Available online at www.sciencedirect.com

Science of
SCIENCE DIRECT®
@ Computer
A Programming
ELSEVIER Science of Computer Programming 55 (2005) 81-115

www.elsever.com/locate/scico

A discrete-time UML semantics for concurrency and
communication in safety-critical applications

WernerDamn#*, Bemhard Josk& Amir Pnuel?,
Angelika Votintseva

80FFIS, Oldenburg, Germany
bThe Weizmann Institute of Science, Rehovot, Israel

Received 31 August 2003; received in revised form 15 April 2004; accepted 30 May 2004

Abstract

We defire a subsekrtUML of UML which is rich enough to xpress such modlng entities
of UML, used in real-time applications, as active objects, dynamic object creation and destruction,
dynamically changing communication topologiesmbinations of synchronous and asynchronous
communication, and shared memory usage through object attributes. We define a formal interleaving
semantics for this kernel language by associating with each migdet krtUML a synbdlic
transition systenSTIM). We kriefly outline how to compile mode of industrial systems making
use of generalisation hierarchies, weak and strong aggregation, and hierarchical state-machines into
krtUML. The main aim oftie paper is to provide an executable semantic&kifit/ML suitable for
the formal verification of temporal model properties with existing model-checking tools.
© 2004 Published by Elsevier B.V.

U This research was partially supported by the Infatiora Society DG of the European Commission within
the project IST-2001-33522 OMEGA.
* Corresponding author.
E-mail addressesdamm@offis.de (W. Damm), josko@offis.de (B. Josko), amir@wisdom.weizmann.ac.il
(A. Pnueli), vdintseva@offis.de (A. \Votintseva).

0167-6423/$ - see front matter © 2004 Published by Elsevier B.V.
doi:10.1016/j.scico.2004.05.012

http://www.elsevier.com/locate/scico

82 W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115

1. Introduction

The establishment of &al-time profile for UML P9, the proposal for a UML action
language 24], and the installation of a special interest group shared between INCOSE
and OMG to develop a profile for UML addressing specification of real-time systems at
the g/stem level all reflect the pressure put on standardisation bodies to give a rigorous
foundation to the increasing level of usage of UML to develop hard real-time systems.

Its increased use also for safety-critical applications mandates the need to complement
these modelling oriented activities with an agreement on the formal semantics of the
modelling constructs employed, as a preraggiifor rigorous formal analysis methods,
suchas formal verification of compliance toqeirements. This need has been perceived
by the research community, leading to a substantial body of formalisation of various
subsets of UML. The precise UML group has in a series of paped] been proposing a
meta-modelling-based approach, which hegvdéacks the capability to address dynamics
aspects at the level of detail required flarmal verification. Approaches based on
translation into existing formalisms, e.g. thecalculus R7,28], ASMs [23], CASL [32],
Object-Z [L7], fall short of covering the rich range of behavioural modelling constructs
covered in this paper. Other approaches ® thML sematics are discussed in detail in
Section 50f this paper. Closest to our work addsing the intricaeis of understanding
active objects are3[1,32).

Our approach takes into account functional aspects of real-time systems, considering a
discrete-time model allowing us to define different levels of step granularity. In this paper,
we focus our investigation on the semantafdation of such critical features of real-time
applications as concurrency and two tgméinter-object communication — synchronous
and asynchronous — including the specification of the time points for interferences. The
proposed semantics, being executable and abstract enough to cover different choices for
the final implementatio anddeployment (such as different execution times, scheduling
strat@y), is intended for the formal verification at earlier stages of the development
process, such as preliminary and detailegign. Such “early” verification would allow
us to find errors of possible further implementations already at the model level.

The approach described benefits from numerous discussions with industrial users
employing UML tools for the development of real-time systems, e.g. the partners of the
IST projects Omedaand AlT-Woodde&. The IST project Omega has developed an agreed
specificationrtUML of those modelling concepts from UML required to support industrial
users in their application developmerd],[subsuming such concepts as inheritance,
polymorphism, weak and strong aggregatioreraichical state-achines, rich action
language, active, passive, and reactive oBjesit., taking into account detailed issues
such as navigability, visibility, changeability, and ordering of association end-points, and
allowing unbounded nitiplicity of these. This project alsprovides a real-time extension
of the proposed semantickd).

1 IST-2001-33522http://www-omega.imag.fr/index.php
2 IST-1999-10069http://wooddes.intranet.gr

http://www-omega.imag.fr/index.php
http://wooddes.intranet.gr

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 83

We propose a two-stage approach to give a formal semantitg/kdL :

A pre-compilaion step translatesUML models into a sufficiently compact sublanguage
krtUML, eiminating the need at the kernel level to address the various facets of
associations, generalisation, and hienégral state-machines. We then give a formal
semantics okrtUML, using the formalism of symbolic transition systen®][In this
semantic framework, the state space of the transition system is given by valuations of a
set of typed system variables, and initial states and the transition relation are defined using
firstorder predicate logic. We show how to capture a complete snapshot of the dynamic
execution state of a UML model, using unbounded arrays of object configurations to
maintain the current status of all objects, and a pending request table modelling the status of
all submitted, but not yet served operation calls. Object configurations include information
on the valuation of the object’s attributes, thtate onfiguration of its state-machine, as

well as the pending events collected in an event queue.

In this paper, we focus on the definition and formal semantickritfML, andonly
sketch some ideas of the pre-compilation phdmeause most of the translation steps use
standard compiler techniques. We refer the reade8}édr a full description of these steps,
as well as for the full specification ofUML.

The paper is organised as followSection 2outlines the aims for the semantics
proposed in the paper and gives a fotrdafinition of the constituents of &rtUML
model.Section 3 the heart of this paper, develops th& $based semantics, motivating
and introducing in consecutive sections the system variables spanning the state space of the
transition systems, and the transition relation its&#fction 4highlights aspects of the pre-
compilation step, addressing class reasi and the hierarchical state-machi8ection 5
discusses related work.

2. The krtUML language

Our kernel language caters for the difference between active and passive objects. We
generalise this concept8ection 4y proposing to group one active object and a collection
of passive server objects into what we @mponentsAnother class dichotomy, orthog-
onal to the “active—passive” hierarchy, considered in the paper is the difference between
reactive and simple classes. All objects assumed to have state-machines; that is, their
behaviour can be made dependent on the current state of the system. Some state-machines
can specify event receptions, which automalyamplies a reactive behaviour of the cor-
responding class, i.e. its objects can reactl@external stimuli. We do not require any
restrictions on the combinatis between active/passive and rasgsimple class notions.
Pre-compilation will have flattened theerarchical state-machines dbUML into the
flat state-machines considered in our kernel language. It will also have split compound
transition annotations; hencéthin the kernel language, onlyamic actions and triggering
guards (signal/operation names possibly with conditions) are allowed as labels of
transitions.

2.1. Basic notions

We first explain some UML related notions considered in the paper, as well as imposed
problems, when resolving ambiguity of sertianvariation points deliberately left in

84 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115

the UML specifications. We use the notioof active class/object, thread (of control),
concurrency, multiplicity, state-machine, association, composition, generalisation, multiple
inheritance, dynamic classification, stimulggnal, event, sender and receiver, method,
parameter as they are defined in the UML 2.0 propdall [

In developingkrtUML, we strivedto maintain in purified form those ingredients of UML
relding to the interaction of active objects.

Active classesire intended to be used to model threads — sequential executions —
where all threads can run concurrently. Active classes provide means to sequentialise (in-
dependent) executions. Intuitively, ative object— an instace of an agte class —
is like an event-driven task, which proces#s incoming requestsiia first-n—first-out
fashon. It comes equipped with a dispatcher, which picks the top-level event for the event
queue, and dispatches it for processing toegitts own state-machine, or to one of the pas-
sive objects associated with this active object, inducing a so-called run-to-completion step.

Passive classeare those containing no scheduling (or sequentialisation) mechanisms.
Their instances —passive objects— use such nechanisms from the assigned active
objects. In other words, passive objects perform their servimesbehalf of the
corresponding active ones.

Components.n this paper, we use the notion of a component which is a restriction of
the more general concept from the standdhL. We will call a set of objects executing

their services sequentially a component.slimeans that each component contains exactly
one active object and possibly several passines associated with the active one.
Within a component, all passive objects delegate event-handling to the one active object;
pre-compilation will capture this delegation relation by allowing reference thrauglac

to the active object responsible for event-handling of passive objects. We require static
assignment of passive objects to active ones, such that an object can belong only to one
componentin its life-cycle.

A Run-To-Completion (RTC) stép a sejuence of fired transitions in an object state-
machine corresponding to the processing of a single event or operation call. An RTC step
cannot be interrupted. Only RTC steps from different components can run concurrently (in
our semantics, meaning all possible interleavings).

Semantic challenge. A problem for the semantic definition for concurrent executions,
solved in the paper:

e 0n one hand, to take into account the different execution speeds within different
components (executing concurrently and asynchronously),

e on the other hand, to find an abstraction from the actual execution durations (which can
be different on different platforms),

e providing a semantics allowing telling about batate and run (or temporal) properties
of complex systems.

Signalsare specifications of asynchronous stimahose reception is handled by state-
machines. There can be several signal instances (called signal events) in a system at one
point of time. Signals can be generalised, which means that if a state-machine can handle
a reception of a generalised signal event, then it can also handle a more specialised event,
butnot vice versa.

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 85

Operaions.We support so-calledriggered operationsi.e. operation calls, whose return
value depends on the current state of the system, as distinguished from what we call
primitive operationsthe body of which is defined by a program in the supported action
language. Since primitive operations only involve services of an object within the same
component, pre-compilation can eliminate all calls to primitive operations by inlining
their methods into state-machine transitiqassuming that the call-depth of primitive
operations is bounded). In contra&tr triggered operations¢éhwillingness of the object to
accept a particular operation call in a givertstia expressed withithe state-machine, by
labelling transitions emerging from the state with the operation name as a triggering guard,
in the same way as the willingness of the object to react to a given signal event is specified
by using this signal as a triggering guard. Reflecting the wish to make the return value
of triggered operations depéent on the object state, its “body” is “spread out” over the
state-machine itself: the accemce of a call will induce a run-to-completion step; hence
the transition labels passed during this ruretonpletion step determine the response for
this particular invocation of the triggered operation.

A general characteristic of reactive classe$JML is that they contain state-machines
specifying reactions on the stimuli by changing their states. This reaction can also
depend on the current state in the state-machine. In this article we propose a semantics,
where executions are defined with respect &msitions of state-machines, where object
creation and destruction are also explaineemnis of (implicit) state-machine transitions.
Therefore, inkrtUML all classes have state-machines. We will define a slightly different
notion of a reactive class tapture the proper reactive behaviour as follows.

A readive classin krtUML is a class whose state-machine specifies event receptions
or opaation acceptance also after the initialisation phase, i.e. when the state-machine
execution triggered by the creation operation is completed. Otherwise it is cadietpte
class

We consider two types of the intra- and inter-object communication:

e Asynchronous — via signal event emission. The caller does not need any reply;
therefore it proceeds further after the emission of a signal event. All emitted events
need to be stored in additional repositories to be accepted later by callees.

e Synchronous — via operation calls. kntUML we consider only triggered operations,
which trigger state-machine transitions. A caller sends a request that it wants to
synchronise with its calleeppssibly to get a result of an operation) and becomes
swspended. The callee may accept the call, if it enters the corresponding state.

Semantic challenge. A problem for the semantic definition of models with the
combination of different kinds of communications, solved in the paper:

e on one hand, to distinguish semantically synchronous and asynchronous communica-
tions by treating them differently,

e on the other hand, to give a uniform state-machine-based semantics (also taking into
account communication structure from class diagrams),

e providing a suitable granularity for the interference of object executions to capture
properties of both synchronous and asynchronous communication schemes in complex
systems.

86 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115

While the £mantical model is rich enough to support communication through shared
attributes, operation calls, and signals, we restrict our communication model so that all
inter-component communications are purely asynchronous, i.e. via signal events.

In the following (sub)sections we will give formal definitions of the above-mentioned
notions withrespect tokrtUML. The notion of components will be also considered in
Section 4.2t a higher level of modelling formalism, calletUML.

2.2. krtUML structure

We now elaborate on the formal definition ¢ftUML models. Note that the different
ingredients are mutually gendent; hence we collect them in one formal definition. Es-
sentially a kernel modeontains a set of classes and signals; signals can be ordered by the
generalisation relation, with each class comitay a state-machine, typed attributes, and
operations implemented via the class state-machine. Some classes are distinguished as be-
ing active. We only consider here flat state-machines extended with object initialisation and
object destruction phases. A designated root class serves later for the system initialisation.

Definition 1 (krtUML Mode). A krtUML model
M = (Tv Fa Slg <, Ca CI'OOta A)
consists of the following elements:

e T D {void, B, N}: A set of basic typescomprising at least booleans and natural
numbers.

e F: A set of typedpredefined primitive functions

e Sig A finite set ofsignals Every instane of a signal is calledignal eventor eventfor
brevity.

e < C Sigx Sig A generdisation relationon signals, i.e. the transitive closuke" is
irreflexive, wheresv; < evo denotes thatv; is a generalisation afv1. In the fdlowing,
we use< to denote the reflexive transitive closure af

e C: A finite, non-empty set oflassesA class

¢ = (c.isActive c.attr, c.ops c.sm)

consists of:

— c.isActive A predcate. Clasge € C is calledactiveiff c.isActive= true.

— c.attr: A finite set of typedattributes which maynot be of typevoid.

— c.ops A finite set of typedriggeredoperations

— c.sm A c-state-machines explained inW) below in terms of c-actions overc-
expressions.

Each class contains two specifioplicit attributes(introduced by the pre-processing):

self e c.attr keeping the reference to the object itself, amg acfrom c.attr specifying

the event-handling object associated with class

Croot € C: The chss of theoot object(serving to specify system initialisation as defined

in Definition 7).

e A C C: Asubset of active classes calladtorsand used to denote external objects (part
of the eavironment).

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 87

krtUML allows for some set of base typ@s as well & a setF of functions operating
on them, including, in particular, booleans and natural numbers together with all logical
and arithmetical operators. Signals as well as operations may have parameters of well-
defined types. Note that we support explicitlyngealisation hierarchies on signals (while
generalisation hierarchies on objects @liminated during pre-compilation).

We now eldorate on the elements kit UML model defined so far, and start by defining
the supported types. Here we clearly distinguisétween base types and reference types
(visible on the UML level), as well as a third category of types catering for implicit
attributes representing association end-points, which typically hold a number of references
depending on their multiplicity. By choosing type these uniformly with functions from
the naturals to classes, water for unbounded witiplicity. Operationally, we hence view
suweh implicit attributes asinbounded arrays, with each indpginting to an associated
object of a given class, or containing a nil-pointer.

Definition 1 (Continued.

(i) Typing. A krtUML modelM defines the set of types
TM) £ TUTC U Tas

whereTc el {Tc | c € C} is the set ofeference typeand

Tas el {N - T¢ | ¢ € C} the set ofassociation typeswhich will be used to

represent all kinds of associations described]rife., composition, aggregation, and
neighbour).

For each typer € T(M), we asume the existence afdesgnated elemenmiil, € t as
adefault value

We use typée to denote the type of attributes, functions, etc. as follows:

e For each class € C and each attributa € c.attr, typga) € T(M) denotes the type
of a € c.attr,
wheretype(self) = T; € T¢ andtypgc.my_ao € Tc.

e For each classt € C and each triggered operati@p € C.0pS typ&,,(0p)
= T1 x --- x Ty denotes the parameter type whdie e T(M) is the ype of
the i-th parameter andypg(op) € T(M) denotes the type of theeply value
(type (op) = void if opdoes not yield a return value). The typeagfis defined as
type(op) = typ&,r(0p) — typg (op).

e Foreachf € F, typg,(f) = T1 x --- x Ty denotes the parameter type where
Ti € T(M) is the type of the-th parameter antype () denotes the value type of
f. The ype of f istype(f) = typgy,(f) — typg(f).

e For eachev € Sig typg,(ev) = Ty x --- x Ty denotes the parameter typeeaf
whereT; € T(M) is the type of the-th parameter.

We next introduce the expression language, supporting navigation expressions, accessing
objects through association end-points, and closing this under application of base-type
functions (incuding equality and boolean operationBxpressions are terms defined in

the scope of a class that can be used in transition guards or primitive actions of this class.

88 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115

Definition 1 (Continued.

(ii) Expressions. Forachssc € C, ac-expession‘ expr is defined inductively as follows:
o Navigatian expression:expr::=r.a,

wherer e c.attr with typer) = T, € Tc anda e cp.attr. We settypeexpn d
type(@). Note hat we only consider “flat” navigation expression&itiJML, where
r can also refer to the object itself (if= self).

e Association access: expr= expr[expk],
whereexpr, and expr, are c-expressionstypgexprn) = (N — Ty) € Tas and

type(expr,) € N. We settypgexpr d Te.

¢ Function application: expt:= f (expn, ..., eXpy),
whereexpr, ..., expr, arec-expessions f € F, andtypeexpr) matches the type
of thei-th parameter of , 0 < i < n. We definetypgexpn = typg (f).

In the following definition ofc-guards,c-actions, anct-stae-machines,expr, ‘ expr’,
and ‘expr,’ denotec-expressions.

Guards can be just boolean expressions, or express the willingness to accept a signal event
or an operation call, possiblyajoined with a boolean condition.

Definition 1 (Continued.

(iif) Guards. Forachssc € C, atriggeing guardto be used in the state-machine of class
¢ € C, c-guardfor short, is one of the following:
e Signal trigger ev[expr], whereev € Sigandtypgexpn = B.
e Call trigger: oplexpr], whereop € c.opsandtypeexpn = B.
e Condition [expr, wheretypgexprn = B.

We support a rich action language, allowing for ebj creation and destruction, operation
calls, event emission, and assignments of attributes and association end-points. The
expression passed in an object creation is intended to pass the identity of the active object
responsible for event-handling. Reply actions serve to define the return values of triggered
operations.

Definition 1 (Continued.

(iv) Actions. A (primitive) actionto be used in the state-machine of class C, c-adion
for short, is one of the following:
e Object creation: ra := create (expn,
with r e c.attr, typer) = Te, € Tc, @ € Cp.attr andtypga) = Ty € Tc, and
type(expn = type(c’.my_ao.
¢ Object creation (into association place)afexpr] := creatg (expn),
withr € c.attr, type(r) = Tg, € Tc, a € cp.attr,
typg@) = (N — To) € Tas, typeexpn) = N, and
type(expr) = type(c’.my_ao.
e Attribute assignment.a := expr,
withr e c.attr, type(r) = Tg, € Tc, a € cp.attr, andtypg@) = typeexpr.

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 89

e Association place assignmentafexpr] := expbp,
withr e c.attr, type(r) = Tg, € Tc, a € cp.attr, typgexpr) =N,
typga) = (N — T € Tas), andtypeexpn) = Ty .

e Event emission:.sendev, expr, ..., expr),
withr € c.attr andtyper) € Tc, ev € Sig
and (X {_otypeexpr)) = typg,a(ev).

e Operation call (ignoring reply value):.call(op, expry, . . ., expr,),
withr € c.attr, typdr) € Tc, op € typdr).ops

n
and(X _otype(expr)) = typ&,s,(0p).

e Operation @ll (assigning value): 1a := r’.call(op, expr, . .., expr,),
with r e c.attr, typar) = Tg, € Tc, a € cp.attr, andr’ € c.attr,
type(r’) € Tc, op € type(r’).ops and(X{_otype(expr)) = type,a (op),
andtypea) = typg (op).

e Operation call (assignng value into assdation place):
r.a[expp] = r’.call(op, expr, ..., expr,),
with r e c.attr, typar) = Tg, € Tc, a € cp.attr, andr’ € c.attr,
type(r’) € Tc, op € type(r’).ops and(X{_otype(expr)) = type,a (op),
andtypga) = (N —) € Tas, typeexpip) = N, andtype (op) = C'.

o Sdting reply value: reply(expn, with T € TU Tc andtype(expn = .

e Object destruton: destroyexpn, with typaexpn € Tc.

Triggering guards and actions appear as labels of transitions in the class state-machines. We
assume a designated destruction state. Pre-compilation will extend the user-defined state-
machine by pre-fixing the initial state with a sequence of transitions modelling constructor
actions, while the destruction state, having no incoming transitions, is the unique point of
entry into a section added by pre-compilation modelling destructor code. Pre-compilation

also transfers hierarchical statgachines ito flat state-machines.

Definition 1 (Continued.

(v) State-machines. A c-stae-machine for a clagse C is a uple
c.sm= (c.Q, c.qop, C.gx, C.tr), where:

e C.Q s a finite set oktates

e C.(o € c.Q is theinitial state

e C.0x € €.Q is thedestuction state which isused to mark the beginning of the
destructor’s actions.

e Ctr € ¢.Q x ({y | yisac-guard orc-adion}) x c.Q is thetransition relation
We require that there is the initial transitioric.qo, ¥, q) € c.tr with c-action
y = “create”.

e Classc ¢ C is calledreadive if there is a transition(q, y,q’) € c.tr such
thatq # c.qo andy is in the formev[expr] or oplexpr] for someev € Sigor
op € c.ops)\ {create}. [

We will use krtUML to denote the set of akrtUML models.
An abstract example of ertUML model with four classes is shown &ig. 1

90 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115
Croot
IsActive co C2
C1 my_ac IsActive -
N — IsActive
IsActive false self my_ac pos
my_ac itsC1[n] z@? © C2.aftr
seif itsCO[m] X
createci e createco
createc2
sm sm an_op C2.0ps
sm sm

.an op

x}/ destrov[V(Ga0)

Fig. 1. Class examples. Classggot andCO areactive, wherea€1 andC2 are pasive, i.e. perfom their ®rvices
within the sequences @)oot and CO executions, respectively. Class€® andC2 are reactive, since they can
react to stimuli after the initialisation phase. Clas€asot andC1 do not accept any stimuli other than creation.

Note that on th&rtUML level, there is intentionally no inheritance relation on classes,
since for each classe C, inheritance is explained by the introduction of implicit attributes
parent type, andtype tablefor each superclass of ¢ in the preprocessg step described
in Section 4.1 Association attributeparent type, are used to keep the structure of the
inheritance hiearchy, whereasype table reflects the actualype of each object, which
is available at each level of the dynamic classification (useful, e.g., for calls of abstract
operations with a defeed implematétion [22)).

Further note that association access is igsil to accessing a single index; i.e. on the
krtUML level, there are no operations like iteration over associations or adding references.
We assume that such opdians are alsolained in terms of primitive actions by the
preprocessing.

The identification of actors is not considered necessary from a semantical point of view,
since actors should be treated as every other active classes. But the information on whether
an object is an actor instance can be exploitefdimal verification: these objects need not
necessarily be encoded like ordinary objects but can be interpreted as an assumption about
environment behaviour, i.e. the expected sequences of input stimuli.

In the following, we assume that the preprocessing step as outlin&gdtion 4.1
establishes the following set of requirements regarding the sets of attributes and the
stake-machines of &rtUML model, whch we rel on in Section 3when explaning the
semantics.

(i) All attribute and triggered operation names of all classes are pairwise different, for
examplequalifiedby a classnamelike c::a, and all stées of all state-machines are
pairwise different.

(i) For each clasg € C, c.attr contains the attribute::my_acto store he reference to
the responsible active object such tltatmy _acis of type To andc’.isActive= true.

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 91

(iii) Values of the implicit attributesc::self and c::my_ac (as well astype table and
parent type.) are assigned once at the initialisation of the corresponding object and
do not change during the lifetime of the object.

(iv) For each triggered operatiap € c.ops ¢ € C, there are #ributesc::op,, € c.attr,

1 < i < nfor holding local copies of the parameters,
typed s.t(C::0py,, ..., Ci0Py,) = tyP&a(0P).

(v) For eachev € Sigwhich ¢ € C is willing to receive i.e. there is a transition
(9. ev(expi, q’) e c.r, there are #ributesc::ievy € cattr, 1 < i < n, for
holding local copies of the signal parameters, typed(s:tevp,, ..., C::evp,) =
tyP&ar(€v).

3. krtUML semantics

We will give the semantics dfrtUML in terms of symbolic transition systems, proposed
in [21] under the name Synchronous Transition SysteSeparate subsections derive from
types ofkrtUML modds the type structure of related symbolic transition systems, and
introduce the system variables required to represent a snapshot in the dynamic execution
of a krtUML model. We then elaborate the way in which snapshots can evolve, defining
for each of the possible cases a transition predicate. Finally, we define the predicate
characterising initial snapshots, and collect all pieces of the transition relation into a full
predicative definition of the transition relation, leading to a definition of the symbolic
transition system associated wkitUML model.

3.1. Symbolic transition systems

Wefirst introduce the semantic model of syntibdransition systems, which allows for
apurely syntactical description of a transition system by first-order logic predicates over a
set of yped system variables.

Definition 2 (STS. A symbolic transition systeSTS) S = (V, 6, p) consists ofV,

a finite set of typedsystem variables®, a first-ader predicate over variables M
characterising the initial states, apdatransition predicatethat is a first-oder predicate
overV, V’, referring to both primed and unprimed versions of the system variables (their
current and next states)]

An STSinducesa transtion system on the set of interpretations of its variables as
follows.

Definition 3 (Runs of an ST)SLet S = (V, 0, p) be anSTSand 7 the set oftypes of
variables inV. Let D; be a semantic domain for eaeche 7.

(i) A snapshots V — | J,.7D; of Sis a type-consistent interpretation\éf assigning
to each variable € V a values(v) over itsdomain.X' denotes the set of snapshots
of S.

(ii) A snapshots € Y inductively defines the valugexpdl(s) for first-order predicates
‘expr overV and the valuglexpr(s, s') for first-order predicatesxpr over V, V’,

92 W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115

| status

self
Cruiser [[[[T T[] _[speed ac ’x%
: itsCruiser =

car (TTTTILIL

sC

eq

[ds

\ J \ J
'l A4

system configuration object configuration

Fig. 2. System configuration. A variable of tyfg:qnf contains one object configuratidor evel object identifier
in Oc. The exarple of an object configuratioaconffor the object(Car, 5) is shown enlarged.

wheres provides the interpretation of unprimed asicthe interpretation of primed
variables in expr.

(iif) A snapshots € X' is calledinitial, iff [©](s) = true.

(iv) Lets, s’ € X be snapshots &. Sngshots’ is calledS-siccessonf s, iff [p]l(s, ') =
true.

(v) A computationorrun, of Sis an infinite sequace of snapshots
r=%s1%... sdisfying the following requirements:
e |nitiation: sg is initial.
e ConsecutivenesSnashots;j 1 is anS-successor ofj, for eachj € No.

(vi) The set of all computations @is denoted agungS). We user (i) to denote thei-th
shapshobf a runr € rungS) and

r/i a riyr@+Lri +2)...

to denote the infinite suffix startingati),i € No. O

3.2. System variables for the krtUML semantics

We motivde our choice of types and system variables using snapshots related to the
Automated Rail Car System described 1], a model of autonomous rail-bound cars
which tranport passengers between terminals and which adhere to a simple arrive and
departure protocol to allocate and de-allocdtgfprms inside the terminal. We refer the
reader to 14] for detals.

Fig. 2 depicts the way in which an object configuration is captured. It shows enlarged
the entryof an object of classCar, curently executing. The current state-machine
configurationis illustrated by a state-machine, where in fact only the current state is stored.

An object configuration not only gives the current valuation of all its attributes as well
as its current state configuration, but also maintains the current object status (elaborated
below), the event queue (for active objects only), and a dispatcher status (for active objects
only) used to enforce a single thread of control within the objects grouped into one
component. The semantic entity repre#®ma single class ia (potentidly unbounded)

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 93

4 alive)
queue empty
and no pen- take event or) become
ding calls accept trig. op,/ Stable destruction

createl : destro ; completed
locally éexecutmg . : dead

enabled initiate trig. pick up
transition op. call result
suspended
N\ w4

Fig. 3. The obgct life-cycle.

array of object configurations, with each entgri@sponding to a singlinstance of this
class.

The object status reflects the gledn the object life-cycle (sdgg. 3). Prior to aeation,
objects are perceived as being dormant. Creation of a new object instance will pick
a dormant index of the corresnding class, and awake the object to realities of life.
During life, objects become suspended when waiting for completion of an operation call,
and idle (except for the special case discdsBelow) when bBcoming stable, i.e. when
a run-to-completion step terminates. THimppens when reaching a state, where all
outgoing transitions are either guarded by signal triggers (of the tafexpr) or call
triggers (of the formop[expr]), or conditions (of the fornjexpr) which are evaluated
to false. In the particular case of acceptingtdsdion, the object status will switch to
dying, remaining in this statuuntil its last run-to-completion step induced from the
objects’ destructor is finally completed. From then on, the object status will remain
dead.

Note that destruction of an aggregate object (w.r.t. the composition association, defined
in rtUML) induces destruction of all its parts; hence dying may be a long and painful
process. Our semantics thus allows us to observe nastiness such as sending events to dying
objects, as well as detecting dangling references.

For the resbf this section, letM = (T, F, Sig, <, C, Croot, A) be akrtUML model. We
now define for the semantic types employed in the definition of the associated symbolic
transition system, as well as the semantic domain of all semantic types. The type-system
of semantic types subsumes all types ofkhi&/ML model.

Definition 4 (Object Reference Types and Domairfsor each basic typer € T, we
assume the existence of a corresponding semanticZypéth domainD; .
For each typel; € Tc, we denote by O or 77, the morresponding semantic type and

df df

chooseDo, = {c} x N as its domain. We calDc with domainDo. = (Jicc Po., the
object reference type or domaiRor each object typ®., we assume the existence of a
designated elemenitl; € Do, to serve as a dault value.

For each association type= (N — T¢) € Tas, D¢ a (N — Dg,) is the domain of
T.. O

We now define the semantic type of system configurations and its associated domain,
by first defining the semantic type of object configurations.

94 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115

Definition 5 (Object and System Configuratipn (i) An object configuration ocont=
(staus ac, sc eq ds) consists of the following elements:

e An object statusstaus of type ZopjstatusWith associated semantic domain
D gpistatus a {dormant idle, executing suspendedlying dead.
e An object attribute configuratiohac of type 7ac d U(c.attr — TT(m))-

ceC
e An object state-machine configuratiosc of type 7sc with associated semantic
domainDz, & Jco

ceC
df

e Theevent queue eqftypeZeq = 7gye i.€. a squence of entries
df .
(dest ev, par) of typeZege = Oc x Sigx U Typeyar(en)-
eveSig
For an evat queue entry, dest denotes thedesthation, ‘ev’ the event type

(i.e. signal name), angbar the event parametersiVe will use ¢ to denote empty
eventqueue.

: f . :
o A dispatch reference dsf type 7gs el Oc, i.e. a réerence to some object of any
class which is used to denote the object currently processing an event.

Thus the type of apbject configuratiorof M is
df
Tocon(M) = Tobjstatusx Tac x Tsc ¥ Teq x Tds.

(i) The type of asystem configuratiofis Zscon{ M) el Oc — ToconfM).
(iii) We will call a setCm(o) = {0’|0’.my_ac = o} of objects assigned to the same event
dispatcheo acomponent

(iv) We will call objecto € O of classc an active objectiff c.isActive = true (i.e.,
c is an active class). Otherwise we calla passive objectWe also vill write
o.isActive = true to specify thato is an active object and.isActive = false for
passive ones.

(v) We will call objecto € O of classc a readive objectiff ¢ is a reactive class.
Otherwise we cald asimpleobject [

The symbolic transition system uses the variaguenf : 7sconfto maintain the object
configuration of all objects oM. Note hat, in general, the assignment of an event
dispatcher to a reactive object can be user definedd]|ra[default assignment is given
derived from the composition association.

We collect the status of all pending operation calls within a pending request table. An
example inFig. 4 shows enlaged the entry for calls from an object of cleGar. Curently
the call of triggeed operationengage for a Cruiser is pending. Here we exploit the
fact that all objects become suspended on calling an operation. We can thus maintain the
status of all operation calls in a table inddxay sender objects or actors. Each entry in
the pending request table maintains the identity of the receiver, the name of the requested
operation, the list of parameters, a result field, and status information.

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 95

Cruiser 1T T T T T T T 1

| dest
: | op
Car (TTTTTTIT --- status
R _| result
“--.__| params
|\ J |- J
h'd Y
pending request table pending request table entry

Fig. 4. The pending requestbia. The pending request table is a system variable of e It contains one
entry for every object identifier iOc.

caller calls callee accepts callee becomes

g. op. 11
caller
picks up result

Fig. 5. The life-cycle of driggered operation call.

The life-cycle of an entry in the pending request table is depictddgn5. Whenever
the object owning the entry emits a new operation call, the status of the entry switches to
pending. It will remain in this status until the receiving object is willing to serve the call,
which causes the status to switch to busy. Once the run-to-completion step induced from
accepting the call is terminated, the resultlod tall is entered into the result field of the
entry, and its status changes to completed. This will allow the calling object to pick up the
result and resume computation, causing the status of the entry to become unused.

Definition 6 (Pending Request Tabje (i) A pending request table entry opreg=
(dest op, staus result paramg mairtains:
e The receiver of a triggered operation calbdest of type 7gest With associated

. . df
semantidomainDr,,, = Oc.
e The triggered operation identifierop’ of type 75, with associated semantic

. f
domainDy,, d | c.ops
ceC
¢ Thetriggered operation statusstatus of type Topstatuswith semantic domain

Dypstatus a {unusedpending busy completegl

e Theresult(or reply) ‘result of typeZres with associated semantic domain
df
D1 = | J type(op).
ceC
opec.ops
e Theparametersparams of typeZpar With associated semantic domain

df
Do = | typgarop.
ceC
opec.ops

96 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115
Thus the type of a pending request table entry is
df
Topreq(M) = Tdest X Top X Topstatusx Tres % Tpar-

(if) The type of thepending request tablis Zp (M) o Oc — TopreqM). O

The symbolic transition system uses the varigife: 7px to maintain the operation
requests of all objects d¥l.

For each typer considered, we assume the existence of a designated eleitpentD,
to save as a default, or undefined, value. Moreover, we assume that expresgioase
evaluated tal in such situations as, for example, trgito read an attribute via a reference
with valuenil, or trying to execute division by 0 and other arithmetic exception situations.
In other words[[expr= LJ(s) = trueiff [expr(s) = nil, for T = typeexp.

Furthermore, we need a boolean flagsfail which is used to indicate an undefined
state of the system, e.g., if it tries to read an attribute of object referénmeif the type of
the reply action does not mditc¢he ype of the currently processed triggered operation.
Performing some arithmetic computations can also raise this flag in failure situations
(e.g., division by 0). Initially,sysfailis set tofalseand it remains set, once it has changed
to true.

For brevty, we will use the following abbreviations fav € Oc in the rest of this
section:

df
e O.stalus = soonf(o).statusand analogously fosg ds eq

df . .
e 0.a = soonf(o)(a), i.e. the vale of dtributea.

o.a.b g sonf(sonf(o)(a))(b), for atributesb of reference type.

For an evenbr operation parameter tupéewe useo.eq/p := eto denote simultaneous
assignment of the-th components o to their corresponding attributes ,, in o.

A primed abreviation indicatethat the primed system variable is to be used, for example
o.2' = sonf'(0).a.
For an evet queuey = €1 ... &, € Dz, weintroduce the following elements:

e headq) o e denotes the first entry of the queue it ¢.

o tail(q) el € ... e, (with n > 2) denoteg with the first entry removed, artdil(q) = ¢
ifn<?2.

e enqueues, q) a g edenotes the result of appending erdryZeqeto q.

We will use logical XOR-operator for the following abbreviatioa® b o (avbya
—(aAb).

3.3. The transition predicate

Intuitively, there is a transition between two snapst® if there exists exactly one
objecto € O¢c whose configuration changes for one of the following reasons:

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 97

e Objecto is idle and an event is dispatched to it by its active object or an event
with destinationo is discarded since it is not enabledais stae-machine. (Coarse-
granularity flow of control is kept by elemends of active objects’ configurations.)

e Objectois idle and accepts a triggered operatoafi. (Fine-granularity flow of control
is kept by elementdestof the pending request table.)

e Objecto is executing or dying, unstable, and takes a transition of its state-machine and
thereby executing an action, which can be either simple (taking only one fine step with
no changes in the flow of control) or delayed, waiting for the results from other objects.

e Objecto is suspendedral picks up the result of a triggered operation call which has
been completed by the callee. (Figeanularity flow of control kept byestin prt.)

The system may remain in snapslsaf no object isexecutingand all event queues are
empty. In the following, we formalise each oftlabove conditions separately as first-order
logic predicates which are then used to construct the transition predicate of the semantics
STM).

Note that in the following incremental definition of the transition predicate, we use an
assignment symbol=" which has to be processed as explicatedgfinition 7 to yield
the final transition predicate. Informally, this symbol indicates that there is no difference
beween the current and next states of the system variables other than specified explicitly
in the sequece of the =" expressions (or their constituents).

We first define for each objea € O the predicatestable(o) in the current system
configuration as follows:

stable(o) gy (d,ys,9) ectr:q=o0.sc =
((ys = “ev[expr]” A sysfail := (sysfailv expr, = 1))
V (ys = “oplexph]” A sysfail := (sysfailv expr, = 1))
V (ys = “[expr]” A —expl; A sysfail := (sysfailvexpi =1))).

We will define the individual steps that an object can perform, thus defining the
transitions locally to objects. Later, iBefinition 7, the globd trandtion predicate is
combined out of these steps with additional conditions specifying a kind of “scheduling”.
Each such “partial” predicate, defined bsléor each kind of step, contains the following
specifications:

(a) the state when the step can be performed: conditions on the current, i.e. unprimed,
values ofthe system variables;

(b) changes in the values of object attributes or the pending request table induced by the
transition;

(c) raising the failure flag if some values referred to are undefined.

3 Here and dter on:y = “ev[expr]” (y = “op[expr]” or y = “[expr]”) means that the label of the current
transition(q, y, ') is of the formev[expr] (op[expr or [expr], resgectively), i.e. a signal trigger (a call trigger or
a mndition, respectively; cDefinition 1 (jii)).

98 W.Damm et al. / Science of Cqmater Programming 55 (2005) 81-115

sconf”

(c2,i) (c2,i)

d _ pget_ event (O) : _
O=(c1.m) — — /0=(in C—T
sltotus idle ds nil (c1.n]
my ac__ (C2,] [;’q‘] my ac__ [c2] eqi
&0l 7 .,ev,eVpl,esz, o : " i
ep? ? Qo . failleq) 3 ; fdeq)
S.C q ev[expr]/

evlexpr]/
S|

Fig. 6. The transition relationoget event

3.3.1. Getting an event
Intuitively, an eventev; with destinationo can be dispatched to from the head of
the event queue of its active object if no other object in the same component is currently
processing an event reception (specifiecobyy acds = nil) and if there is a transition
(g, ¥, q') guarded by a superclass of ev; is enabled in the current statg(cf. Fig. 6):

Pget event(0) a y = "ev[exp” A o.my_acds= nil
A expr= true A sysfail := (sysfailv expr= 1)
A 0.my aceq# ¢ A heado.my aceg).dest=o0
A 0.my aced := tail(0.my aceo)
A (Jevs € Sig:
A heado.my aceg).ev = ev1 A evy < ev
A (—stable(o)’
= (0.my _acds := 0 A o.stalls := executing)
A 0.ev), == heado.my_aceq.pan).

Elemento.my acds whennot equal tonil, locks its component for processing a signal
event. It can be released (and the component can start to process the following event,
i.e. a new run-to-completion step) only when all computations within the component are
completed.

Note that we exploit the fact that the syntactic category of boolean expression used in
the definition ofkrtUML models is subsumed in the expression language of the first-order
logic used to define transition predicates. In particular, the above-defined abbreviations
apply to expressions of transition predicates thus providing the intended relatiaonto

3.3.2. Accepting a triggered operation

Objecto can accept a triggered operation agllif a transition(q, y, q’) guarded byop
is enabled in the current stagigand some other objeot has cded opfrom o (there is an
entry point in the pending request table with this operation):

W.Damm et al. / Science of Cauter Programming 55 (2005) 81-115 99

Pacceptop(0) Sl y = “oplexpi” A expr= true A sysfail := (sysfailv expr= 1)
A (301 € Oc : prt(o1).dest= 0 A prt(o1).0p= op
A prt(op).staus = pending
A (—stable(o)
= prt(o1).staus := busya o.staus := executing

A (stable(o)’ = prt(0y).status := completed

A prt(og).resulf := nil A o.opfp ‘= prt(01).0pp).
Note that an object can call a trigger operation only from an object of the same component
because of the restrictions on theeirtomponent communication. Thusmy acds =
o0.my_acds = o1 during the execution of operations within one RTC step (the change of

the control between objects at this éwf communication is captured lprt(o).destand
prt(o).staus).

3.3.3. Skipping guards
Objecto can take a transition guarded with a boolean expression only, if the expression
evaluates tdrue:

Pskip guard(0) el y = “[expn]” A expr= true A sysfail := (sysfailv expr= 1).

3.3.4. Discarding events

If there is an event for objeat in the queue ofo’s active object bub is not willing to
accept it, i.e. if no transition with a matching signal (or its generalisation) is enabled, then
the event is simply remodgrom the top of the queue:

Pdiscard event(0) £ o.my_acds= nil
A 0.Mmy_aceq# ¢ A heado.my_aceg).dest= o0
A 0.my aced := tail(0.my aceq)
A (Y (q, evi[expd, g') € c.tr :
(expr= falsev ev1 £ heado.my _aceq).ev)
A sysfail := (sysfailv expr= 1))
A (—stableo)
— (0.my_acds := 0 A o.staus = executing).

Note that a discarded signal event can nevertheless trigger a transition, if the object is no
longer in its stable state (the value of a gliag condition on a transition without signal

or call trigger became true). Note also that tripggeoperation calls are not discarded, but
remain until the callee accepts the call.

3.3.5. Execut