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Last Lecture:
Putting it all together: UML model semantics (so far)

Rhapsody demo, code generation

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
What does this State Machine mean? What happens if | inject this event?
Can you please model the following behaviour.

What does this hierarchical State Machine mean? What may happen if |
inject this event?

What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...

Content:
State Machines and OCL
Hierarchical State Machines Syntax
Initial and Final State
Composite State Semantics
The Rest
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Sate Machines and OCL

3/50

OCL Constraints and Behaviour
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Let M = (€2, 5% ,02) be a UML model.
We call M consistent iff, for each OCL constraint ezpr € Inv(¢ 92),
o [ expr for each “reasonable point” (o,¢) of computations of M.

discussion of “reasona(}lz’l)e point”.) /.1 ‘l

wsitls steps,
_O -
><>o hokds, o=t
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Note: we could define Inv(.£4) similar to Inv(%@)

. Oa_ — x<=ﬁ4
@E/xtnﬂ;(: )~ IY>Z:/_/M?wrcaf iﬂoC \ /’f =2
Pragmatics: l’\p Condext C i =52 wiplies %>23- cmzcé &)

In UML-as-blueprint mode, if ## doesn't exist yet, then M = (¢92,0, 09)
is typically asking the developer to provide “# such that
=(¢9,54,09) is consistent.

If the developer makes a mistake, then M’ is inconsistent.

Not common: if %4 is given, then constraints are also considered when choos-
ing transitions in the RTC-algorithm. In other words: even in presence of mis-

takes, the .2 never move to inconsistent configurations.

‘-| x %4 i wils Mica -
shyps, x>0
X3 iclateA

hare
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Hierarchical Sate Machines
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UML Sate-Machines. What do we haveto cover?
Client Loell
@ I
[Sto rrl e, 200 5] l {aussiehendeAuufe = aussiehendeAuule @pre + 1]
anmelden()/ e
abgemeldet angemeldet e Zustands(ibergange von
[ & ':‘ g Protokoll-Zustandsautomaten
Wenn der Endzustand eines -.._ abmelgen(/ ;
- verfiigen uber eine
Zustandsautomaten erreicht . I ) einen
Y"':;" “:"’ ‘;_'e dReg':" dhﬁe““‘- B parameter) Ausloser_und eine
in der der Endzustand liegt. ame -1 . alle
N ooptional) - jedoch nicht tiber
" ewi'a Mo dehions choice einen Effekt.
Protokollzustandsautomaten  beschreiben Ein Eintrittspunkt  definigpfl dass ein komplexer
das Verhalten von Softwaresystemen, Regulare Beendigung lostfin  Zustand an einer andey#h Stelle betreten wird, als
Nutzfallen oder technischen Geraten. completion -Ereignis aus.f .-+~ durch den Anfangszy#tand definiert ist.
Ein komplexer Zustand  mit (Drehkreuzsensor="drehen")
einer Region. "  Drehkreuz blockieren | - gy Zustand I6st von sich aus
bestimmte Ereignisse aus:
- entry beim Betreten;
e - do wahrend des
Der Anfangszustand _markiert
den voreingesteliten Startpunkt Ergebnis der Such- - completion beim Erreichen
von ,Boarding* bzw. ,Bordkarte Rnizoe sy des Endzustandes einer
einlesent. 5 Unter-Zustandsmaschine
- exit beim Verlassen.
Das Zeitereigiis. after(10s) list Diese und andere Ereignisse
einen Abbruch von ,Bordkarte konnen als Ausloser fiir
einlesen” aus. ) . Aktivititen herangezogen
Linal - v werden.
P . fexdt
Der Gedachiniszustand sorgt | - Der Austritspunkt _erlaubt es, von entrg/ex
dafir, dass nach dem Wieder- \ - einem definierten inneren Zustand e Ein Zustand kann eine oder
aufnehmen der gleiche Zustand '\ aus den Oberzustand zu verlassen. pom mehrere Regionen enthalten,
wie vor dem Aussetzen einge- ., Comec die wiederum Zustands-
nommen wird. W . + automaten enthalten konnen.
\\A Vb \ Wenn ein Zustand mehrere
| = /" Regionen enthalt, werden
< Kartenleser o) Boardingautomat (HW) diese in verschiedenen
@ Auch Zeit- und Anderungs- Abteilen angezeigt, die durch
@ ereignisse kénnen Zustand: gestrichelte Linien
= ibergéinge auslosen: m voneinander getrennt sind.
o Regionen konnen benannt
! - after definiert das when(k=0)/ werden. Alle Regionen
9 Verstreichen eines Intervalls; an werden parallel zueinander
o - when definiert einen “Karte zurickweiser” abgearbeitet.
I setze(f.-1)
3 Zustandswechsel. m zefl-1) Wenn ein Regionsend-
b . + zustand erreicht wird, wird der
= Zustande und zeiticher b D ey e )
« Bezugsrahmen werden iiber setze(f,), | setzef,1) 8
i “Kreuz dreh sich’ beendet, also auch alle
| den umgebenden Classifier parallelen Regonen
© definiert, hier die Werte der ¥
- Ein verfeinerter Zustand
I

Ports, siehe das Montage-
diagramm ,Abfertigung* links
oben.

inhalt=i

verweist auf einen Zustands-
automaten (angedeutet von
dem Svmbol unten links). der
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The Full Story
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UML distinguishes the following kinds of states:

rese¥ed keguc(o\b yol
vedole a5

example

example

%v\a,\ nawmL

simple state

final state

composite state

OR

AND

entry/acty™
do/ act
exit/ act$®
Ei/acte,

E,/actg,

pseudo-state
initial
(shallow) history
deep history

fork/join

junction, choice

entry point
exit point
terminate

submachine state

Representing All Kinds of States
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o Until now: ;,;¢ SLJ{,

ShuseL

y
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Representing All Kinds of States

— 16 — 2014-01-15 — Shiersyn —

e Until now:
(S,s0,—), S0€S8,— CSx(EU{.}) x Expry x Acty X S
o From now on: (hierarchical) state machines

(S, kind, region, —, 1, annot)

where (shole wachine)
o S D {top} is a finite set ofstates (as before),
o kind : S — {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}
is a function which labels states with their kind, (new)
o region : S — 22\&sgiéur;ztig{_‘\s/vlyzhsgu%rgcterises the regions of a st(a;:;’v)
o — is a set of transitions, (or Hovasishon WWS) (changed)
o 1 : (=) — 2% x 2% is an incidence function, and (new)
o annot : (—) — (& U{.}) x Exprg x Act.s provides an annotation for
each transition. (new)

(80 is then redundant — replaced by proper state (!) of kind ‘init’.)

8/59
From UML to Hierarchical Sate Machines. By Example
(S, kind, region, —, 1, annot) |
example es kind region
simple state s s€ 2.8
(ollivy vesled 1)
final state k) fin z
composite state
OR s st {is, s, 9%5
\ .
region
y
1 4
AND ¢ | Essif, 2588,
. ° {548 7
ij submachine state (later)
g pseudo-state o) .. 9 wit, shidf,.. /4
© e —

(s,kind(s)) for short 9/50



From UML to Hierarchical Sate Machines. By Example
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(_:_—__ e — —& _— -_ —_— —
! DON'T! (DON'T!)
tr(gd]/act
| ;
Z annot
| "5 -9, |
L .

— —

- T —_— = -

... translates to (S, kind, region, —, 1, annot) =

(§ Gon, s8), (s,8), (g, i) (gp,

S, kind

fopr> 19,5988 <0, 9,028, 9, P01,

region

{tn'éls’ {fq R ( {%5,{4), (1) (Z'SZI {‘h?) } )
——

—

»
{LH({{, y, aoé)' fé’—) qnnoéj‘)

annot

10/59

WEll-Formedness Regions (foll ows from diagram)

ersyn
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cs kind region C 29,59, C S child C S
simple state s st 0 0
final state s fin 0 0
composite state s st {81,...,5.},n>1 | S;U---US,
pseudo-state s init, ... 1] 0
implicit top state | top st {51} S

du'é((
Each state (except for top) lies in exactly one region,

States s € S with kind(s) = st may comprise regions.
simple state.
OR-state.

No region:
One region:

Two or more regions:

AND-state.

Final and pseudo states don’t comprise regions.

The region function induces a child function.

—

%

’———{S‘"Q/ 53/ S?i
= §S', 523 v f‘J Is‘fi
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WAl -Formedness | nitial Sate (requirement on dagram)
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Each non-empty region has a reasonable initial state and at least one
transition from there, i.e.

for each s € S with region(s) = {S1,...,5.}, n > 1, foreach 1 <i <mn,

there exists exactly one initial pseudo-state (s, init) € S; and

at least one transition ¢ €— with s} as source,
YEJ N a

and such transition’s target sé isin S;, and
(for simplicity!) kind(s3) = st, and
annot(t) = (, true, act). (£

No ingoing transitions to initial states. se——(<s) MO/ @ 52

No outgoing transitions from final states. @—>(s_) No!

Recall: N

Plan

DON'T! DON'T!
e
trgd]/act

12/59

example example
pseudo-state
entry/act{™ initial .
simple state :;i;;f]l (shallow) history

Eifacte,

deep history

En/actg,

fork/join
final state
composite state junction, choice
OR entry point
exit point
AND terminate

submachine state

Initial pseudostate, final state.

Composite states.

Entry/do/exit actions, internal transitions.

History and other pseudostates, the rest.

13/59
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Initial Pseudaostates and Final Sates
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14/'59
Initial Pseudostate
o Jacty
\ annot
Principle: Gt
when entering a region without a specific destination state, e ‘2
o V(s i)

then go to a state which is destination of an W,

execute the action of the chosen initiation transitions between exit and
entry actions( see. lade).

Special case: the region of top.
If class C' has a state-machine, then ‘“create-C transformer” is the

concatenation of
the transformer of the “constructor” of C' (here not introduced explicitly) and

a transformer corresponding to one initiation transition of the top region.

15/59



Towards Final Sates. Completion o Sates
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E/acty Done/ acty
g
/! \< ..
\w’f’gﬁ' peiovify oves trel po(

Transitions without trigger can conceptionally be viewed as being sensitive for
the “completion event”.

Dispatching (here: E) can then alternatively be viewed as
(i) fetch event (here: E) from the ether,
(ii) take an enabled transition (here: to s2),
(iii) remove event from the ether,
(iv) after having finished entry and do action of current state (here: s3) — the state is
then called completed — ea “ poNE "
raise a completion event — with strict priority over events from ether!
if there is a transition enabled which is sensitive for the completion event,

then take it (here: (s2,s3)).
otherwise become stable.

—

~—~~
<. <
= S

16]/’59
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Final States 3%!

M:‘: h® (s Jaml @

a step of{object u moves w into a final state (s, fin), and

all sibling)regions are in a final state,
then (conceptionally) a completion event for the current composite state s is
raised.

If there is a transition of a parent state (i.e., inverse of child) of s enabled
which is sensitive for the completion event,

then take that transition,
otherwise kill u

~> adjust (2.) and (3.) in the semantics accordingly

One consequence: u never survives reaching a state (s, fin) with s € child(top).

17/59
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Composite Sates
(formalisation follows [ Dammet al., 2003)

18/59

Compaosite Sates
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o In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

o ldea: in Tron, for the Player's Statemachine,
instead of

write

resigned resigned

19/59




Composite Sates

and instead of

é fast
. J
‘ 2059
Reall: Syntax
= h
S | S | s
() !
| |
sh : sh : sh
| |
translates to
({<t0pa St), (5’ St)’ <Sla St) (5/15 St)(82? St)(slzv St)(83, St)(séa St)}a
S,kind
{top = {3}7 S {{813 511}’ {82’ 5/2}’ {537 Sé}}’ §1 ®7 3/1 = @, s }7
region
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—, 1, annot)
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Syntax: Fork/Join
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o For brevity, we always consider transitions with (possibly) multiple

sources and targets, i.

e

o For instance,

€.

T
Tl
B

translates to

) = (2°\0) x (2°\0)
F S‘e{E/‘D
tr(gd)/act {55 Jesd
L e =

(S, kind, region, {t1}, {t1 — ({s2, s3}, {s5,56})}, {t1 — (tr, gd, act)})
~—~

—

o Naming convention: ¥(t)

¥

= (source(t), target(t)).

Composite Sates. Blessng a Curse?

— 16 — 2014-01-15 — Shierstm —

annot

22/59

States:

o what are legal state
configurations?

o what is the type of the
implicit st attribute?

Transitions:

o what are legal
transitions?

o when is a transition
enabled?

o what effects do transi-
tions have?

what may happen on E?
what may happen on E, F?
can E, G kill the object?

2359



Sate Configuation
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The type of st is from now on a set of states, i.e. st : 2°

A set S; C S is called (legal) state configurations if and only if
top € S1, and

for each state s € Sy, for each non-empty region ) # R € region(s),
exactly one (non pseudo-state) child of s (from R) is in St i.e.

[{so € R| kind(so) € {st, fin}} N S1| = 1.

Sate Configuation

- 16 — 2014-01-15 — Shierstm —

The type of st is from now on a set of states, i.e. st : 2°

A set S; C S is called (legal) state configurations if and only if
top € S, and

for each state s € Sy, for each non-empty region () # R € region(s),
exactly one (non pseudo-state) child of s (from R) is in Sy, i.e.

[{s0 € R | kind(so) € {st, fin}} N S1| =1.

Examples:

24 /59
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Sate Configuation
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» The type of st is from now on a set of states, i.e. st : 2°

o Aset S; C S is called (legal) state configurations if and only if
e top € S1, and

o for each state s € S, for each non-empty region ) # R € region(s),
exactly one (non pseudo-state) child of s (from R) is in St i.e.

[{so € R| kind(so) € {st, fin}} N S1| = 1.

e Examples:

2459

A Partial Order on Sates

— 16 — 2014-01-15 — Shierstm —

The substate- (or child-) relation induces a partial order on states:
o top < s, forall s €5,
o s < ¢, forall s € child(s),
o transitive, reflexive, antisymmetric,

o s’ <sand s” <simplies s’ <s" ors” <¢.

25/59



A Partial Order on Sates
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The substate- (or child-) relation induces a partial order on states:
o top < s, forall s €S,
o s < ¢, forall s" € child(s),
o transitive, reflexive, antisymmetric,

o s’ <sand s” <simplies s’ <s" ors” <¢.

- s D - 5 D

E

w

.03 .(Ia
=3 _

Least Comnon Ancestor and Ting
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«+ The least common ancestor is the function lca : 25\ {#)} — S such that
o The states in Sy are (transitive) children of lca(S1), i.e.

lea(Sy) < s, forallse S; C S,

o lca(S1) is minimal, i.e. if § < s for all s € S1, then § < lca(Sh)
o Note: lca(S1) exists for all S; C S (last candidate: top).

25/59
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Least Comnon Ancestor and Ting
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+ The least common ancestor is the function lca : 2%\ {#)} — S such that
o The states in Sy are (transitive) children of lca(S1), i.e.

lea(Sy) < s, forallse S; C S,

o lca(Sy) is minimal, i.e. if § < s for all s € Sy, then § < lca(S;)
o Note: lca(S1) exists for all S; C S (last candidate: top).

1 4

.CIJ .CIJ
[ N~

VA VA
.»—\ ._. ~
V) V)
.oa .w ~

!

26/59

Least Comnon Ancestor and Ting

erstm
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o Two states s1,s9 € S are called orthogonal, denoted s; L so, if and only if

o they are unordered, i.e. s;1 £ $2 and s3 £ s1, and
o they “live” in different regions of an AND-state, i.e.

s, region(s) = {S1,..., 8.} A1 <i# j<mn:s1 € child"(S;) A s2 € child™(S;),

27 /59



Least Comnon Ancestor and Ting
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o Two states s, 52 € S are called orthogonal, denoted s; | sg, if and only if
o they are unordered, i.e. s;1 £ s3 and sy £ s1, and
o they “live" in different regions of an AND-state, i.e.

s, region(s) = {S1,..., 8.} 1 < i # j<n:s1 € child"(S;) A s2 € child"(S;),

1 4

ﬂ ﬂ
w w™>

.Yn .CIJ

= ="

.CIJ .CIJ
N [\l

!

2759

Least Comnon Ancestor and Ting
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o A set of states S; C S is called consistent, denoted by | S7,
if and only if for each s,s’ € Sy,

e s< ¢, or
o s’ <s, or
o 51 s

28/59



Least Comnon Ancestor and Ting
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A set of states S; C S is called consistent, denoted by | S7,
if and only if for each s,s’ € Sy,

s<s' or
s’ <s, or
sl s,

a

w

.Cl:) .Qn
—3 _

Legal Transitions
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A hiearchical state-machine (S, kind, region, —, 1, annot) is called well-
formed if and only if for all transitions t €—,
(i) source and destination are consistent, i.e. | source(t) and | target(t),
(ii) source (and destination) states are pairwise orthogonal, i.e.
forall s,s" € source(t) (€ target(t)), s L s,

(i) the top state is neither
source nor destination, i.e.

top & source(t) U source(t).

Recall: final states are
not sources of transitions.

28/59
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Legal Transitions
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A hiearchical state-machine (5, kind, region, —, 1, annot) is called well-
formed if and only if for all transitions ¢t €—,

(i) source and destination are consistent, i.e. | source(t) and | target(t),

(ii) source (and destination) states are pairwise orthogonal, i.e.
forall s,s" € source(t) (€ target(t)), s L &,

(i) the top state is neither

source nor destination, i.e. f
top & source(t) U source(t). A e

<
o \\E/

Recall: final states are
not sources of transitions.

Example:

The Depth of Sates

- 16 — 2014-01-15 — Shierstm —

depth(top) = 0,
depth(s’") = depth(s) + 1, for all s’ € child(s)

29/s59
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The Depth of Sates
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o depth(top) =0,
o depth(s') = depth(s) + 1, for all s € child(s)

Example:

Enaldednessin Hierarchical Sate-Machines

— 16 — 2014-01-15 — Shierstm —

o The scope (“set of possibly affected states”) of a transition ¢ is the least
common region of
source(t) U target(t).

30/59
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Enalednessin Hierarchical Sate-Machines
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The scope ( “set of possibly affected states”) of a transition ¢ is the least
common region of
source(t) U target(t).

Two transitions t1, o are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

Enakdednessin Hierarchical Sate-Machines

- 16 — 2014-01-15 — Shierstm —

The scope ( “set of possibly affected states”) of a transition ¢ is the least
common region of
source(t) U target(t).

Two transitions t1,to are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

The priority of transition ¢ is the depth of its innermost source state, i.e.

prio(t) := max{depth(s) | s € source(t)}

3159
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Enalednessin Hierarchical Sate-Machines
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The scope ( “set of possibly affected states”) of a transition ¢ is the least
common region of

source(t) U target(t).
Two transitions t1,to are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

The priority of transition t is the depth of its innermost source state, i.e.

prio(t) := max{depth(s) | s € source(t)}

A set of transitions T C— is enabled in an object u if and only if
T is consistent,
T is maximal wrt. priority,
all transitions in T' share the same trigger,
all guards are satisfied by o(u), and
for all t € T, the source states are active, i.e.

source(t) C o(u)(st) (C9).
31/59

Transitions in Hierarchical Sate-Machines
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Let T be a set of transitions enabled in u.
s .
Then (o,¢) {eons,Snd), (o, ) if
o'(u)(st) consists of the target states of ¢,

i.e. for simple states the simple states themselves, for composite
states the initial states,

o', €, cons, and Snd are the effect of firing each transition t € T
one by one, in any order, i.e. foreach t € T,

the exit transformer of all affected states, highest depth first,
the transformer of ¢,
the entry transformer of all affected states, lowest depth first.

~ adjust (2.), (3.), (5.) accordingly.

32/59
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Entry/Do/Exit Actions, Internal Transitions

Entry/Do/Exit Actions

— 16 — 2014-01-15 — Sentryexit —

In general, with each state
s € S there is associated

an entry, a do, and an exit
action (default: skip)

a possibly empty set of
trigger/action pairs called
internal transitions,

(default: empty). E,..

S1

entry

entry/ act]
do/actd°

tr[gd]/act

exit/ act$
Ei/actp,

E,/actg,

3359

entry/acts™™

do/actd®

exit
2

exit/act

., En, € &, 'entry’, ‘do’, 'exit’ are reserved names!

3459



Entry/Do/Exit Actions
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S1
entry
In general, with each state entr)//%ftl
. . (e}

s € S there is associated do/ act ' trigd)/act | entry/acte™
an entry, a do, and an exit zﬂt/acﬁm do/actde
action (default: skip) 1/actp, exit/ actgt
a possibly empty set of E ;
trigger/action pairs called \En/acte, )
internal transitions,

(default: empty). E1,...,E, € &, ‘entry’, 'do’, ‘exit’ are reserved names!

Recall: each action's supposed to have a transformer. Here: t_ ey, t, e, ...
acty acty

Taking the transition above then amounts to applying

tactf;";‘v o tact o tactgxl"’

instead of only
lact
~+ adjust (2.), (3.) accordingly.
3459

Internal Transitions

s )
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S1

entry

entry/ act]
d

do/ act{® _ trlgd]/act

exit/ act§"

Ei/actp,

entry/acts™™

do/actd®

exit/ act§¥"

E,/actg,

For internal transitions, taking the one for F1, for instance, still
amounts to taking only lacts, -

Intuition: The state is neither left nor entered, so: no exit, no entry.

~ adjust (2.) accordingly.

Note: internal transitions also start a run-to-completion step.
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S1

entry

entry/act]
d

do/ act{® ' trlgd]/act

exit/ act§"

E1 / actEl

entry/acty"™

do/ act$°

exit/ act§¥"

E,/actg,

For internal transitions, taking the one for F1, for instance, still
amounts to taking only Lactg, -

Intuition: The state is neither left nor entered, so: no exit, no entry.

~ adjust (2.) accordingly.

Note: internal transitions also start a run-to-completion step.

Note: the standard seems not to clarify whether internal transitions have
priority over regular transitions with the same trigger at the same state.

Some code generators assume that internal transitions have priority!
35/59

AlternativeMew: Entry/Exit/Internal as Abbreviations
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52

try[gd,]/ acty

entry
1

exit/ act§™ tra[gds]/acta
Ei/actg,

entry

entry/acts,

exit/ act§¥t

. as abbrevation for ...
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Alternative Miew: Entry/Exit/Internal as Abbreviations

trolgd,]/acto

entry

entry/act]
exit/ act
Ei/actg,

. as abbrevation for ...

(see later).
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Do Actions

try[gd,]/ acty

tralgdsy]/acts

S1

entry

entry/ act]
do/actd°

52
entry

entry/acts

exit/ act§™

That is: Entry/Internal/Exit don't add expressive power to Core State Machines.
If internal actions should have priority, s1 can be embedded into an OR-state

Abbreviation may avoid confusion in context of hierarchical states (see later).

36/59

entry

tr(gd]/act entry/act

exit/ act$
Ei/actp,

E,/actg,

do/actd®

exit/ act§™

Intuition: after entering a state, start its do-action.

If the do-action terminates,
then the state is considered completed,

otherwise,

if the state is left before termination, the do-action is stopped.
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S1

entry

entry/act]
do/actée

tr[gd]/act

exit/ act§"

E1 / actEl

E,/actg,

Intuition: after entering a state, start its do-action.

If the do-action terminates,

then the state is considered completed,

otherwise,

entry/acty"™

do/ act$°

exit/ act§¥"

if the state is left before termination, the do-action is stopped.

Recall the overall UML State Machine philosophy:

“An object is either idle or doing a run-to-completion step.”

Now, what is it exactly while the do action is executing...?

37/s9

The Concept of History, and Other Pseudo-Sates
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W @ What happens on...
/; Ra/ A/ o R,?
o R4?
o A B,C,S,R?
e A B,S,Rq?

o A, B,C,D,E,R,?

e A,B,C,D,Rq?

3959

Junction andChoice
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o
@0
 Junction (“static conditional branch”): Ny
N
>

e//Q

<
o Choice: (“dynamic conditional branch”) ﬁ<>/
AN

Note: not so sure about naming and symbols, e.g.,

I’d guessed it was just the other way round... 20
/59



Junction andChoice

>
\gm\\o
Junction (“static conditional branch”): N
7N
9@1/
good: abbreviation e,
2

unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

at best, start with trigger, branch into conditions, then apply actions

Choice: (“dynamic conditional branch”) ﬁ<>/
N
% Note: not so sure about naming and symbols, e.g.,
% I'd guessed it was just the other way round...
Junction andChoice
XN
\gm\\‘yo
Junction (“static conditional branch”): N
N
QQ»/
good: abbreviation e,
2
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unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

at best, start with trigger, branch into conditions, then apply actions

Choice: (“dynamic conditional branch”) ﬁ<>/
N

evil: may get stuck

40/'59

enters the transition without knowing whether there's an enabled path

at best, use “else” and convince yourself that it cannot get stuck
maybe even better: avoid

Note: not so sure about naming and symbols, e.g.,
I’d guessed it was just the other way round...
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Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

Can even be taken from a different state-machine for re-use.
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41 /50
Entry and Exit Point, Submachine State, Terminate
Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)
Can even be taken from a different state-machine for re-use.
Entry/exit points O ®

Provide connection points for finer integration into the current level,
than just via initial state.

Semantically a bit tricky:
First the exit action of the exiting state,
then the actions of the transition,
then the entry actions of the entered state,

then action of the transition from
the entry point to an internal state,

and then that internal state's entry action.
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Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

Can even be taken from a different state-machine for re-use.

Entry/exit points O®
Provide connection points for finer integration into the current level,
than just via initial state.

Semantically a bit tricky:
First the exit action of the exiting state,
then the actions of the transition,
then the entry actions of the entered state,

then action of the transition from
the entry point to an internal state,

and then that internal state’s entry action.
Terminate Pseudo-State X

When a terminate pseudo-state is reached,

the object taking the transition is immediately killed. 41750

Deferred Events in Sate-Machines
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For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:
Consider the following state machine:

F/

Assume we're stable in sy, and F' is ready in the ether.

In the framework of the course, F' is discarded.

Deferred Events: | dea

— 16 — 2014-01-15 — Sdefer —

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:
Consider the following state machine:

F/

Assume we're stable in s, and F' is ready in the ether.
In the framework of the course, I is discarded.

But we may find it a pity to discard the poor event

and may want to remember it for later processing, e.g. in sa,

in other words, defer it.

4359

4359



Deferred Events: | dea

— 16 — 2014-01-15 — Sdefer —

For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:
Consider the following state machine:

F/

Assume we're stable in sy, and F' is ready in the ether.
In the framework of the course, F' is discarded.

But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in ss,
in other words, defer it.

General options to satisfy such needs:

Provide a pattern how to “program” this (use self-loops and helper attributes).

Turn it into an original language concept.
43/'59

Deferred Events: | dea
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For ages, UML state machines comprises the feature of deferred events.

The idea is as follows:

Consider the following state machine:

F/

Assume we're stable in s, and F' is ready in the ether.
In the framework of the course, I is discarded.

But we may find it a pity to discard the poor event
and may want to remember it for later processing, e.g. in sa,
in other words, defer it.

General options to satisfy such needs:

Provide a pattern how to “program” this (use self-loops and helper attributes).

Turn it into an original language concept. (< OMG's choice)
4359
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Syntactically,
Each state has (in addition to the name) a set of deferred events.

Default: the empty set.

Deferred Events. Syntax and $mantics
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Syntactically,
Each state has (in addition to the name) a set of deferred events.

Default: the empty set.

The semantics is a bit intricate, something like
if an event E is dispatched,
and there is no transition enabled to consume FE,
and F is in the deferred set of the current state configuration,
then stuff E into some “deferred events space” of the object, (e.g. into the
ether (= extend €) or into the local state of the object (= extend o))

and turn attention to the next event.

4459
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Syntactically,
Each state has (in addition to the name) a set of deferred events.

Default: the empty set.

The semantics is a bit intricate, something like
if an event E is dispatched,
and there is no transition enabled to consume FE,
and FE is in the deferred set of the current state configuration,
then stuff E into some “deferred events space” of the object, (e.g. into the
ether (= extend €) or into the local state of the object (= extend o))

and turn attention to the next event.
Not so obvious:

Is there a priority between deferred and regular events?

Is the order of deferred events preserved?

[Fecher and Schénborn, 2007], e.g., claim to provide semantics for the complete
Hierarchical State Machine language, including deferred events.

Activeand Passve Objeds[Harel and Gery, 1997

44/'59
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What abou non-Active Objeds?
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Recall:

We're still working under the assumption that all classes in the class
diagram (and thus all objects) are active.

That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.
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What abou non-Active Objeds?
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Recall:

We're still working under the assumption that all classes in the class
diagram (and thus all objects) are active.

That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.

But the world doesn’t consist of only active objects.

For instance, in the crossing controller from the exercises we could wish to have
the whole system live in one thread of control.

So we have to address questions like:
Can we send events to a non-active object?
And if so, when are these events processed?

etc.

46/59



Active and Passve Objeds. Nomenclature
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[Harel and Gery, 1997] propose the following (orthogonal!) notions:
A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.
An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

A passive object doesn't.

Activeand Passve Objeds. Nomenclature
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[Harel and Gery, 1997] propose the following (orthogonal!) notions:

A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.

An active object has (in the operating system sense) an own thread:

an own program counter, an own stack, etc.
A passive object doesn't.

A class is either reactive or non-reactive.
A reactive class has a (non-trivial) state machine.

A non-reactive one hasn't.

47 /59
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Active and Passve Objeds. Nomenclature

[Harel and Gery, 1997] propose the following (orthogonal!) notions:
A class (and thus the instances of this class) is either active or passive
as declared in the class diagram.
An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

A passive object doesn't.

A class is either reactive or non-reactive.
A reactive class has a (non-trivial) state machine.
A non-reactive one hasn't.

Which combinations do we understand?
active | passive

reactive

non-reactive

— 16 — 2014-01-15 — Sactpass —
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Passve and Reactive

So why don't we understand passive/reactive?
Assume passive objects u; and us, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

~ 16 — 2014-01-15 — Sactpass —
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So why don’t we understand passive/reactive?

Assume passive objects uq and ug, and active object wu,

and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?

Do run-to-completion steps still interleave...?

Reasonable Approaches:

Avoid — for instance, by

require that reactive implies active for model well-formedness.

requiring for model well-formedness that events are never sent to
instances of non-reactive classes.

Explain — here: (following [Harel and Gery, 1997])

Delegate all dispatching of events to the active objects.

Passve Reactive Classes
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Firstly, establish that each object u knows, via (implicit) link itsAct,

48/59

the active object w4 which is responsible for dispatching events to wu.

If u is an instance of an active class, then u, = u.

itsAct

[]1

n
Cl CZ
1 1
dest dest

(signal)) ({(stgnal))

Ec, Ec,

itsAct

D

|1 dtsAct

dest

{(signal))
Ep

1
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Passve Reactive Classes
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Firstly, establish that each object u knows, via (implicit) link itsAct,
the active object u,.: which is responsible for dispatching events to .

If u is an instance of an active class, then u, = u.

itsAct

0

u 2 Cy ug : Co Ug : D |1 dtsAct
itsAct

Sending an event:

Establish that of each signal we
have a version E¢ with an
association dest : Cp,1, C € F.

Then n!E in u; : C1 becomes:

Create an instance u. of Ec, and
set ue's dest to uq 1= o(u1)(n).
Send to uq := o(o(u1)(n))(itsAct),

ie., & =e® (Ua,ue).
49/'59
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Firstly, establish that each object u knows, via (implicit) link itsAct,
the active object w4 which is responsible for dispatching events to wu.

If u is an instance of an active class, then u, = u.

itsAct
[
n
uy : Oy ug : Co U, 1 D |1 dtsAct
— — itsAct
Sending an event: Dispatching an event:

Establish that of each signal we Observation: the ether only has
have a version E¢c with an events for active objects.
association dest : Co,1, C' € % Say . is ready in the ether for u,.

B . .
Then n!E in uy : C1 becomes: Then u, asks o(ue)(dest) = uq to
Create an instance u. of E¢, and process u. — and waits until
set u.'s dest to ug := o(u1)(n). completion of corresponding RTC.
Send to u, = o(o(u1)(n))(itsAct), uq may in particular discard event.

ie., & =@ (Ua, ue).
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And What Abou Methods?

50/s59

And What Abou Methods?
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o In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

o In general, there are also methods.
o UML follows an approach to separate
o the interface declaration from

e the implementation.
In C++ lingo: distinguish declaration and definition of method.
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In the current setting, the (local) state of objects is only modified by
actions of transitions, which we abstract to transformers.

In general, there are also methods.

UML follows an approach to separate
the interface declaration from
the implementation.
In C++ lingo: distinguish declaration and definition of method.

In UML, the former is C
called behavioural feature
and can (roughly) be €1 f(Tinse s 7imy) 71 P
a call interface f(71,,...,7,) 1 71 & F(r21,- -, T2ny) 1 72 Po
{(signal)) E

a signal name F

Note: The signal list is redundant as it can be looked up in the state machine

of the class. But: certainly useful for documentation.

Behavioural Features c
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51 f(TLlﬂ"'vTLnl) 1T P1
52 F(Tz,l,...77’2,n2) 1 T2 P2
(signal)) E

Semantics:

The implementation of a behavioural feature can be provided by:

An operation.

The class’ state-machine ( “triggered operation”).

51/59
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61 f(‘l'l‘l, . 7‘1‘1‘7,,1) T P]
& F(T2,1,...,T2ny) i T2 P2
(signal)) E

Semantics:
The implementation of a behavioural feature can be provided by:
An operation.

In our setting, we simply assume a transformer like T.

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

In a setting with Java as action language: operation is a method body.

The class’ state-machine (“triggered operation”).

52/59
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51 f(TLla"'vTLTbl) T P1
52 F(Tz,l,...77’2,n2) 1 T2 P2
(signal)) E

Semantics:

The implementation of a behavioural feature can be provided by:

An operation.

In our setting, we simply assume a transformer like T%.

It is then, e.g. clear how to admit method calls as actions on transitions:
function composition of transformers (clear but tedious: non-termination).

In a setting with Java as action language: operation is a method body.

The class’ state-machine ( “triggered operation”).
Calling F' with ny parameters for a stable instance of C'
creates an auxiliary event F' and dispatches it (bypassing the ether).
Transition actions may fill in the return value.
On completion of the RTC step, the call returns.
For a non-stable instance, the caller blocks until stability is reached again.
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C
& f(mia, e Tiny) i1 Py
& F(T21,...,Tomy) 1 T2 P2
{(signal)) E

Visibility:
Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.
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C

& f(mia,. o, Tiny) i1 Py
& F(T2,1,...,T2m,) i T2 P2
(signal)) E

Visibility:
Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

Useful properties:

concurrency
concurrent — is thread safe
guarded — some mechanism ensures/should ensure mutual exclusion
sequential — is not thread safe, users have to ensure mutual exclusion

isQuery — doesn't modify the state space (thus thread safe)

For simplicity, we leave the notion of steps untouched, we construct our
semantics around state machines.

Yet we could explain pre/post in OCL (if we wanted to).
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Discusson.

can then “be” in enclosing state without being in any substate; or assume

by considering the order in which things have been added to the CASE

Exercise: Search the standard for “semantical variation point”.

|
|
q
i
Semantic Variation Points
Pessimistic view: They are legion...
e For instance,
e allow absence of initial pseudo-states
one of the children states non-deterministically
o (implicitly) enforce determinism, e.g.
tool's repository, or graphical order
o allow true concurrency
|
|
8
T
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Pessimistic view: They are legion...
For instance,

allow absence of initial pseudo-states
can then “be” in enclosing state without being in any substate; or assume
one of the children states non-deterministically

(implicitly) enforce determinism, e.g.
by considering the order in which things have been added to the CASE
tool's repository, or graphical order

allow true concurrency
Exercise: Search the standard for “semantical variation point”.

[Crane and Dingel, 2007], e.g., provide an in-depth comparison of
Statemate, UML, and Rhapsody state machines — the bottom line is:

the intersection is not empty
(i.e. there are pictures that mean the same thing to all three communities)

none is the subset of another
(i.e. for each pair of communities exist pictures meaning different things)
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Pessimistic view: They are legion...
For instance,

allow absence of initial pseudo-states
can then “be” in enclosing state without being in any substate; or assume
one of the children states non-deterministically

(implicitly) enforce determinism, e.g.
by considering the order in which things have been added to the CASE
tool's repository, or graphical order

allow true concurrency
Exercise: Search the standard for “semantical variation point”.

[Crane and Dingel, 2007], e.g., provide an in-depth comparison of
Statemate, UML, and Rhapsody state machines — the bottom line is:

the intersection is not empty
(i.e. there are pictures that mean the same thing to all three communities)

none is the subset of another
(i.e. for each pair of communities exist pictures meaning different things)

Optimistic view: tools exist with complete and consistent code generation.
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Course Map
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O

|

You ae here.

B = (Qsp,q0, Av,—sp, Fsp)

(c ,Sndo)
Aconse, ndo), (01,€1) - <" wr = ((04, consy, Sndy)); e

G=(NEf)

oD
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