 21 - 2014-02-05 — Ssubtyping —

10/74



— 21 - 2014-02-05 — Ssubtyping —

Difficult: Dynamic Stl#pg B;m? ¢
f(Int) : Int
D
C::f and D::f are type compatible,
but D is not necessarily a sub-type of C. f(nt) : Int
Examples: (C++)
int C::f(int) { int D::f(int) {
return O; VS. return 1;
}s }s
int C::f(int) { int D::f(int x) {
return (rand() % 2); VS. return (x % 2);
b }s

1174

SubTyping Principles Cont’d

— 21 - 2014-02-05 — Ssubtyping —

In the standard, Section 7.3.36, “Operation”:
“Semantic Variation Points
[--.] When operations are redefined in a specialization, rules regarding
invariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

So, better: call a method sub-type preserving, if and only if it

(i) accepts more input values (contravariant),

(ii) on the old values, has fewer behaviour (covariant).
Note: Fhis (ii) is no longer a matter of simple type-checking!
And not necessarily the end of the story:

One could, e.g. want to consider execution time.

Or, like [Fischer and Wehrheim, 2000], relax to “fewer observable
behaviour”, thus admitting the sub-type to do more work on inputs.

Note: “testing” differences depends on the granularity of the semantics.

Related: “has a weaker pre-condition,” (contravariant),

“has a stronger post-condition.” (covariant). b
/74



Ensuring SubTyping for Sate Machines

— 21 - 2014-02-05 — Ssubtyping —

. . N
In the CASE tool we consider, multiple classes

in an inheritance hierarchy can have state machines. “

But the state machine of a sub-class cannot be drawn from scratch.

Instead, the state machine of a sub-class can only be obtained by
applying actions from a restricted set to a copy of the original one.

Roughly (cf. User Guide, p. 760, for details),
add things into (hierarchical) states,

add more states,

attach a transition to a different target (limited).

They ensure, that the sub-class is a behavioural sub-type of the super
class. (But method implementations can still destroy that property.)

Technically, the idea is that (by late binding) only the state machine of the most
specialised classes are running.

By knowledge of the framework, the (code for) state machines of super-classes is still

accessible — but using it is hardly a good idea...
1374

Towards System States C

— 21 - 2014-02-05 — Ssubtyping —

Wanted: a formal representation of “if C' < D then D ‘is a’ C", that s,
(i) D has the same attributes and behavioural features as C, and

/
(ii) D objects (identities) can replace C' objects. ] D)

We'll discuss two approaches to semantics:

Domain-inclusion Semantics (more theoretica

o) 4] > DXut)
o) - Iy} Dt v DS )

@ - olus): §5, 53 — DUk )y Xhivgy )
Uplink Semantics (more technlcal)
oglin d-pct/
. f Ye sl
Pl of D

VD

/\%W%(ﬂé& LA

&

14/74



— 21 — 2014-02-05 — main

Domain Incluson Samantics

Domain Inclusion Sructure

— 21 — 2014-02-05 — Sdomincl —

Let & = (J,6,V, atr, &, F, mth, 1) be a signature.

Now a structure 9
[as before] maps types, classes, associations to domains,
[for completeness] methods to transformers,

[as before] indentities of instances of classes not (transitively) related by
generalisation are disjoint,

[changed] the indentities of a super-class comprise all identities of

sub-classes, i.e.
veew:2(C)2 | 2(D).
Cc<D

Note: the old setting coincides with the special case <« = 0.

1574

16/74



Domain Inclusion Sy/stem States

Now: a system state of ./ wrt. & is a type-consistent mapping
0:9(€)+ (V+(2(7)U2(61)U 2(%s)))
that is, for all u € dom(o) N 2(C),
[as before] o(u)(v) € D(1)ifv:T, 7€ T or 7€ {Cy,Co1}.

[changed] dom (o (u)) = Ug, ¢ atr(Co),

Example:
0,1

z: Int

S

U% x: Int
8 y: Int
= Note: the old setting still coincides with the special case <t = .
‘ 1774
- - - - - - A
Preliminaries. Expresson Normalisation v Int
Recall: %

“ . " C
we want to allow, e.g., “context D inv:v <0". 0,1 —
we assume fully qualified names, e.g. C::v. "

Intuitively, v shall denote the I
"most special more general” C::v according to <. D

— 21 — 2014-02-05 — Sdomincl —

To keep this out of typing rules, we assume that the following normalisation
has been applied to all OCL expressions and all actions.
Given expression v (or f) in context of class D, as determined by, e.g.
by the (type of the) navigation expression prefix, or
by the class, the state-machine where the action occcurs belongs to,

similar for method bodies,
normalise v to (= replace by) C'::v,
where C is the greatest class wrt. “<" such that
C <X D and C:w € atr(C).
If no (unique) such class exists, the model is considered not well-formed; the

expression is ambiguous. Then: explicitly provide the qualified name. 15
/74



OCL Syntax and Typing

— 21 — 2014-02-05 — Sdomincl —

Recall (part of the) OCL syntax and typing: v,reV,C,De¥
expr = v(expry) :7c — T(v), ifv:Tred
| r(expry) :7c — 7D, if r: Do

| r(expry) :7¢c — Set(rp), ifr: D,

The definition of the semantics remains (textually) the same.

— 21 — 2014-02-05 — Sdomincl —

1974
More Interesting: eIl - Typed-ness
C
We want v Int
context D inv:v <0
to be well-typed. %
Currently it isn't because D

v(expry) : 7o — 7(v)

but A & self : 1p.
(Because 7p and 7¢ are still different types, although dom(7p) C dom(7¢).)

So, add a (first) new typing rule

Al expr:Tmp .
————— fC<XD. Inh
Al—expr:TC’lc_ (Inh)

Which is correct in the sense that, if ‘exzpr’ is of type 7p, then we can use it
everywhere, where a 7¢ is allowed.

The system state is prepared for that.

20/74



WEll -Typed-nesswith Visibility Cont’d

— 21 — 2014-02-05 — Sdomincl

A, Dt expr: 1o

A, Dt Cuo(expr) : 1’ -t
A, Dt expr: 1o ¢ — 4
A,DF Civ(expr): 7" > 77
A, Dt expr: 1o f——. C=D

A, Dt C:ov(expr) : 7’
(Cv T, & 09, P) € atr(C).

Example:

context/

y (n)v1 <0 | (n)ve <0 | (n.)vg <0

c
D
B

Saisfying OCL Constraints (Domain Inclusion)

(Pub)
(Prot)
(Priv)
C
— vy & Int
# vo i Int
+ w3 : Int
/\
0,1l n
21/74

— 21 — 2014-02-05 — Sdomincl

Let M = (62,09, 54#,.%) be a UML model, and 2 a structure.

We (continue to) say M |= expr for context C' inv : expr, € Inv(M) iff

=expr

V?T:(Ui,Ei)ie]NE [[M]] Vie N Vuedom(ai)ﬂ@(C’) :

Iexpry](o;, {self — u}) = 1.

M is (still) consistent if and only if it satisfies all constraints in Inv(M).

Example:

0,1 c
x: Int

n
D

22/74



Transformers (Domain Inclusion)

— 21 — 2014-02-05 — Sdomincl —

o Transformers also remain the same, e.g. [VL 12, p. 18]
update(expry, v, expry) : (0,€) — (o', €)

with
o' =olur o(u)v— I[expry](o)]]

where u = Iexpr,] (o).

Semarntics of Method Call s

— 21 — 2014-02-05 — Sdomincl —

e Non late-binding: clear, by normalisation.

o Late-binding:
Construct a method call transformer, which is applied to all method calls.

23)74

24/74



Inheritanceand Sate Machines: Triggers

Wanted: triggers shall also be sensitive for inherited events,
sub-class shall execute super-class’ state-machine (unless overridden).

,Snd .
(0,¢) LomeSnd)r o1y if
Ju € dom(o) N 2(C) Jug € (&) : ue € ready(e,u)

u is stable and in state machine state s, i.e. o(u)(stable) =1 and o(u)(st) = s,
a transition is enabled, i.e.
(s, F, expr,act,s’) €— (SMc) : F = E A Iexpr](5) =1

where & = o[u.params g — ue].
and
(¢o',€") results from applying tac: to (o,€) and removing ug from the ether, i.e.
(0",&") = tuet(5,€ © ur),

o' = (0"[u.st — s, u.stable — b,u.params g — 0])| o)\ {ug)

I
E where b depends:
: If u becomes stable in s’, then b = 1. It does become stable if and only if there
3 is no transition without trigger enabled for u in (¢’,€’).
;; Otherwise b = 0.
2 Consumption of ur and the side effects of the action are observed, i.e.
‘ cons = {(u, (E,0(ug)))}, Snd = Obs;,,, (6,e Sug).
Domain Inclusion andlnteractions
C D C E
z T T
F C F
Similar to satisfaction of OCL expressions above:
An instance line stands for all instances of C' (exact or inheriting).
Satisfaction of event observation has to take inheritance
into account, too, so we have to fix, e.g.
I
5 !
E o, cons, Snd =g E, ,
4 if and only if
z B(z) sends an F-event to By where £ <X F.
I

Note: C-instance line also binds to C’-objects.

25/74

26/74



— 21 — 2014-02-05 — main

Uplink Semantics

2774

Uplink Semantics

— 21 — 2014-02-05 — Suplink —

Idea:
Continue with the existing definition of structure, i.e. disjoint
domains for identities.
Have an implicit association from the child to each parent part
(similar to the implicit attribute for stability).

C

x:Int

Apply (a different) pre-processing to make appropriate use of that
association, e.g. rewrite (C++)

x =0

in D to
uplink, ->x = 0; 287



Pre-Processng for the Uplink Semarntics

— 21 — 2014-02-05 — Suplink —

For each pair C' < D, extend D by a (fresh) association
uplinkq : C with p=[1,1], £ =+

(Exercise: public necessary?)

Given expression v (or f) in the context of class D,

let C be the smallest class wrt. “<" such that
C <D, and
C:w € atr(D)

then there exists (by definition) C' < C; < ... < C, < D,
normalise v to (= replace by)

uplinks, >+ =>uplinkg, .C:v

Again: if no (unique) smallest class exists,
the model is considered not well-formed; the expression is ambiguous.

Uplink Sructure, System State, Typing

— 21 — 2014-02-05 — Suplink —

Definition of structure remains unchanged.
Definition of system state remains unchanged.

Typing and transformers remain unchanged —
the preprocessing has put everything in shape.

29/74

30/74



Saisfying OCL Constraints (Uplink)

— 21 — 2014-02-05 — Suplink —

Let M =(€¢2,02,54#,.%) be a UML model, and Z a structure.

We (continue to) say

M = expr
for
context C' inv : expr, € Inv(M)
=eapr
if and only if

V= (0i)ien € [M]
Vie N
Vu € dom(o;) N 2(C) :
Ifexpry](os, {self — u}) = 1.

M is (still) consistent if and only if it satisfies all constraints in Inv(M).

Transformers (Uplink)

— 21 — 2014-02-05 — Suplink —

What has to change is the create transformer:
create(C, expr,v)
Assume, C''s inheritance relations are as follows.

C171 <... QCl,nl <]C’7

Cmi<...<4Chp,, <C.

Then, we have to
create one fresh object for each part, e.g.

UL 1y Ulmgy-- s Umly-- s Umn,,;
set up the uplinks recursively, e.g.
o(u1,2)(uplinke, ) = ui1.

And, if we had constructors, be careful with their order.

3174

32/7a



Late Binding (Uplink)

— 21 — 2014-02-05 — Suplink —

— 21 — 2014-02-05 — main

o Employ something similar to the “mostspec” trick (in a minute!). But the result
is typically far from concise.

(Related to OCL's isKind0f£() function, and RTTI in C4++.)

33)7a

Domain Inclusion vs. Uplink Semantics

3474



Cast-Transformers

— 21 — 2014-02-05 — Sdiff —

Cc;
D d;

Identity upcast (C++):

Cx cp = &4;

Identity downcast (C++):

Dx dp = (Dx)cp;

Value upcast (C++):

*Cc = *d;

// assign address of ‘d’ to pointer ‘cp’

// assign address of ‘d’ to pointer ‘dp’

// copy attribute values of ‘d’ into ‘c’, or,

// more precise, the values of the C-part of ‘d’

35/74

Casts in Domain Inclusion andUplink Semarntics

— 21 — 2014-02-05 — Sdiff

Domain Inclusion

Uplink

Cx cp easy: immediately compatible | easy: By pre-processing,
= &d; (in underlying system state) be- | Cx cp = d.uplink;
cause &d yields an identity from
2(D) C 2(C).
Dx dp = easy: the value of cpisin Z(D)N | difficult: we need the identity
(D*)cp; 2(C') because the pointed-to ob- | of the D whose C-slice is de-
jectisa D. noted by cp.
Otherwise, error condition. (See next slide.)
c=4d; bit difficult: set (for all C < D) | easy: By pre-processing,

(C)(, ) :Tp X > — E|m(c>
('LL7 U) = J(u)‘atr(c’)

Note: o' = ofuc — o(up)] is
not type-compatible!

¢ = *(d.uplink.);

36,74



|dentity Downcast with Uplink Semantics

— 21 — 2014-02-05 — Sdiff —

Recall (C++): Dd; Cx cp=&d; Dx dp = (Dx)cp;
Problem: we need the identity of the D whose C-slice is denoted by cp.

One technical solution:

Give up disjointness of domains for one additional type comprising all
identities, i.e. have

alle 7, 9(a1)= |J 2(C)
Ce€

In each <-minimal class have associations “mostspec” pointing to most
specialised slices, plus information of which type that slice is.

Then downcast means, depending on the mostspec type (only finitely
many possibilities), going down and then up as necessary, e.g.

switch(mostspec_type){
case C':
dp = cp ->mostspec ->uplink, ->...->uplink, ->uplinkp;

3774

Domain Inclusion vs. Uplink Semartics. Differences

— 21 — 2014-02-05 — Sdiff —

Note: The uplink semantics views inheritance as an abbreviation:

We only need to touch transformers (create) — and if we had constructors, we
didn’t even needed that (we could encode the recursive construction of the upper
slices by a transformation of the existing constructors.)

So:
Inheritance doesn’t add expressive power.
And it also doesn’t improve conciseness soo dramatically.

As long as we're “early binding”, that is...

3874



Domain Inclusionvs. Uplink Semantics: Motives

o Exercise:

What's the point of

o having the tedious adjustments of the theory

if it can be approached technically?

o having the tedious technical pre-processing

if it can be approached cleanly in the theory?

— 21 — 2014-02-05 — Sdiff —

39/74

Meta-Modelling: | dea andExample

— 21 - 2014-02-05 — main

4074



Meta-Modelling: Why andWhat

— 21 — 2014-02-05 - Smm —

Meta-Modelling is one major prerequisite for understanding
the standard documents [OMG, 2007a, OMG, 2007b], and
the MDA ideas of the OMG.

The idea is simple:
if a modelling language is about modelling things,
and if UML models are and comprise things,
then why not model those in a modelling language?

In other words:
Why not have a model My such that

the set of legal instances of My,

the set of well-formed (!) UML models.

4174

Meta-Modelling: Example

— 21 - 2014-02-05 - Smm —

naune : Shing
s ;\"': “r #’f

For example, let's consider a class.

A class has (on a superficial level)
a name,
any number of attributes,
any number of behavioural features.

Each of the latter two has
a name and

a visibility.
Behavioural features in addition have

a boolean attribute isQuery,
any number of parameters,

a return type.

Can we model this (in UML, for a start)?

42/74



UML Meta-Model: Extract

NamedElement

name
visibility

RedefElement [ | redefdElem
*
Namespace
| Classifier ‘ StructFeature ‘ BehavFeature
£
E
a
|
0
g Class
it 0.1
< .. q
3 Operation Parameter
&
I
—
&
|
Classes [omg, 2007h 37
StructuralFeature
] Py [ o 0 e oo
{redefines general} ssociation
1 IsuperClass . 2.% 0.1
Class - +subsetiedProperty \.sDenved : Buf)\ean isDerived : Boolean
* isReadOnly : Boolean
ST i {subsets memberEnd,
isDerivedUnion : Boolean subsets feature, subsets  {subsets association,|
Idefault : String ovned\lember, ordered) subsets namespace,
. Visieh d ubsets featuringClassifier}
1 N +owningAssociation
/lsComposite : Boolean gy
* 0.1
{subsets classifier -
subsets namespace,
subsets featuringClassifier) ~ {Sisels arbute {subsets owner)
ordered) navigableOwnedEnd
+ownedAttribute
" * 0.1
0.1 N
{subsets redefinedElement}
+ redefinedProperty
{subsets owner} (subsets ownedElement}
* +owningProperty
+defaultvalue ValueSpeci on
L]
+lopposite | 0.1
0.1
{subsets namespace, {subsets ownedMember, ordered} <<enumeration>>
subsets redefinitionContext) “+nestedClassifier Aggregationkind
* none
£ 0.1 shared
= composite
s
@
| . dOnly, odered!
0 {subsets redefinitionContext, {subsets feature, subsets {rea nly Od_?re H s
o subsets namespace, ownedMember, ordered} +/endType
2 subsets featuringClassifier} +ownedOperation
g +class
+ I
A N Type
5 0.1
|
&
I

Figure 7.12 - Classes diagram of the Kernel package

4374

4474



Operations [oma, 2007 31]

BehavioralFeature

[subsets namespace} {redefines ownedParameter}

| at DRETELION

+ owenedParameter Parameter
3

Operation -
isGuery | Boolean
N subsets context {subsets ownedrule}t
AsQrdered : Boslean i + precondtion
JizUnicue : Boolean T Constraint
Noweer © Irteger [.4] a.1
dupper : UnlimitedMatural  [0.1]
{subsets context} {subsets ownedRule}
+ postCortext + postcondtion
0.4 E
{subsets context} {subsets ownedrule}
+ bodyContext + bodyCondition
0.1 0.1
+ type Typa
B 0.1
redefines raisedExceptio
: ! R o
{subsets redefinedElement} :
+ redefinedOperation
@ \—
| B
3
&
<
)
&
! Figure 7.11 - Operations diagram of the Kernel package
&
I
45/74
Operations [omG, 2007h 30
N
aEnumerations
{readOnly, rion}  £readOnly, union} ParameterDirectionkind
+ featuringClassifier + festurs in R
A
o return
| NaitiplicityElement | TypedEfement Nantespace ‘ |
5 | Tl :
BehavioraiFeature Parameter
fsubsets direclion  ParameterDrecianrind
e meeMeminer, | detaut Sting
ordered}
01 + OwnedParameter
+ ownerFormalParam *
{subsets namespace}
Isubsets owner}
0.1 [+ owningParamster
+ raisedException ﬁ
{subsats ownedElement}
£ 0.1 |+ defaultvalue
€
E VaineSpec
| Figure 7.10 - Features diagram of the Kernel package
&
S
<
1=}
&
I
&
I

46/74



Clasgfiers [omg, 20071 29

— 21 — 2014-02-05 — SumImm —

Generalization
isSubstitutable . Boolean

{readOnly, union}

IsAbstract : Boolean

Name i fement Type
{sub=ets target} N
o + general
1
.

nContext
{suhsets source, {subsets
ek hd . suibsets owrer} ownedElement}
Telear: Bootean TreadOnly, union} s + generalization
+ [redefinecdElement 1 0

dreadOnly, subsats memnber)
+ fnheritedhember,
B

«
{subsets redefinedElement -
+ redefinedClassifier

{readOnly, union,  {subsets

subsets feature}  redefinitionContext
Property I + iatiribute g +clsssiﬂer}
¥ 0.1 0

+ Jgenerdl [*

Figure 7.9 - Classifiers diagram of the Kernel package

4774

Namespaces [omMa, 2007h 26]

— 21 — 2014-02-05 — Sumlmm

A

<<enumeration>>|
VisibilityKind
NamedElement
public
Name : String [O ] private
visibility : VisibilityKind 0..1 protected
JqualifiedName : String [0..1] package

sreadOnly, union}
+/member ) m

+importedMember Namespace N L

{readOnly, subsets member}

PackageableElement
{readonly, union, * | +/ownedMember
visibility : VisibilityKind subsets owner} {readOnly, union, subsets
+inamespace member, subsets ownedElement}
0.1 DirectedRelationship
{subsets source, subsets owner} {subsets target}
+ importing| impor
* t it
1
1 +elementimport| yisibiity : VisibilityKind | -
{subsets alias : String [0..1]
ownedElement}

DirectedRelationship

{subsets source,
subsets owner}

+importil * o {subsets target}
%l + ]
+packagelmport| visibility : VisibilityKind | 1 Package
{subsets o\

Figure 7.4 - Namespaces diagram of the Kernel package 4874



Root Diagram [om, 2007h 25]

{subsets owner}:  {subsets ownedElement}

Erament g, oymingblement__ + ownedSomment [ Gommont_|
SR ek
0.1
+ fovvner

freadonly, union}k

freadonly, union}k

+ annotatedElement

Lo

+ IrelatedElement

PR
. 1.2
freadCnly, union,
subsets relatedeElernent}
DirectedRelationskip + Aarget
v 1
+ fsource,
1.%

freadonly, union,
subsets relatedElement:

» [ body : String

|
£
A ) .
| Figure 7.3 - Root diagram of the Kernel package
3
]
<
>
&
I
&
|
Interesting: Dedaratiorn/Definition [omc, 2007h 424
UML::Classes::
Kernel::Classifier
BehavioredClassifier {subsets ownedBehaviork Behavior
+ classifierBehavior
IsReantrant © Boolean
0.1 0.1
+ fcontext
{subsets redefinitionContextt
0.1 +
+ ownecBehavior
0. +
{subsets ownedMember}
BehavioralFeature )
ADaract Boolan |SRecification + methad subsets redefinedElement}
01 ’ + redefinedBehavior
» 01 -
ownedParameter
{subsets ownedMember, .
ordered} T‘
OpaqueBehavior
£ body : String [7]
I language : String [*]
a
|
0
& FunctionBehavior
S}
<
1=}
&
|
I Figure 13.6 - Common Behavior
I

49/74

50/74



UML Architedure [omg, 2003 g

Meta-modelling has already
been used for UML 1.x.

For UML 2.0, the request
for proposals (RFP) asked
for a separation of concerns:
Infrastructure and
Superstructure.

One reason:
sharing with MOF (see
later) and, e.g., CWM.

Class, Object
__________ > Action, Filmstrip
Package, Snapshot

Infrastructure
(with semantics)

Superstructure || _________ > Class, State,
(abstract syntax) Transition,
Flow, ...

Superstructure

(concrete syntax) | | -=-----=---= > ClassBox, StateBox,

TransitionLine, ...

Diagram

__________ -> Node, Edge...
Interchange

Figure0-1 Overview of architecture

I
2
o
£> cwMm
@ y
|
0
S
I
Q R,
< X
2 j
« Profiles
I
&
|
UML Sugerstructure Packages [omg, 2007a 15
CommonBehaviors Classes -
|
/ \ |
/ N |
/ \ |
/ — \ |
UseCases / StateMachines Interactions \ |
/
/ > . A ‘
/ - | A !
-
/ - ~ | \ |
- = \
/  — 4
/ Activities Sl CompositeStructures AuxiliaryConstructs
N N
/
/
Actions
0 ——
Jg Deployments
@
|
38
g‘l Figure 7.5 - The top-level package structure of the UML 2.1.1 Superstructure
<
S
&
|
&
I

51/7a

52/7a



— 21 — 2014-02-05 — main

Meta-Modelling: Principle

— 21 - 2014-02-05 — Sprinciple —

53/74
Modelling vs. Meta-Modelli ng
Class Property Type
Meta- name : Str name : Str name : Str
Model K -
(M2) ﬁ | f | f
\ ‘ | ’ I
\ \ | | |
¢ S T T B B (1)
o7 :Class 4‘[_) :Property 4]'_) :Type {C}, {’U},
name = C name = v name = Z {C — v}),
Model D s 32
(M1) f Pl
I
Instance : instance-of //
(Mo) | /€
| /
2C i= {u —
v=0 {v—0}}

5474



Modelli ng vs. Meta-Modelli ng

— 21 - 2014-02-05 — Sprinciple —

Class Property Type
Meta- name : Str name : Str name : Str
Model K -
(M2) T\ | T | f
| X | X |
\ " | ,' |
| R S S S = ({2},
o7 :Class 4‘[_) :Property 4]'_) Type {C}, {U},
Model name = C name = v name = Z {C — ’U}),
o Z
(M) ———— =
Instance So, if we have a meta model My of UML, then the set /7
(M0) of UML models is the set of instances of M. // c
A UML model M can be represented as an object
diagram (or system state) wrt. the meta-model My. |= {u—
) — O}}
Other view: An object diagram wrt. meta-model My
can (alternatively) be rendered as the UML model M.

5474

WAl -Formednessas Constraints in the Meta-Model

— 21 - 2014-02-05 — Sprinciple —

The set of well-formed UML models can be defined as the set of object
diagrams satisfying all constraints of the meta-model.

For example,

“[2] Generalization hierarchies must be directed and acyclical. A classifier
cannot be both a transitively general and transitively specific classifier

of the same classifier.

not self . allParents() > includes(self)” [OMG, 2007b, 53]

The other way round:

Given a UML model M, unfold it into an object diagram O wrt. M.

If Oy is a valid object diagram of My (i.e. satisfies all invariants from Inv(My)),
then M is a well-formed UML model.

That is, if we have an object diagram validity checker for of the meta-modelling
language, then we have a well-formedness checker for UML models.

55/74



Reading the Sandad

Table of Contents

L S0P .ttt 1
2. Conformance ... .1
2.1 Language UNits . .......uuiitte i 2
2.2 ComplianCe LevelS .. ..... ..ot e 2
2.3 Meaning and Types of Compliance .....................oooi... 6
2.4 Compliance Level CONteNnts . ............uiuuiiiiiniiinnaannnn 8
3. Normative References . 10
4. Terms and Definitions ............. ... ... i 10
5. SYMbOIS .. 10
6. Additional Information ......... . ... ... 10
6.1 Changes to Adopted OMG Specifications
6.2 Architectural Alignment and MDA Support
6.3 On the Run-Time Semantics of UML . .
6.3.1 The Basic Premises
6.3.2 The
6.3.3 The Basic Causality Model
634 D inthe
6.4 The UML Metamodel . ...........ooiuiiiiiiiiiiiiaiaenan.s 13
6.4.1 Models and What They Model 13
| 6.4.2 Semantic Levels and Naming 14
2 6.5 How to Read this Specification .. ................................ 15
° 6.5.1 Specification format 15
o 6.5.2 Di 18
w
| 6.6 Acknowledgements ............... ... 19
0
=]
S [Partl-Structure ............ ... ... .. ... ... 21
A
=3
&
| 7. ClaSSEeS ...t 23
—
&
" | ume superstructure specification, v2.1.2
7.1 OVEIVIEW ..ottt
Table of Contents 7.2 ADSHACt SYNMAX .« .. otee et e
7.3 Class Descriptions . ...............oooiiiiiiiiiiii.,
731 (from D
732 (from Kernel)
733 ion (from Kernel)
1. Scope ............. 734 ionClass (from ionClasses)
735 (from Kernel)
2. Conformance ....... 736 lassifier (from
. 7.3.7 Class (from Kernel)
2.1 Language Units ... 7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)
22 Compl Level 7.3.9 Comment (from Kernel)
-2 Compliance Levels . 7.3.10 Constraint (from Kernel)
2.3 Meaning and Types 7.3.11 DataType (from Kernel)
7.312D (from D
2.4 Compliance Level Ci 7.3.13 D ip (from Kernel)
. 7.3.14 Element (from Kernel)
3. Normative References 7.3.15 (from Kernel)
. 7.3.16 (from Kernel)
4. Terms and Definitions 7.317 ionLiteral (from Kernel)
7.318 ion (from Kernel)
5. Symbols ........... 7.3.19 Feature (from Kernel)
7.3.20 Generalization (from Kernel, PowerTypes) .......
6. Additional Information 7.3.21 GeneralizationSet (from PowerTypes)
7.3.22 i (from Kernel)
6.1 Changes to Adopted 7.3.23 (from Kernel)
. . 7.3.24 Interface (from
6.2 Architectural Alignm 73.25 (from
6.3 On the Run-Time Se| 7.3.26 Li (from Kernel)
8 7.3.27 L (from Kernel)
6.3.1 The Basic Premig| 7.3.28 LiteralNull (from Kernel)
6.3.2 The Semantics Al 73201 (from Kermel)
6.3.3 The Basic Causal 7.3301 (from Kernel)
6.3.4 Semantics Descr 7331 LiteralUnii pA——
6.4 The UML Metamode| 7.3.32 Multi (from Kernel)
6.4.1 Models and What ;ggj p "';’“ Kel'"e" D
6.4.2 Semantic Levels -3 emel)
! 73350 (from Kernel)
;C 6.5 How to Read this Sp| 7.3.36 Operation (from Kernel,
s 6.5.1 Specification forn{ ool Package (from Ke’"e')mom P
;} 6.5.2 Diagram format .. 7339 (from Keme)
| 6.6 Acknowledgements 7.3.40 (from Kernel)
o 7.3.41 Parameter (from Kernel, Ja
S 7.3.42 ParameterDirectionKind (from Kernel) ...
Q - 7.3.43 PrimitiveType (from Kernel)
2 Part | - Structure .. 7.3.44 Property (from Kernel, Jasses)
= 7.3.45 ion (from D
I 7.3.46 (from Kernel)
| 7. Classes ............
I ii UML Superstructure Specification, v2.1.2
I

UML Superstructure Specification, v2.1.2

56/74

56,74



Reading the Sandad

52 UML Superstructure Specification, v2.1.2

7.347 (from Kernel) 132
71 Overvi 7.3.48 Slot (from Kernel) 132
. verview ........ 7.3.49 StructuralFeature (from Kernel) 133
Table of Contents 7.2 Abstract Syntax 7.350 (from D 134
o 7.3.51 Type (from Kernel) 135
7.3 Class Descriptions . 7.352T (from Kernel) 136
7.3.1 Abstraction (from ;ggi Usage (from D o ig;
7.3.2 AggregationKind 3.
7.3.3 Association (from| 7.355 (from Kernel) 139
1. Scope ............. 7.3.4 AssociationClass| T4 DIaQramS . ... ...ttt 140
7.3.5 BehavioralFeatur]
2. Conformance ... 7.36 BehavioredClass| 8. COMPONENTS . .. .. ..o\ oo ettt 143
. 7.3.7 Class (from Kern
2.1 Language Units 7.3.8 Classifier (from K 8.1 OVEIVIEW ...\ttt 143
22 Compii Level 7.3.9 Comment (from
2 ompliance Levels . 7.3.10 Constraint (from 8.2 ADBSHACESYNAX . . ..ottt ettt 144
2.3 Meaning and Types Zlgﬁ BataT);pe (lro(;n 8.3 Class Descriptions . ... .. .146
) 3.12 Dependency (fr
2.4 Compliance Level C 7.3.13 DirectedRelatior] 8.3.1 Component (from BasicC 146
X 7.3.14 Element (from K| 8.3.2 Connector (from BasicCor 154
3. Normative References 7.3.15 Elementimport ( 8.33C (from BasicCompo 7
. 7.3.16 Enumeration (fra 83.4C (from BasicC 187
4. Terms and Definitions 7.3.17 EnumerationLitg 8.4 DIAGIAMS . ...\ttt e 159
7.3.18 Expression (frol
5. Symbols 7.3.19 Feawre (ffomKq 9, COMPOSIte StIUCIUIES . ... ..o\ oeetete e eaeeeae, 161
7.3.20 Generalization {
6. Additional Information 7.3.21 GeneralizationS| 9.1 OVEIVIBW ..ttt 161
7.3.22 InstanceSpecifid
6.1 Changes to Adopted, 7.3.23 InstanceValue (f 9.2 Abstract syntax . .161
) ) 7.3.24 Interface (from | inti
6.2 Architectural Alignm 73,25 InterfaceRealiza 9.3 C'gﬁzsl EIGSC::FIIOHS <<<<< | cee ‘ -------------------------------- 11(22
6.3 On the Run-Time Se| 7.3.26 LiteralBoolean ( 3.1 Class (from lasse:
: 7.3.27 Literalinteger (fr 9.3.2 Classifier from C 167
6.3.1 The Basic Premis| 7.3.28 LiteralNull (from 9.33C (from C 168
6.3.2 The Semantics Al 7.3.29 LiteralSpecificat] 9.3.4 C Jse (from C 171
6.3.3 The Basic Causal 7.3.30 LiteralString (fro 9.35C (from 174
6.3.4 Semantics Descr 7.3.31 LiteralUnlimited 936 Cnnnecwr(vror?{ g 174
; 7.3.32 MultiplicityElemd 9.3.7 C rom Ports; 176
6.4 Tr;ilfxl‘dw"e‘a':;:e 33 938 (from Ports) 178
6.4.2 Somantc Levels 34 Namespace (fro ot i e
| 35 OpaqueExpresy 9.3.10 Parameter (from C 179
@ 65 How to Read this Sp| 36 Operation (from 9.3.11 Port (from Ports) 179
= o .37 Package (from 9.3.12 Property (from 183
° 6.5.1 Specification forn] ge
3 o Dhecilcation o 38 PackageableEld 93.13 lassifier (from In 186
5 - 9 b 39 Packagelmport 9.:3.14 Trigger (from 190
| 6.6 Acknowledgements 40 PackageMerge 9.3.15 191
41 Parameter (fro
0
8 '42 ParametorDired 9.4 DIagrams . ... ... 191
S | Part - Structure .. 7.343 primitiveType (| 10. Deployments
3 7.3.44 Property (from
= 7.3.45 Realization (fron
& 7.3.46 RedefinableEler
| 7. Classes ............ UML Superstructure Specification, v2.1.2
— )
bS] ii =
| J
UML Superstructure Specification, v2.1.2 3
Reading the Sandad Cont’d
Window
public
size: Area = (100, 100)
defaultSize: Rectangle
protected
visibility: Boolean = true
XWin: XWindow
public
display)
hide()
private
attachX(Win: XWindov)
Figure 7.29 - Class notation: attributes and operations grouped according to visibility
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)
A classifier is a dasification of insance, it desribes a seof instances that have features in common
Generalizations
- “Namespace(from Kernel)"on page 99
+ “RedefinableElement (froriternel)’ on page 130
+ “Type (fram Kernel)"on page 135
Description
A classfier is whoe Classifier is an abstract metaclass
A classifier is a type and can own geiizations,thereby makig it possible tadefine generalization relatiorigis to
othe clasifiers. A classfier can speify a ion hierarchy its i
A classifier is a relefinableelemet, meaing thatit is posible to reddine nesed dasifiers
Attributes
+ isAbstract: Boolean
If true, the Clasifier does noprovide acomplete and cappically An abstract
) classifier is intended toe used g.as the taget
0 relationships). Defaulivalue isfalse:
5
E Associations
& |+ ratribute: Property]
! Refers to albf the Properties thatre diect (ie..nat inherited or imported) attributesof the classifierSubses
. Classifier:featre andis a derved urion.
8
& |+ iteature : Feature [1]
) Spedfies each feaure defined in the céifier. membeFhis is a
= |+ general: Classifi]
5 Specifies the general Chifiersfor this Classfier. This is denved
|
&
I

56/74

57/7a



Reading the Sandad Cont'd

1

for his Classfier. These Generalizains navgate tomore gereral

the
Win ,
public ° o 1 ) N .
size: Area = (. Specifies all by from is
defaulize: R derived.
Visbity: Boold +  redefinedClassifier: Classifigf]
prvate the Clagiers by this Classifier
Win: XWind
pﬂrﬁayo Package Dependencies
nde) +  substitution : Ststitution
o are owed by tis Classfier. SubsetsElement::ownedElemeand
Figure 7.29 - Cl
Package PowerTypes
738 Clas{ . powerypExtent: GeneralizationSet
A dasiior D ionSet of wiich the lassifier is
classifier is
Constraints
Generalizatiof
N [ The byhe
+ "Nameg] general = self.parents()
. "Re“e" 2 i be diected ical. Aclassfier cannot be both a trasitively general and
« “Type (i transtively specific clasifier of thesameclassifier
Description not self.allParents()->includes(self)
[3] A classfier mayonly speciaize classifiers of avalid type.
A classfier is e, i | selt. o
A classifier is | (4] The derivedby i inheritabe membersof the perents.
othe clasifier " inherit(sel. parents()->collect(p | p.
A classifier is
Package PowerTypes
Attributes [5] The Clasifier thatmaps to aGenealizationSemay neither be apscific nor a generaClassfier in any ofthe
. isabstract] ¢ definedor that In other words.a pover type may notbe an irstance of
If true, itself nor may its instarces also be its sutasises.
‘ classif|
L relatior] Additional Operations
£ [1] ThequeryallFeature gives all ofthe features in the namespace of the clasifi general, through mechanissuchas
3 Associations inheritance, this will be a lager set than feate.
a + lattribute: Classifier::allFeatures(): Set(Feature);
| g‘"erﬂ allFeatures = member->select(oclisKindOf(Feature))
9 2SS (2] The qery parerts() gives al of theimmatiate ancestorsf ageneralized Classifier
& |+ [feature: Classifier::parents(): Set(Classifier);
‘i Spedfi parents = generalization.general
= |+ Jgenerai:
& Specif
|
—
‘\“ 52 UML Superstructure Specification, v2.1.2 53
Readingthe Sandad Cont’d
g [3] The query al of thedirect ancesrs ofa ifier
. cl arents(): Set(Classifier);
Spechi allParents = self.parents()->union(self. parents()->collect(p | p.allParents())
classii{ [4] The queryinheritatieMenbers()gives all of the membersf aclassifierthat maybe irherted inone o its descenda,
qery. g
wind | Jinheritead subjectto whatever visiliity restictions appy.
public
Ul ean Specif c Classifier)
defaultsize: R| derive pre: c.allParents()->includes(self)
rotected = b g
P\abiiy. Bood +  redefinedd] = I ofm)
private Refere| [5] The giery hasVisibilityOf() determineswhetheranamel element is visiblén the chssfier. By default all are visibleit is
XWin: XWind only called wien the agumert is something owned by a pardn
0 Package Depe|  Classifier:hasVisibilityOf(n: NamedElement) : Boolean;
mﬂe‘() «  substitution| pre: self.allParents()->collect(c | c.member)->includes(n)
DX Refere] if (self.inheritedMember->includes(n)) then
Name: hasVisibilityOf = (n.visibility <> #private)
Figure 7.29 - CI else
Package Powg] hasVisibilityOf = true
738 Clas 6] Thequery corformsTo() gives tue for a chssifier that definea typethat conformso anotherThis isused, for example,
. query g ) P
Desig in the specfication of sgnatrre conformace for oferatbns.
A classifier is Classifier::conformsTo(other: Classifier): Boolean;
s , Constraints conformsTo = (self=other) or (self.allParents()->includes(other))
eneralizatiof [1] The gmeral [7) The query inrit() defineshow toinherit a set of eimens Herethe operatia is defhed toinherit trem all It is intended
- oNames oo to be redefined in afected
. ) c
Redefir 15 Genersiza
« “Type (ff transtively inherit = inhs
. not seff.allF] [8] The query raySpecialzeType() detrmines whetherthis classier may have a generalizatin relatonsh to chssifiers 6
Description | classfir| (e specifiedype. By default a clssifienay speciaize clafers ofthe ame or amore gereal ype. It itenced o be
. trat fation congaints.
A classfier is selt parents|
A classifier is Classifier::maySpecialize Type(c : Classifier) : Boolean;
[4) Theinherity o -
. ySpecializeType = self.oclisKindOf(c.ocIType)
other clasifier <elfinherite
A classifier is Semantics
Package Powd
Attibutes | (5] The Clagi] A C@iTer isa dasificaion of insance weording totheir featres
. isAbstract|  Generazaf A Classifier may participate in generalizmtirelationships with other Classifiers. Avstance of specificClassifier is
Wftrue|  itselfnarm{ aiso a (indirect) insance of each of the gnerd Classifiers. Therefore, featurs spedfied for instacesof the geerd
| classiff classifier ae implicitly specifed for instances of the specifitassifier Any castraint applying to instances tife
w0 relatior| Additional Op| general classifier also applies to instances of the specific classifier
5
S | associations| 2 TM4UeVd The specific seantics of how generalizion aflects each concrete subtypeGitssfier varies. All instances of a
I inherience] ¢|asifier have vakes corresponding to the classifieattributes.
&;7 + lattribute: Classifier::a|
| Referd  aireatures| A Classifier defies a type. ype between isdefined © that aClasifier conforms
i to itself and to all of its ancestin the gneralizationhierarchy
3 i 1 e qery on y
& |+ [feature: | Classifier:p]
i Spedi parents = g
= |+ generai:
I Specif|
| 54 UML Superstructure Specification, v2.1.2
‘\“ 52 UML Superstructare SpeCiicain

|

57/7a

57/7a



thea

Package PowerTypes

[3] The query

Reading

The naion of power type was inspiréay the notion of powese. A power sé is ddined @& a ®t whoseinstacesare
Tl

Classifier: substs In esence, thena power type is a retst
Specii allParents 3§ & ifiewith a set of I a) have a ific CI b) represent a collection of subset|
Classfi{ (4] The qiery| for that class.
Win
subjectto
bl *  linherited/ 1TV - S emantic Variation Points
Size. Area = ( Specif Classifer:i
defaulize: R derive pre: c.allPaf The precise lifecycle semantics aggegation is a seantic variation point.
visibility: Bood *  redefinedd inheritableM Notation
prvate Refere| [5] The qiery
:\:ﬂ: XWind only called| classifieris an abstract modelementand so properly speaid has no notation. It is nextheless conveniertb define
Pieplayg | Package Depel  Classifier:H{ in one place a default ratton available foany concrete sutis of Classitér for which this notation is suitable. The
hide( . substivtion]  pre: seitai| default notation for a classifier is a solid-outline rectangintaining the classifiname, and optiaally with
prate ol Referel if (selt| compartments separated by horizontal lines of ifier. The pedfic type of
auachXevin Name: h shown in the name. of Clagsér have tiir own disinct notations.
else
FloueT29-Cl  ckage Powd ol The name of an abstract Classifier is shown in italics
738 Clas{ . powenymd [6] Thequeryd An atribute can be shown as a text string. The format ofstifsg is specified in the Notation sub clause of *Proper
Desig inthespec| (from Kernel, AssociationClasses)’ on pa2s
A classifier is Classifier:d
Constraints conformsTc Presentation Options
Generalizatiol
[1] The gmera| [7] The query| Any compartment may be spressed. A separator line is drawn for a suppressed compartment. If a jpanment is
+ “Nameg] general = s to be rede| suppressedho inference can bérawn about the presenoe absence of eleants in it. Compartment nam can be used
+ REASfl 1 Gonersiza  CRSSiers| 10 remove ambiguiyf necessary
+ Type(  wranstively inherit =inhl Ay abstract Classifier can be showsing the keyword {abstréicafter or below the name of the Classifier
not self.alip] [8] The query o o ) i
Description the specifil Thetype, visitility, default, multiplicity property string may bsugpressed from beig displayed, even if there avalues
[3] A classfier
redefinedb| in the model.
A classfier is selt parents
A classifier is | (4] Theinherit Classifier:n Tpe irividual properties of an attribute can be shaw columns rather thaas a continuas string.
othe clasifier seltmhonte maySpecial ‘
A classifier is Semantics | SW!e Guidelines
Package Pow + Attribute nares typically begh with a lowercase letteMulti-word nanes are often forred by concatenating the word
Attributes | (5] The Clasif] * @2=er S and usindowercas for all letters excegfor upcaing the firg letter ofeach word buthe first.
. isAbstract Generaiza A Classifierm| ~ + Centerthe name ofhe clasifier in boldface.
iftrug|  itselfnormi also an (indire + Center leyword (including stereotpe names) irplain face vithin guilemets above tclassifiername.
| classif aditional classifier ae i « For those langages thatii i lowercase nanes (ie, begh them
3 relatior] Additional Opf - general classi with anuppercae character).
5
3 Associations [ I‘r;:a?ll;?: The specific s| - Left justify attributes ad operations in plain face.
o classifier have] « Begin with letter
2 . /a“"g::zrs ;'Iis:a‘::'e: A Classifer d + Show full attributesind operationaihen needed arsppress hemin other contexts of references.
Classi to itself and tq
] [2) The qery
& |+ /feawre: Classifier:p|
i Spedfi parents = gy
= |+ Jgenerai:
Q Speciff UML Superstructure Specification, v2.1.2 55
| 54
— L ' d
‘\“ 52 UML Superstructiie Speciicauon, V2 1.2 5
. Examples
Reading the e
[3] The query[ The naion of g
. Classifier::3 subets In esef ClassA
Speci allparents § a Classifiewitf [ name: Sting
for that cl shape: Rectangle
n classfiq (4] The gueryif for that class. | | 352 FECEIEE
. subjectto ) ||/ area: Integer {readonly}
publc /inheritedy Classifier-il Semantic Varil | neight meger=5
e Area = Specif et I I
defaulSize: R derive pre: c.allPaf The precise lif
protected )
visibility: Bood *  redefinedd inheritableM Notation
private Refere| [5] The qery
:‘;:“: XWind only called| classifieris an| ClassB
P ieplay0 Package Depe| Classifier:H in one place a] | id redefines name)
hide() «  substitution| pre: selfal| default notatio] | shape: Square
eight = 7
" anaohxin ze'Efe if (self C”'“Fa"me"‘ls) Jwidth
ame
Figure 7.29 - C| else | e name of
Package Powg hal Figure 7.30 - Examples of attributes
7.38 Clas 6] The A i
. ) e o attribute ¢4 o - ributesn Figure7.30are explained below.
Desig in thespec| (from Kernel, " € 0
A clasifier is Classifier-d « ClassA:naneis an attribte with type Sring.
Constraints conformsTo] Presentation + ClassA:bapeis an attrbute with type Rectange.
Generalizatiof .
[1] The geera| [7) The query| Any compartmy ClassA: SIZE\S.E pul.‘n.c atml?ue of type Ineger wih mutiplicity 0..1.
- oNames oo tobe rede| suppressedio + ClassA:area ia derivedattibute with typelnteger. It is marked asead-anly.
+ REAef 1 Gonergiza  ClSSiers| 10 remove am + ClassAcheight is anatribute of type Integer with a defaultritial value of 5.
< Type (] yanstively herit =i race o ClaSSAwidih is anattributeof ype Integer:
o not seltallF| [8] The query + ClassBid is anatribute that redfines ClassAnane.
Deseription | o1 a ciassfier| e specifil Thetype, visiil . class: bapeis an atibute that tefines Cl pet ge.
A classifier is coltparents|  "e€finedb] i the model + ClassBheiglt is anatributethat redefine<ClassA: feigft. It hasa defait of 7 for ClassBinstanceshat overrideshe
Aclassiferis | 4] Theinner| oo | The intividual ClassA defalt of 5.
other clasifier selfinherie maySpecial + ClassBwidth isa derivecatribute ttat redefines ClassAsidth, which is nd derived.
- : Style Guidelir|
A classifier is Semantics Y An attribute may also be shown using agation notation, with no adorments at the tafithe arrow ashown in Figure
Package Powe « Attributd
Atributes | (5] The clasif| A 92=er 1S and usi
+ isAbstract: Generalzat] A Classifier m| + Centerth
If true, itselfnor m{ also a (indires - Center size
| classif - classifier ae il . Forthog | Window Area
w0 relatiorl Additional Op| general classi with an 1
5
£ [1] Thequeryd ; . Leftjust
S | associations Thequena The specifc s eft jus
I classifier have] - Beginaf Figure 7.31 - Association-like notation for attribute
= + lattribute: Classifier::a|
a + Show f
) Refer]  aiFeawres| A Classifier d ow T
Classi to itself and tq
v asSl [2) The qery
& | fea‘s”'edif Classifier:p|
=3 pedfis _
< parents = g 56 UML Superstructure Specification, v2.1.2
= |+ generai: L |
I Specif| UML Superstructaie Speciicaton, V2 1.2 5]
! 54 5 T 3
‘\“ 52 UML Superstructdre SpeCiicaton, V2 L2 5]

57/7a

57/7a



— 21 — 2014-02-05 — Sreading —

— 21 - 2014-02-05 — main —

Reading

Win

public
size: Area = (
defautSize: R

visibility: Bool
private
XWin: XWind

public
display()
hide()

private
altachX(:Win]

Figure 7.29 - CI|
7.38 Clas:
A classifier is

Generalizatiol
- “Namesg]
+ “Redefi
+ “Type

Description

A clasdfier is

A classifier is
othe clasifier:
A classifier is

Attributes

+ isAbstract:
If true,
classif
relatior

Associations

«  [lattribute:
Refers
Classif

« [feature:
Spedi
« Jgeneral :
Specif|

52

Speci
classfi
+ /inheritedy
Specif
derive

+ redefinedq
Refere|

Package Depe]
«  substitution|
Refere]
Namet

Package Powg

+ powertyes]
Desigi

Constraints
[1] The gmeral
general = s
[2] Generdizat
transtively
not self.allP|
[3] A clasifier,
self. parentsf
[4] Theinherit
self.inherites

Package Powd]
[5] The Clasif
Generaizal
itself nor m{

Additional Op|
[1] Thequeryg
inheritance
Classifier::al
allFeatures
[2] The qeery
Classifier::p|
parents = gy

[3] The query
Classifier::
allParents

[4] The qeryi
subjectto
Classifier::i
pre: c.allPa)
inheritableM

[5] The query
only calle
Classifier::H
pre: self.all

if (self.
hi

else
ha

[6] Thequery
in the spe
Classifier::d]
conformsTc

[7] The query
to be redef
Classifier::i
inherit = inh|

[8] The query|
the specifi
redefinedb)
Classifier::n|
maySpeciall

Semantics

A clasifier is

A Classifier m|

also an (indire

classifier ae ir|
general classi

The specific s

classifier have]

A Classifier d

to itself and tq

Package PowerTypes
Examples For example, a Bank AccountyPe clasifier could have a poertype assoation with a GeneralizationSet. This
Package Powd GeneralizationSet could then associate with Genealizations whee the tass (i.e., geneteClassifier) Bank Account
has two specific subciaes(i.e., Classfiers): Cheking Account and Savings Account. Checkigeountand Savings
The naion of { Account, then, are instances of the power type: In other words, C and Savings
subsets In essf Class| Account areboth: instances bBank Account Jpe, as well as subdaes of Bank Account. (For moreptanationand
a Classifiewit] [name: sving | examples st Examplesn the GeeraliztionSet sb claise beow.)
for that class. | | shape: Rectan
Jarea: ineger | 7-3:9  Comment (from Kernel)
Semantic Vari] | height: Ineger
The precise li widih: Integer | A comment is a textual annotation thatnche attached to a set of elements.
Notation Generalizations
+ “Element(from Keme))" on page64.
Classifieris an| Class| ( " onpag
in one place a  [id (redefines na
default notatio| | shape: Square | DESCriPtiON
compartments ;‘E'%"f 7 A comment gives the ability tattach various remarks to elents. Acomnent carfes o semantic force,but may cotain
p| L s usail to a modeler
The name of A comment can be owned by any element
Figure 7.30 - E
o oome €4 The attibutes{ Atibutes
' . ClassA{ + multiplicitybody: String [0..1]
Presentation . ClassA Specifies a gring thatis thecomment
Any compartn] . g:ass: Associations
suppressedjo * ClassAT . annoatedElenent: Elemen(?]
to remove am + ClassA the
Anabstractcl|  * ClassA v
+ ClassB:i Constraints
Thetype, visib + ClassB:{ No additional constraints
in the model
+ ClassB:
The irdividual ClassA{ Semantics
X « ClassBY A comment adds no semantics to the annotated ehésy butmay represent inforation useful to the reader of the
Style Guidelin model
An attribute m:
« Attribute
and usi Notation
+ Centerty A Comnent is shown as a rectaeghith the upper right coer bat (this isalso known asa “note ymbol’). The
« Center rectange contains ta body of theComment. The connection teach anatated element ishown by a separate dashed|
- Forthos | Window | fine.
with an
. Leftjust Presentation Options
+ Beginal Figure7.31-A{ Thedasled line the note pp if it is clear frothe context, or not
. Showfd important in this diagram.
UML Superstructure Specification, v2.1.2 57
56
UML Superstructure Speciicaion, V212 5

54

UML Superstructuie SpeCiicaton, vZ 1.2

Meta Objed Facility (MOF)

57/7a

5874



Open Questions...

— 21 — 2014-02-05 — Smof —

Now you've been “tricked” again. Twice.
We didn't tell what the modelling language for meta-modelling is.

We didn't tell what the is-instance-of relation of this language is.

Idea: have a minimal object-oriented core comprising the notions of
class, association, inheritance, etc. with “self-explaining” semantics.

This is Meta Object Facility (MOF),
which (more or less) coincides with UML Infrastructure [OMG, 2007a].
So: things on meta level

MO are object diagrams/system states

M1 are words of the language UML

M2 are words of the language MOF

M3 are words of the language ...

59/74

MOF Semantics

— 21 — 2014-02-05 — Smof —

One approach:
Treat it with our signature-based theory
This is (in effect) the right direction, but may require new (or extended)

signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

Other approach:

Define a generic, graph based "“is-instance-of” relation.

Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a semantics.

Most interesting: also do generic definition of behaviour within a closed
modelling setting, but this is clearly still research, e.g.

[Buschermdhle and Oelerink, 2008]
60,74



Meta-Modelli ng: (Anticipated) Benefits

— 21 — 2014-02-05 — main

6174

Benefits: Overview

o We'll (superficially) look at three aspects:
o Benefits for Modelling Tools.
o Benefits for Language Design.

o Benefits for Code Generation and MDA.

efits —

— 21 — 2014-02-05 — Sben

62/74



Benefits for Modelli ng Todls

21 — 2014-02-05 — Sbenefits —

The meta-model My of UML immediately provides a data-structure
representation for the abstract syntax (~ for our signatures).

If we have code generation for UML models, e.g. into Java,
then we can immediately represent UML models in memory for Java.

(Because each MOF model is in particular a UML model.)

There exist tools and libraries called MOF-repositories, which can
generically represent instances of MOF instances (in particular UML
models).

And which can often generate specific code to manipulate instances of
MOF instances in terms of the MOF instance.

Benefits for Modelling Todls Cont’d

— 21 - 2014-02-05 — Sbenefits —

And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

— XML Metadata Interchange (XMI)

Note: A priori, there is no graphical information in XMI (it is only
abstract syntax like our signatures) — OMG Diagram Interchange.

Note: There are slight ambiguities in the XMI standard.

And different tools by different vendors often seem to lie at opposite ends on
the scale of interpretation. Which is surely a coincidence.

In some cases, it's possible to fix things with, e.g., XSLT scripts, but full
vendor independence is today not given.

Plus XMI compatibility doesn’t necessarily refer to Diagram Interchange.

To re-iterate: this is generic for all MOF-based modelling languages
such as UML, CWM, etc.
And also for Domain Specific Languages which don't even exit yet.

63/74

64/74



Benefits; Overview

We'll (superficially) look at three aspects:
Benefits for Modelling Tools. [
Benefits for Language Design.
Benefits for Code Generation and MDA.

— 21 — 2014-02-05 — Sbenefits —

Benefits for Language Design

Recall: we said that code-generators are possible “readers” of stereotypes.

For example, (heavily simplifying) we could
introduce the stereotypes Button, Toolbar, ...

for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

Et voila: we can model Gtk-GUIs and generate code for them.
Another view:
UML with these stereotypes is a new modelling language: Gtk-UML.
Which lives on the same meta-level as UML (M2).
It's a Domain Specific Modelling Language (DSL).

— 21 — 2014-02-05 — Sbenefits —

One mechanism to define DSLs (based on UML, and “within” UML): Profiles.

65/74

66,74



Benefits for Languag Design Cont’d

21 — 2014-02-05 — Sbenefits —

For each DSL defined by a Profile, we immediately have
in memory representations,
modelling tools,
file representations.

Note: here, the semantics of the stereotypes (and thus the language of
Gtk-UML) lies in the code-generator.

That's the first “reader” that understands these special stereotypes.
(And that's what's meant in the standard when they're talking about giving
stereotypes semantics).

One can also impose additional well-formedness rules, for instance that
certain components shall all implement a certain interface (and thus have
certain methods available). (Cf. [Stahl and Vdlter, 2005].)

67/74

Benefits for Languag Design Cont’d

— 21 - 2014-02-05 — Sbenefits —

One step further:
Nobody hinders us to obtain a model of UML (written in MOF),
throw out parts unnecessary for our purposes,

add (= integrate into the existing hierarchy) more adequat new
constructs, for instance, contracts or something more close to
hardware as interrupt or sensor or driver,

and maybe also stereotypes.

— a new language standing next to UML, CWM, etc.

Drawback: the resulting language is not necessarily UML any more,
so we can’t use proven UML modelling tools.

But we can use all tools for MOF (or MOF-like things).
For instance, Eclipse EMF/GMF /GEF.

68/74



Benefits; Overview

— 21 — 2014-02-05 — Sbenefits —

We'll (superficially) look at three aspects:
Benefits for Modelling Tools. [
Benefits for Language Design. [
Benefits for Code Generation and MDA.

69/74

Benefits for Model (to Model) Transformation

— 21 — 2014-02-05 — Sbenefits —

There are manifold applications for model-to-model transformations:

For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of
MOF.
The graph to be rewritten is the UML model

Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the
inheritance relation and remove the stereotype.

Similarly, one could have a GUI-UML model transformed into a
Gtk-UML model, or a Qt-UML model.

The former a PIM (Platform Independent Model), the latter a PSM
(Platform Specific Model) — cf. MDA.

70/7a



Sedal Case: Code Generation

Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

Note: Code generation needn’t be as expensive as buying a modelling
tool with full fledged code generation.

If we have the UML model (or the DSL model) given as an XML file,
code generation can be as simple as an XSLT script.

“Can be" in the sense of
“There may be situation where a graphical and abstract
representation of something is desired which has a clear and
direct mapping to some textual representation.”

I
3 In general, code generation can (in colloquial terms) become arbitrarily
5 difficult.
<
=
&
I
&
[ 71/'74
Example: Model and XMl
{pt100)) gather (65C02)) update | (INET2270))
SensorA 1 ControllerA 1 UsbA
<?xml version = ’1.0’ encoding = ’UTF-8° 7>
<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML’ timestamp = ’Mon Feb 02 18:23:12 CET 2009’>
<XMI.content>
<UML:Model xmi.id = ’...’°>
<UML:Namespace.ownedElement>
<UML:Class xmi.id = ’...’ name = ’SensorA’>
<UML:ModelElement.stereotype>
<UML:Stereotype name = ’pt100°/>
</UML:ModelElement .stereotype>
</UML:Class>
<UML:Class xmi.id = ’...’ name = ’ControllerA’>
<UML:ModelElement.stereotype>
<UML:Stereotype name = ’65C02’/>
</UML:ModelElement.stereotype>
</UML:Class>
<UML:Class xmi.id = ’...’ name = ’UsbA’>
<UML:ModelElement.stereotype>
b <UML:Stereotype name = ’NET2270°/>
E </UML:ModelElement.stereotype>
2 </UML:Class>
? <UML:Association xmi.id = ’...’ name = ’in’ >...</UML:Association>
5 <UML:Association xmi.id = ’...’ name = ’out’ >...</UML:Association>
§ </UML:Namespace . ownedElement>
= </UML:Model>
' </XMI.content>
E‘ </XMI>

T12/74



— 21 — 2014-02-05 — main —

— 21 — 2014-02-05 — main —

References

7374

References

[Buscherméhle and Oelerink, 2008] Buschermdhle, R. and Oelerink, J. (2008). Rich meta object

facility. In Proc. 1st IEEE Int'l workshop UML and Formal Methods.

[Fischer and Wehrheim, 2000] Fischer, C. and Wehrheim, H. (2000). Behavioural subtyping relations
for object-oriented formalisms. In Rus, T., editor, AMAST, number 1816 in Lecture Notes in
Computer Science. Springer-Verlag.

[OMG, 2003] OMG (2003). Uml 2.0 proposal of the 2U group, version 0.2,
http://www.2uworks.org/uml2submission.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical
Report formal /07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical
Report formal/07-11-02.

[Stahl and Vdlter, 2005] Stahl, T. and Vélter, M. (2005). Modellgetriebene Softwareentwicklung.
dpunkt.verlag, Heidelberg.

T4/74



