Sdtware Design, Modelling andAnalysisin UML

Ledure 20: Inheritancel

201402-03

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

What abou non-Active Objeds?

Recall:
» We're still working under the assumption that all classes in the class
diagram (and thus all objects) are active.
« That is, each object has its own thread of control and
at any time ready to process an event from the ether.

(if stable)

But the world doesn't consist of only active objects.

For instance, in the crossing controller from the exercises we could wish to have
the whole system live in one thread of control.

So we have to address questions like:
» Can we send events to a non-active object?
» And if so, when are these events processed?

o etc.

Contents & Goals

Last Lecture:

o Live Sequence Charts Semantics

This Lecture:
« Educational Objectives: Capabilities for following tasks/questions.
» What's the Liskov Substitution Principle?
» What is late/early binding?
* What is the subset, what the uplink semantics of inheritance?
» What's the effect of inheritance on LSCs, State Machines, System States?
* What's the idea of Meta-Modelling?

« Content:
» Quickly: Behavioural Features, Active vs. Passive
o Inheritance in UML: concrete syntax
« Liskov Substitution Principle — desired semantics
« Two approaches to obtain desired semantics
* The UML Meta Model

e

Active and Passve Objeds: Nomenclature

[Harel and Gery, 1997] propose the following (orthogonall) notions:

« Aclass (and thus the instances of this class) is either active or passive
as declared in the class diagram.
+ An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.
« A passive object doesn't.

o A class is either reactive or non-reactive.
« A reactive class has a (non-trivial) state machine.
« A non-reactive one hasn't.

Which combinations do we understand?
: | active | passive
7

reactive v
non-reactive | (V) w?

ro203

0

Active and Passve Objeds[Harel andGery, 1997

Passve and Reactive

» So why don't we understand passive/reactive?
» Assume passive objects u; and uz, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

Reasonable Approaches:
« Avoid — for instance, by
« require that reactive implies active for model well-formedness.
« requiring for model well-formedness that events are never sent to
instances of non-reactive classes.

Explain — here: (following [Harel and Gery, 1997])

« Delegate all dispatching of events to the active objects.

Passve Reactive Classes Passve Reactive Classes

© Firstly, establish that each object u knows, via (implicit) link itsAct,
the active object .., which is responsible for dispatching events to u.
&

o If u is an instance of an active n_BMIEnEm il o If w is an instance of an active class, then u, = u.
OHRenchveE—Tiere oripieat D Zrem = And What About Methods?

« Firstly, establish that each object u knows, via (implicit) link itsAct,
the active object ta.; which is responsible for dispatching events to u.

< itsAct /7
I} I
q o
* __l itsAct u:C ug:Cy v|.: D v itsAct
itsAct U, _ T — ' — itsAct
T
E dst
e MAN
(signat)) \ Sending an event: Dispatching an event:
Ec, y .
- el « Establish that of each signal we + Observation: the ether only has
iunplici have a version Ec with an events for active objects.
by Rhmps>: faonce) association dest : Co1, € €€ Say u, is ready in the ether for u,.
B .. » e, H L O .
11 (s csitloout o e ThennlBinu:Cy becomes: « Then u, asks o(ue)(dest) = ug to
3 3 o Create an instance u. of E¢, and process u. — and waits unti H
8 3 set u,'s dest to ug 1= o(ua)(n) completion of corresponding RTC. 3
H i © Send to u, := o(o(u1)(n))(itsAct), o uy may in particular discard event. H
) - ie, & =c® (ta,ue).
' 700 e 899
And What Abou Methods? Behavioural Features Behavioural Features: Visibility andProperties
. . B & flma, i) im Py
o In the current setting, the (local) state of objects is only mo & MMJ. a; Vi Py
actions of transitions, which we abstract to transformers. {(signal)) E
& flna
« In general, there are also methods. Semantics: & Flra,
X : A . (signal) B
+ UML follows an approach to separate « The implementation of a behavioural feature can be provided by: e
o the interface declaration from + An operation. . « Visibility:
. ;) O~ o Extend typing rules to sequences of actions such that
o the implementation. In our setting, we simply assume a transformer like T’. ll-typed acti Iy call bl hod:
a well-typed action sequence only calls visible methods.
In C++ lingo: distinguish declaration and definition of method. It is then, e.g. clear how to admit method calls as actions on transitions: P 4 4
function composition of transformers (clear but tedious: non-termination). N
» Useful properties:
« In UML, the former is C In a setting with Java as action language: operation s a method body. .-t . concurrency
called behavioural feature « The class' state-machine (“triggered operation”). aﬁ » e concurrent — is thread safe
and can (roughly) be & frm o) i n P + Calling I with 1 parameters for a stable instance of C o - 4 o guarded — some mechanism ensures/should ensure mutual exclusion
4 + o call interface f(n)i & Flran....7o, >, 3 creates an auxiliary event £ and dispatches it (bypassing the ether). . o sequential — is not thread safe, users have to ensure mutual exclusion
H i ! ! ((signal) E z © Transition actions may fill in the return value. i « isQuery — doesn't modify the state space (thus thread safe)
i « asignal name E ki « On completion of the RTC step, the call returns. !
k5 Note: The signal list is redundant as it can be looked up in the state machine g « For a non-stable instance, the caller blocks until stability is reached again. g « For simplicity, we leave the notion of steps untouched, we construct our
g . g g semantics around state machines.
of the class. But: certainly useful for documentation. 3) o
s Yet we could explain pre/post in OCL (if we wanted to).
' 1100

10799

Sate Machines: Discusson.

Inheritance Syntax

12/

15/99

Semantic Variation Points

e

Pessimistic view: They are leg

« For instance,

o allow absence of initial pseudo-states
can then “be" in enclosing state without being in any substate; or assume
mn_s_z

one of the children states non-determ

o (implicitly) enforce determinism, e.g.
by considering the order in which things have been added to the CASE
tool's repository, or graphical order

o allow true concurrency

Exercise: Search the standard for “semantical variation point”.

« [Crane and Dingel, 2007, e.g., provide an in-depth comparison of
Statemate, UML, and Rhapsody state machines — the bottom

o the intersection is not empty
. there are pictures that mean the same thing to all three communities)

e is:

e is the subset of another

. for each pair of communities exist pictures meaning different things)

Optimistic view: tools exist with complete and consistent code generation.

13/
bebaviowal
P Abstract yntax 4 watiols
spuatins
Recall: a signature (with signals) is a tuple ./|=(.7,,V, atr,&).
: inkas ltan
Now (finally): extend to v inlacitirce

S = (7,6, V,atr, &, F,mth, <))

where F'/mth are methods, analogously to attributes and

a CTE (6 x 6) u(E\EXENE)

is a generalisation relation such that C' < C for no C € ¢ (“acycl

C 4D reads as
« C'is a generalisation of D,

© D inherits from C,
© D is a sub-class of C,

o C'is a super-class of D,

16/99

Course Map

b
20

< wx = (o, consy, Sndy)) ey

14/

Q={&ad,
ARG,
DGy

A/,,np lacts feown o

va G

Reall: Reflexve Transitive Closure of Generalisation

ition. Given classes Cyy, Cy, D € €, we say D inherits from
C1 if and only if there are C§,...Cy, Ct,...C{* € € such

Co <C3<...CEa Gy <Cl<...07" < D.

We use ‘=’ to denote the reflexive, transitive closure of ‘<.

In the following, we assume
« that all attribute (method) names are of the form
Cwv, CeCUE (C=f, Ce%),

« that we have C:v € atr(C) resp. C:if € mth(C) if and onl
appears in an attribute (method) compartment of C' in a class diagram.

We still want to accept “context C' inv:v < 0", which v is meant? Later!
17

Desired Semartics of Spedalisation: Suliyping

Inheritance Desired Semantics

Desired Ssmartics of Spedalisation: Suliyping

There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The principle of type substitutabil
(Liskov Substitution Pri

[Liskov, 1988, Liskov and Wing, 1994].
ciple (LSP).)

“If for each object 0 of type S there is an object 0, of type T such that
for all programs P defined in terms of T,
the behavior of P is unchanged when o, is substituted for 0y
then S is a subtype of 7"

S wh-bge of T:6 Vo, e S0, e TYPr o [71G,) = L[6,)

20/99

There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994].
(Liskov Substitution Principle (LSP).)

“If for each object oy of type S there is an object 0 of type T such that
for all programs P defined in terms of T,
the behavior of P is unchanged when o, is substituted for 0,
then S is a subtype of 7"

In other words: [Fischer and Wehrheim, 2000]
“An instance of the sub-type shall be usable whenever an instance
of the supertype was expected,
without a client being able to tell the difference.”

ifference”?

So, what's “usabl ient”? And what's a

1899

20799

@ e Nnz q/ [¢1hpd e

199

TCPYCs it uid) bt
. GTTRY (s Ek sl
« OCL: wwsh be &fuet! Sequence Diagrams:

« context C'inv:z >0

« Actions:
o itsCr=0) wust
« itsC.£(0) eN. w
o ilsC1F

« Triggers:
«EL.]/...

21/

“.aclient.’?

“An instance of the sub-type shall be usable whenever an instance of the supertype
was expected, without a client being able to tell the difference.”

« Narrow interpretation: another object in the model

« Wide interpretation: another modeler.

2205

“..can't tell difference.”? ——

Tt
Snt) : Int

AN
w O s D I
D

« Sequence Diagram: wlizF&l € L(By) implies w € L(BL).
Ncn\cau_

2
W) IXC)

(signal)) B

{signal) F

25/99

..can't tell difference.” ?

0140203

{isignal) E

7 (signat) 7

o I[context C inv: z > 0](o1,0) vs. I[context C inv : x > 0](a2,)

2309

Motivations for Generalisation

20140209

0

Re-use,

Sharing,

Avoiding Redundancy,

Modularisation,

» Separation of Concerns,
 Abstraction,

« Extensi

— See m,m\vumm\nb,wm on object-oriented analysis, development, programming.

26/99

“..can't tell difference.”? c

o Int (signal)) E
T - It Jﬂ
w:C up: D RW

D 7 (signal)) F
« Triggers, Actions:

(oolTZ], o) LN (o, 1)
S20) LSP

is possible, then Ly, /wl L fue]
N (conso Sndo) Y

(00, €0) —— = (o1,21)

should be possible — sub-type does less on inputs of super-type.

for Bt v, D) s o pgu defivion of L./]

2409

What Does [Fischer andWehrheim, 2000 Mean for UML?

‘An instance of the sub-type shall be usable whenever an instance of the supertype
was expected, without a client being able to tell the difference.”

+ Wanted: sub-typing for UML.
- With

we don't even have usability.
« It would be nice, if the well-formedness rules and semantics of

would ensure Dy is a sub-type of C:

o that Dy objects can be used interchangeably by everyone who

using C''s,

 is not able to tell the difference

. see unexpected behaviour).
2790

“..shal beusable..” for UML

Excursus: Late Binding o Behavioural Features

Easy: Satic Typing G C

B
v J(Int) - Int JUInt) < Int

signal))

|«
Dy
Given: “sn; =+ Bool
f(Float) : Int

signal)) F

Wanted:
« &> 0 also well-typed for Dy
« assignment itsC1 := itsD1 being well-typed
o itsCla =0, itsC1.f(0), itsC1 | F
being well-typed (and doing the right thing)

Approach:
= Simply define it as being well-typed,
adjust system state definition to do the right thing.

2805

Late Binding

What transformer applies in what situation? (Early (compile time) binding.)

f not overridden in D. f overridden in D

_of

someC > £()

someD -> £()

someC -> £()

What one could want is something different: (Late binding.)

someC > £()

2 someD > £()

someC -> £()

ro203

3100

2909

32/99

Satic Typing Cont’d

F(int) - Int

Dy

7(Float) < Int

Notions (from category theory):

nvariance,
 covariance,

= contravariance.

We could call, e.g. a method, sub-type preserving, if and only

« accepts more general types as input (contravariant),
« provides a more specialised type as output (covariant).
This is a notion used by many programming languages — and easily type-checked

30799

Late Binding in the Sandad andProgrammning Lang

+ In the standard, Section 11.3.10, “CallOperationAc
“Semantic Variation Points
The mechanism for determining the method to be invoked as a
result of a call operation is unspecified.” [OMG, 2007b, 247]

In C++,
« methods are by default “(early) compile time binding”,
o can be declared to be “late binding" by keyword “virtual”,

« the declaration applies to all inheriting classes.

In Java,
« methods are “late binding

« there are patterns to imitate the effect of “early binding”

Exercise: What could have driven the designers of C++ to take that approach?

3300

Wth Only Early Binding...

Late Binding in the Standard andProgramning Lang

« In the standard, Section 11.3.10, “CallOperationAction”: » ..we're done (if we realise it correctly in the framework).
“Semantic Va n Points o Then

The mechanism for determining the method to be invoked as a R N
result of a call operation is unspecified.” [OMG, 2007b, 247] Backto the Main Track “...tell the difference.” for UML

if we're calling method f of an object u,

which is an instance of D with C < D

In C++, a k,

» methods are by default “(early) compile time binding”, o then we (by definition) only see and change the C-part
o can be declared to be “late binding” by keyword © We cannot tell whether u is a C or an D instance.

ural /dynamic subtyping.

So we immediately also have beha

nheriting classes.

« the declaration applies to a

In Java,
* methods are “late binding”;
o there are patterns to imitate the effect of “early binding”

Exercise: What could have driven the designers of C++- to take that approach?

Note: late binding typically applies only to methods, not to attributes.

‘ (But: getter/setter methods have been invented recently.)
330 34/ ' 35/
Difficult: Dynamic Suliyping e Difficult: Dynamic Suliyping < | SubTyping Principles Cont’d
T T = In the standard, Section 7.3.36, “Operation’
SUnt) In fdnt) : In "Semantic Variation Points
_ _ (-] When operations are redefine in a specialzation, rules regarding
D D invariance, i or c iance of types and ti
o C::f and D::f are type compatible, o C::f and D::f are type compatible, ine whether the ialized classifier is i for its more
but D is not necessarily a sub-type of C. f(Int) : Int but D is not necessarily a sub-type of C. f(Int) : Int general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]
o Examples: (C++) « Examples: (C++)
int C::f(int) { int D::f(int) { int C::f(int) { int D::f(int) {
return 0; Vs, return 1; return 0; vs. return 1;
I8 b I8
£ £ int C::f(int) { int D::f(int x) { H
S return (rand() vs. return (x % 2);
g H b } g
i 36/ ' 370

' 36/09

SubTyping Principles Cont'd SubTyping Principles Cont’d

 In the standard, Section 7.3.36, “Operation”: « In the standard, Section 7.3.36, “Operation
‘Semantic Variation Points “Semantic Variation Points
[..] When operations are redefined in a specialization, rules regarding [...] When operations are redefined in a specialization, rules regarding
nvariance, covariance, or contravariance of types and pr i nvariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106] respect to redefinition of operations.” [OMG, 2007a, 106]

« So, better: call a method sub-type preserving, if and only if it
nt), (i) accepts more input values (contravariant),
(ii) on the old values, has fewer behaviour (covariant)

+ So, better: call a method sub-type preserving, i and only if it
(i) accepts more input values (contravar
(ii) on the old values, has fewer behaviour (covariant).

Note: Fhis (ii) is no longer a matter of simple type-checking! Note: Fhis (ii) is no longer a matter of simple type-checking!

« And not necessarily the end of the stor

» One could, e.g. want to consider execution time.
 Or, like [Fischer and Wehrheim, 2000], relax to “fewer observable
behaviour”, thus admitting the sub-type to do more work on inputs.

Note: “testing” differences depends on the granularity of the semantics.

e0203

370 370

Ensuring SubTyping for State Machines Ensuring SubTyping for State Machines

. . . . 7aN
« In the CASE tool we consider, multiple classes « In the CASE tool we consider, multiple classes
in an inheritance hierarchy can have state machines. o in an inheritance hierarchy can have state machines. I

« But the state machine of a sub-class cannot be drawn from scratch.
« Instead, the state machine of a sub-class can only be obtained by
applying actions from a restricted set to a copy of the original one.
Roughly (cf. User Guide, p. 760, for details),
= add things into (hierarchical) states,
« add more states,

 attach a transition to a different target (limited).

0

3800 3899

SubTyping Principles Cont'd

 In the standard, Section 7.3.36, “Operation’
‘Semantic Variation Points

[..] When operations are redefined in a specialization, rules regarding
invari 3 i , or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with
respect to redefinition of operations.” [OMG, 2007a, 106]

« So, better: call a method sub-type preserving, if and only if it
(i) accepts more input values (contravariant),
(ii) on the old values, has fewer behaviour (covariant).
Note: Fhis (ii) is no longer a matter of simple type-checking!

» And not necessarily the end of the story:

« One could, e.g. want to consider execution time.

» Or, like [Fischer and Wehrheim, 2000], relax to “fewer observable
behaviour”, thus admitting the sub-type to do more work on inputs.

Note

esting” differences depends on the granularity of the semantics.

+ Related: “has a weaker pre-condition, (contravariant),

? has a stronger post-condition (covariant). .
o
Ensuring SubTyping for State Machines
c
» In the CASE tool we consider, multiple classes
in an inheritance hierarchy can have state machines. b
« But the state machine of a sub-class cannot be drawn from scratch.
« Instead, the state machine of a sub-class can only be obtained by
applying actions from a restricted set to a copy of the original one.
Roughly (cf. User Guide, p. 760, for details),
« add things into (hierarchical) states,
 add more states,
« attach a transition to a different target (limited)
« They ensure, that the sub-class is a behavioural sub-type of the super
: class. (But method implementations can still destroy that property.)
9 o Technically, the idea is that (by late binding) only the state machine of the most
H specialised classes are running.
8 By knowledge of the framework, the (code for) state machines of super-classes is sti
R accessible — but using it is hardly a good idea.
! 38/

Towards System Sates Towards System Sates

Wanted: a formal representation of “if C' < D then D ‘is a’ C"”, that

Wanted: a formal representation of “if C' < D then D ‘is a’ C", that
(i) D has the same attributes and behavioural features as C, and (i) D has the same attributes and behavioural features as C, and

es) can replace C' objects.

D objects

s) can replace C' objects.

Domain Inclusion Smartics

We'll discuss two approaches to semantics:

» Domain-inclusion Semantics (more theoretical)

) « Uplink Semantics (more technical)

' 39/ 3909 40150
Domain Inclusion Sructure Domain Inclusion System Sates Preliminaries: Expresson Normalisation
Let ¥ = (7,%,V,atr,&, F, mth,) be a signature. Now: a system state of . wrt. 2 is a type-consistent mapping Recall:

« we want to allow, e.g., “context D inv:v <
Now a structure & 0 P(E) = (V= (2(T)VI(6,1) U P(6.)) + we assume fully qualified names, .g. C
« [as before] maps types, classes, associations to domains, that is, for all u € dom(o) N 2(C), Intuitively, v shall denote the
. “most special more general” C::v according to <.
[for completeness] methods to transformers, + [as before] o(w)(v) € D(r) if v: T, 7€ T or 7€ {Cuy Cou}- P g v ing
« [as before] indentities of instances of classes not (transitively) related by
generalisation are disjoint, « [changed] dom(o(u)) = Ug, <c atr(Co),
+ [changed] the indentities of a super-class comprise a Exampl §
sub-classes, i.e. i ¢
vCeew:2(0)2 |J 2(D). — et
- _a

= H D

3 @ Int

g g y:Int

" Note: the old setting coincides with the special case < = H

& = Note: the old setting still coincides with the special case <1 = ().

i 430

' 41j00 42790

Preliminaries: Expresson Normali sation vt

Recall:

* we want to “context D inv:v <0".

low, e.g.

 we assume fully qualified names, e.g. C::v.
Intuitively, v shall denote the

“most special more general” C'::v according to <.

To keep this out of typing rules, we assume that the following normalisation
has been applied to all OCL expressions and all actions.
+ Given expression v (or f) in context of class D, as determined by, e.g.
© by the (type of the) navigation expression prefix, or
« by the class, the state-machine where the action occcurs belongs to,
« similar for method bodies,

+ normalise v to (= replace by) C::v,

« where C'is the greatest class wrt. “<" such that
« €< Dand C:w € atr(C).

435

More Interesting: Well-Typed-ness

« We want : Int

context D inv:v <0

to be well-typed.

Currently it isn't because

weapry) : ¢ — 7(v)
but A+ self : 7.

(Because 7 and 7¢ are s

different types, although dom(7p) C dom(7¢).)

So, add a (first) new typing rule
AF expr:p
_ =< D. |
LTQﬁfﬂOl«Q\U (Inh)

Which is correct in the sense that, if “ezpr’ is of type 7p, then we can use it
everywhere, where a 7¢ is allowed.

The system state is prepared for that.

45/09

Preliminaries: Expresson Normalisation (o]

e0203

Recall:

© we want to “context D inv:v <0".

low, e.g.

« we assume fully qu: d names, e.g. C'

Intuitively, v shall denote the
“most special more general” C::v according to <.

To keep this out of typing rules, we assume that the following normalisa
has been applied to all OCL expressions and all actions.

« Given expression v (or f) in context of class D, as determined by, e.g.
© by the (type of the) navigation expression prefix, or
« by the class, the state-machine where the action occcurs belongs to,

o similar for method bodies,

+ normalise v to (= replace by) C:

« where C'is the greatest class wrt. "<" such that
« C <D and C:w € atr(C).
If no (unique) such class exists, the model is considered not well-formed; the
expression is ambiguous. Then: explicitly provide the qualified name

4390

Wl -Typed-nesswith Visibility Cont’d

#0203 - Sdomine!

0

A,DF expr: e
A,DF Cv(eapr) : 7
A,DF expr:ro
A,DF Cro(eapr) : 7
A,DF expr: 7o
ADF Cvo(eapr): 7'
2 7,6,v0, P) € atr(C).

E=+ (Pub)

E=#, (Prot)

(::

Example:

context/
inv

(n)or <0 (o2 <0 | (mJvs <0

46/90

OCL Syntax and Typing
» Recall (part of the) OCL syntax and typing: reV,C,De?
eapr i= v(eapry) 7o — 7(0), iTed
[r(eapry) :7¢ = 7D, if r: Doy

[r(eapry) :7c — Set(rp), ifr:D.

The definition of the semantics remains (textually) the same.

Saisfying OCL Constraints (Domain Inclusion)

Let M =(€2,62,5#,.9) be a UML model, and 2 a structure.

We (continue to) say M |= expr for context C' inv : expry € Inv(M) iff
7
=eapr
V= (04 e)ien € [M] VieN VYuedom(o;)N2(C):
Ieaprol (o {self = u}) = 1.

M is (still) consistent if and only

ies all constraints in Inv(M).

Example:

44795

47j00

Inheritance and Sate Machines: Triggers

Semantics of Method Call s

Transformers (Domain Inclusion)
. + Non late-binding: clear, by normalisation. « Wanted: triggers shall also be sensitive for inherited events,
« Transformers also remain the same, e.g. [VL 12, p. 18] " sub-class shall execute super-class’ state-machine (unless overridden).
« Late-binding:
update(expry, v, expry) : (0.€) — (0’,€) Construct a method call transformer, which is applied to all method calls. Ccome snd)
(0,0 LeomsSmd_ 1 i
ith -
" "= ofu o(u)[v e I 1(o)]] « Ju € dom(e) N P(C) Fuz € P() : ur: € ready(e, u)
o =oluotu) ewprallo « w s stable and in state machine state s, i.e. o(u)(stable) = 1 and o(u)(st) = s,
« a transition is enabled, i.e

3 (s, F, eapr, act,s') € (SMc) : F = E A [enpr](3) = 1

where u = I[expr,](
where & = ofu.params ;).

and
« (0",&') results from applying tuc. to (,€) and removing u from the ether, i.e.
(0",¢') = toce(d,e S up),

o' = (0" [u.st v s, w.stable > b,u.params ; — O))|z€)\ (g

where b depends
« If u becomes stable in ', then b= 1. It does become stabl
is no transition without triger enabled for u in (o, ¢')
» Otherwise b = 0.
« Consumption of u and the side effects of the act

if and only if there

n are observed,

4805 49/00 ! cons = {(u, (E,o(ur)))}, Snd = Obs,,, (&, & uk). 50790
Domain Inclusion andInteractions Uplink Semantics
o ldea:
¢ D C « Continue with the existing definition of structure, i.e. disjoint
5 . . domains for identities.
C_u__ nk Semantics « Have an implicit association from the child to each parent part
F F (similar to the impl
c
It
» Similar to satisfaction of OCL expressions above:
« An instance line stands for all instances of C' (exact or inheriting). W
« Satisfaction of event observation has to take inheritance D
into account, too, so we have to fix, e.g.
. .) « Apply (a different) pre-processing to make appropriate use of that
£ , cons, Snd |5 E; : B iation, e.g. rewrite (C++)
if and only if . w =0
H ((x) sends an F-event to Sy where E < F. ‘ inDto
; uplinke ->x = 0, S

52/99

i + Note: C-instance line also binds to C’-objects. 510

Pre-Processng for the Uplink Semartics

« For each pair C' <1 D, extend D by a (fresh) association
uplink e : C with p=[1,1], £ =+

(Exercise: public necessary?)

« Given expression v (or f) in the context of class D,

o let C' be the smallest class wrt. “<" such that

« C=D,and

« Ciw € atr(D)

then there exists (by definition) C < Cy <1... <9 C,, < D,
+ normalise v to (= replace by)

uplink, => - => uplink, .C:iv

if no (unique) smallest class exists,
the model is considered not well-formed; the expression is ambiguous.

.
>

@
=2

54/

Transformers (Uplink)

« What has to change is the create transformer:
create(C, expr,v)
« Assume, Cs inheritance relations are as follows.

Ci1<...<4C1m, <C,

Copt Ao A Cpyp, < C.

« Then, we have to
» create one fresh object for each part, e.g.

UL Ly ULy ey UL ey U s
« set up the uplinks recursively, e.g.

o(ur)(uplinke,) = ui,1.
« And, if we had constructors, be careful with their order.

5799

Uplink Structure, System State, Typing

« Definition of structure remains unchanged.
» Definition of system state remains unchanged.

« Typing and transformers remain unchanged —
the preprocessing has put everything in shape.

55/9

Late Binding (Uplink)

» Employ something similar to the “mostspec” trick (in a minute!). But the result
is typically far from concise.
(Related to OCL’s isKind0f() function, and RTTI in C++.)

ro203

0

58/99

Saisfying OCL Constraints (Uplink)

o let M =(62,09, %4, 5) be a UML model, and Z a structure.

» We (continue to) say
M |= expr

for

context C'inv : eapry € Inv(M)

—_—
if and only if

= (o)ien € IM]
Yie N
Vu € dom(o;) N 2(C) :
ezprol (o, {self > u}) = 1.

es all constraints in nv(M).

« M is (still) consistent if and only

56/

Domain Inclusion vs. Uplink Semantics

o203

59/

Cast-Transformers

e Cc;
*Dd;
Identity upcast (C++):

o Cx cp = &d; assign address of ‘d’ to pointer ‘cp’
P g P P

o Iden

y downcast (C++):

« Dx dp = (D+)cp; // assign address of ‘d' to pointer ‘dp’

 Value upcast (C++):

o kc = xd; // copy attribute values of ‘d" into ‘', or,
// more precise, the values of the C-part of ‘d’

60795

Domain Inclusionvs. Uplink Semartics. Differences

« Note: The uplink semantics views inheritance as an abbreviation:

» We only need to touch transformers (create) — and if we had constructors, we
didn’t even needed that (we could encode the recursive construction of the upper
slices by a transformation of the existing constructors.)

« So:

« Inheritance doesn’t add expressive power.

« And it also doesn’t improve conciseness soo dramatically.

As long as we're “early binding”, that is...

6300

Castsin Domain Inclusion andUplink Semantics

Identity Downcast with Uplink Semantics

Inclusion Uplink
Cx cp c jatel casy: By pi i
= &d; (in underlying system state) be- | C* cp = d.uplink,;

cause &d yields an identity from

2(D) € 7(C)
D+ dp = easy: the value of cpisin Z(D)N | difficult: we need the identity
(D*)cp; 2(C) because the pointed-to ob- | of the D whose C-slice is de-

jectisa D
Otherwise, error condition.

noted by cp.
(See next slide.)

< set (for all C' < D)
(€)(+:) s 70 X B = Blaw(cy
(1,0) = ()] (c)

Note: o' = aluc — o(up)] is
not type-compatible!

easy: By pre-processing,
c = #(d.uplink.);

6190

Domain Inclusion vs. Uplink Semartics: Motives

#0203 - Sd

0

« Exercise:

What's the p

t of

« having the tedious adjustments of the theory

it can be approached technically?

« having the tedious technical pre-processing

it can be approached cleanly in the theory?

64/90

Recall (C++): Dd; Cx cp=&d; Dx dp = (Dx)cp;

Problem: we need the identity of the D whose C-slice is denoted by cp.

One technical solution:
= Give up disjointness of domains for one additional type comprising all

alle 7, ()= J 2(C)

cee

I class have
es, plus informaf X
means, ing on the type (only
s), going down and then up as necessary, e.g.

switch(mostspec_type){
case C':
dp = cp ->mostspec -> uplink,, ->...->uplinkp ->uplinkp;

62/

Meta-Modelli ng: | dea andExample

65/

Meta-Modelli ng: Why andWhat

+ Met ing is one major prerequisite for un ing
« the standard documents [OMG, 2007a, OMG, 2007b], and
« the MDA ideas of the OMG.

« The idea is simple:

o ifa ds is about delling things,

« and if UML models are and comprise things,

» then why not model those in a modelling language?

! 66/00
UML Meta-Model: Extract
Comment —4# Element
NamedElement
iy
[— g

TypedElement.

RedefElement] redefdElem

g i aa—

Classifier 7 mz__nmz:.i 7 wm_z(}neL
pas pas

e P
=

Parameter

Operation

6809

Meta-Modelli ng: Why and What

Classes [omg, 2007h 32

» Meta-Mod
o the standard documents [OMG, 2007a, OMG, 2007b], and
« the MDA ideas of the OMG.

ng is one major prerequisite for understanding

« The idea is simple:

d is about modelling things,

o ifa
« and if UML models are and comprise things,
» then why not model those in a modelling language?

« In other words:
Why not have a model My such that

 the set of legal instances of My

« the set of well-formed (1) UML models.

66/90

oy {soses memier orers)

D osen
Y creasony sodean
Sourednon Boon
o E
don Agreqaonking
ReComposte - Bosemn

Aggregatonkind

anarea
Jcomposte

Figure 7.12 - Classes diagram of the Kernel package 69
9%

Meta-Modelling: Example

« For example, let's consider a class.

» A class has (on a superficial level)
* a name,
« any number of attributes,
« any number of behavioural features.
Each of the latter two has
+ a name and
ility.
Behavioural features in addition have
» a boolean attribute isQuery,
« any number of parameters,
© a return type.

o a visil

= Can we model this (in UML, for a start)?

6790
Operations [omg, 2007h 31
panessc) 15 curocParte
Fwwwm%uﬁ‘ﬂn I}
?Ewmwuuﬂsﬁnﬂn le}|
s e
[ns—
{subsets redefinedEement} N
. rstrdpmton
B iowe .11 Operalons dsgram of te Karlpackage
' 7090

Operations [oma, 2007h 39

et nanespacel

Figure 7.10 - Features diagram of the Kernel package

Root Diagram [omg, 20075 25]

{subsats owner} {subssts ownedElement).

{reacioriy, union}

readonly, union:

Figure 7.3 - Root diagram of the Kernel package

T/

T4/90

Classdfiers [ome, 2007h 29

20- 201

=
)

e, atgste e

Gy, i, (sbsets
skl eetre) redemis

Figure 7.9 - Classifiers diagram of the Kernel package

Interesting: Dedaratior/Definition [omg, 2007 424

Behavior
Vet Bocean

o)
(st rdafritonCertent)

[—

- ecainacBetaior

FunctlanBehavior

Figure 13.6 - Common Behavior

Namespaces [ome, 2007h 26]

72/

UML Architedure [omg, 200

PackageableElemen |

sy vsiiykiod

Jimporecvenber .| amespace

et

oy

Seosanar
oegNamespace [(ks e

Do

Figure 7.4 - Namespaces diagram of the Kernel package

3 8]

P :

7579 !

.

Meta-modelling has already
been used for UML 1.x.

For UML 2.0, the request
for proposals (RFP) asked
for a separation of concerns:
Infrastructure and
Superstructure.

One reason:
sharing with MOF (see
later) and, e.g., CWM.

e |
{with semantics) >

Fackag, Srapt
Sopermcve | oo s, s,
(abstract syniax) > ‘Transiton,

Sipersiucire
(concet synias)

o> Ntk g

Diagam
nechange

Figure0-1 Overview of arclitedure

730

76/99

UML Sugerstructure Packages [omg, 20073 15

/ \
’ \
UseCases ; Satachines 7 nerscions 7
/ \
. |
,e

‘AdlaryConstucts

Deplomenss

Figure 7.5 The top-level package structure of the UML 2.1.1 Superstruciure

7790
Modelli ng vs. Meta-Modelli ng
C 7 =({z},
v Z Mm:cﬁ
—0)),
Model 7
prr— 93
Instance | instance-of 4
(Mo) | /€
/
& o= {ur
: {vr—0}}

' 7900

Meta-Modelling: Principle

7859
Modelli ng vs. Meta-Modelli ng
T 7 =({z}
iz {C} {v},
: {C o)),
Model P e 57
(M1) o e
Instance | instance-of K
(Mo) | Y S
o ={ur—
{v— 03}
7990

Modelli ng vs. Meta-Modelling

c 7 =({z},
Tz {C} {v},
Model } o wwv.
(M1) 75
i 7900
Modelli ng vs. Meta-Modelli ng
el I N
Model [i j
(M2) I
]
|
c | S =z},
Z ' MS_ ?w_v
: C0}),
Model
i Q, P ww
Instance | instance-of /
(Mo) | e

79/

Modelli ng vs. Meta-Modelling

Well -Formednessas Constraints in the Meta-Model

« The set of well-formed UML models can be defined as the set of object

\\&ll-Formednessas Constraints in the Meta-Model

» The set of well-formed UML models can be defined as the set of object

i Prope . P . . o .
Meta- [G ey , diagrams satisfying all constraints of the meta-model. diagrams satisfying all constraints of the meta-model.
-
,ﬁ_yw_ww_ N | + For example, For example,
|
| . |
,, ., W “[2] Generalization hierarchies must be directed and acyclical. A classifier “[2] Generalization hierarchies must be directed and acyclical. A classifier
C ! | ! 7 = ({z}, cannot be both a transitively general and transitively specific classifier cannot be both a transitively general and transitively specific classifier
Tz Class | “Propery Mar ?w of the same classifier. of the same classifier.
: name = C name = v C—v}),
Model ¢ o . N "
(M1) . D ~ \M& notself . allParents() -> includes(self)” [OMG, 2007b, 53] not self . allParents() -> includes(self)" [OMG, 2007b, 53]
« So, if we have a meta model My of UML, then the set
Instance ’

(Mo) of UML models is the set of instances of My . /e

« The other way round:
Given a UML model M, unfold it into an object diagram Oy wrt. M.

+ A UML model M can be represented as an object

diagram (or system state) wrt. the meta-model M. If Oy is a valid object diagram of My, (i.e. satisfies all invariants from Inv(My)),

then M is a well-formed UML model.

Other view: An object diagram wrt. meta-model My 2
can (alternatively) be rendered as the UML model M.

7990 8059 80/90
\Well -Formednessas Constraints in the Meta-Model Reading the Sandad Reading the Sandad
Tote o Comerts Tae ot coments m
« The set of well-formed UML models can be defined as the set of object o
diagrams satisfying all constraints of the meta-model. 1 scope N 1 scope E
2 Conformance 1 2. Conformance. “
For example, 21 Langusge Ut B 21 Lanunge s T e, Fomie
22 Compliance Levels 2 22 T34 Commet (it
23 Meaning ard Ty of Compharce . 25 Moanig and Ty [
“[2] Generalization hierarchies must be directed and acyclical. A classifier 24 Comlarco vt . ot :]
3 Normative Relerences 0 B
cannot be both a transitively general and transitively specific classifier 4 Terms and Definitions o 4. Terms and Definitions|
of the same classifier. 5. Symbols 10 5. Symbols.
6 Additional Information 10 6. Additonal information
notself . allParents() -> includes(self)" [OMG, 2007b, 53] o o . b
o h o
» The other way round: L3 e Coy el 2 £33 e bk cas
X . - 64 e etanoce 1 o
iven a UML model M, unfold it into an object diagram O; wrt. M. 443 oemautm oo i . [yt
If Oy is a valid object diagram of M (i variants from Inv(My)), sk ; H 68 oo e e Snl T e
then M is a well-formed UML model. ; 56 Aeamoniespomons o b PP T3P eonane
That is, if we have an object diagram validity checker for of the meta-mod; | Parti-Structure ... 2L = | Part1-structure ..
language, then we have a well-formedness checker for UML models. S s classes » R BRI,
80/ T ——] 81 [P — - 8l

Reading the Sandad

2T ————

Table of Contents

scope. 190
Conformance 8. Components 183
21 Language uns 81 Overvew 163
22 Complance Loves rp »
23 Mearing and Types 83 Class Descrtons 145
24 Complance Leve C{ 1
Normative References| o
Terms and Definitions| 159

161

151

™

[
< | Parti-structure 10. Deployments
7| ctsses [—
| s e 12]
Reading the Sandad Caont'd
“

S——

81/

82/09

Reading the Sandad Cont'd

20140203 - Sreading

2

Oependencis, PoweTypes)

o i e

frrteblitaorey

- o gt

ey

[——

@ o e

0 e oo semanics fpegaon s 3 s s pon:

T g gl

(o ket 5

T vty o

.

e e e s e

i g st 212

8290

82790

Reading the Sandad Cont

d

2020140203 - Sreading -

e Gl et by 6l s abEeen s sedEhren

firraer ey

- by comazsmse

et oo of i . el b oaverye.

20 - 2014.02.03 - Seading -

82709

82/

s casd o)

Bt Kenet oo

o sy

jar—
[==t AU —

ot ymbon). e

82/09

MOF Semantics

« One approach:

« Treat it with our signature-based theory

effect) the right direction, but may require new (or extended)
signatures for each level.
(For instance, MOF doesn't have a notion of Signal, our signature has.)

' 85/09

« One approach:
« Treat it with our signature-based theory « Treat it with our signature-based theory

o This is (in effect) the right

20140209

2

Open Questions...

» Now you've been “tricked” again. Twice.

« We didn't tell what the delli for met dell
« We didn't tell what the is-instance-of relation of this language is.
Meta OU_ ed —HWO___HV\ A_/_O_Hv « ldea: have a minimal object-oriented core comprising the notions of

class, association, inheritance, etc. with “self-explaining” semantics.

« This is Meta Object Facility (MOF),
which (more or less) coincides with UML Infrastructure [OMG, 2007a].

« So: things on meta level

= MO are object diagrams/system states

« M1 are words of the language UML

-

« M2 are words of the language MOF

« M3 are words of the language ...

8309 ! 84709

MOF Semantics MOF Semantics

« One approach:

ection, but may require new (or extended) effect) the right direction, but may require new (or extended)
signatures for each level. signatures for each level.
(For instance, MOF doesn't have a notion of Signal, our signature has.) (For instance, MOF doesn't have a notion of Signal, our signature has.)

« Other approach: « Other approach:

instance-of " relation.

» Define a generic, graph based “is-instance-of” relation. « Define a generic, graph based

» Object diagrams (that are graphs) then are the system states —

» Object diagrams (that are graphs) then are the system states —
ns of system states.

not only graphical representations of system states. not only grapl

al representa

« If this works out, good: We can easily experiment with different language
5 designs, e.g. different flavours of UML that immediately have a semantics.

85790 ! 85/09

MOF Semantics Benefits: Overview

» One approach:
« Treat it with our signature-based theory « We'll (superficially) look at three aspects:
« This is (in effect) the right direction, but may require new (or extended) A - N « Benefits for Modelling Tools.
signatures for each level. Meta-Modelli ng: A>:: O__umﬁmav Benefits + Benefits for Language Design.
(For instance, MOF doesn't have a notion of Signal, our signature has.)) suag e
« Benefits for Code Generation and MDA.

» Other approach:
« Define a generic, graph based “is-instance-of " relation.
 Object diagrams (that are graphs) then are the system states —

not only graphical representations of system states.

« If this works out, good: We can easily experiment with different language 3
designs, e.g. different flavours of UML that immediately have a semantics.

= Most interesting: also do generic definition of behaviour within a closed
modelling setting, but this is clearly still research, e.g.
[Buscherméhle and Oelerink, 2008]

' 85/00 86/99 ' 8700
Benefits for Modelli ng Todls Benefits for Modelli ng Tools Cont’d Benefits for Modelling Todls Cont’d
+ The meta-model M of UML immediately provides a data-structure « And not only in memory, if we can represent MOF « And not only in memory, if we can represent MOF instances in files, we
representation for the abstract syntax (~ for our signatures). obtain a canonical representation of UML models in obtain a canonical representation of UML models in files, e.g. in XML.
— XML Metadata Interchange (XMI) — XML Metadata Interchange (XMI)
If we have code generation for UML models, e.g. into Java,
then we can immediately represent UML models in memory for Java. » Note: A priori, there is no graphical information in XMI (it is only
(Because each MOF model is in particular a UML model.) abstract syntax like our signatures) — OMG Diagram Interchange.
« There exist tools and libraries called MOF-repositories, which can
generically represent instances of MOF instances (in particular UML
models).
, And which can often generate specific code to manipulate instances of ,
2 MOF instances in terms of the MOF instance. g
i 893

' 8809 8990

Benefits for Modelli ng Tools Cont’d Benefits for Modelli ng Todls Cont’d Benefits: Overview

« And not only in memory, if we can represent MOF instances in files, we « And not only in memory, if we can represent MOF instances in files, we « We'll (superficially) look at three aspects:
obtain a canonical representation of UML models in files, e.g. in XML. obtain a canonical representation of UML models in files, e.g. in XML. + Benefits for Modelling Tools. (]
— XML Metadata Interchange (XMI) — XML Metadata Interchange (XMI) " .
« Benefits for Language Design.
« Note: A priori, there is no graphical information in XMI (only « Note: A priori, there is no graphical information in XMI « Benefits for Code Generation and MDA.
abstract syntax like our signatures) — OMG Diagram Interchange. abstract syntax like our signatures) — OMG Diagram Interchange.

s in the XMI standard. Note: There are slight ambiguities in the XMI standard.
at opposite ends on And different tools by different vendors often seem to lie at opposite ends on
the scale of interpretation. Which is surely a coincidence.

Note: There are slight ambigu
And different tools by different vendors often seem to |
the scale of interpretation. Which is surely a coincidence.

In some cases, it's possible to fix things with, e.g., XSLT scripts, but full In some cases, it's possible to fix things with, e.g., XSLT scripts, but full
vendor independence is today not given.

vendor independence is today not given.
iagram Interchange. g Plus XMI compatibility doesn't necessarily refer to Diagram Interchange 2

Plus XMI compatibility doesn't necessarily refer to

To re-iterate: this is generic for all MOF-based modelling languages
such as UML, CWM, etc.
And also for Domain Specific Languages wi

.

0140203

h don't even e;

89/09 8999 90/99

Benefits for Languag Design Benefits for Languag Design Benefits for Languag Design

we said that code-generators are possible “readers” of stereotypes.

eaders” of stereotypes. + Recal

Recal that code-generators are possible

we said that code-generators are possible “readers” of stereotypes. » Recall: we s:

For example, (heavily simplifying) we could

« For example, (heavily simplifying) we could

For example, (heavily simplifying) we could
introduce the stereotypes Button, Toolbar, .

« introduce the stereotypes Button, Toolbar, . « introduce the stereotypes Button, Toolbar,
for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes

are clearly present.

for convenience, instruct the modelling tool to use special pictures for « for convenience, instruct the modelling tool to use special pictures for

stereotypes — in the meta-data (the abstract syntax), the stereotypes stereotypes — in the meta-data (the abstract syntax), the stereotypes
are clearly present.

are clearly present.
instruct the code-generator to automatically add inheritance from

Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.

instruct the code-generator to automatically add inheritance from instruct the code-generator to automatically add inheritance from
Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype. Gtk::Button, Gtk::Toolbar, etc. corresponding to the stereotype.
Et voila: we can model Gtk-GUIs and generate code for them.

Et voila: we can model Gtk-GUIs and generate code for them.

Another view:
2 * UML with these pes is a new i Gtk-UML.

3 . § = Which lives on the same meta-level as UML (M2)
g = It's a Domain Specific Modelling Language (DSL)

ro203

One mechanism to define DSLs (based on UML, and “within" UML): Profiles.

~ One mechanism to define DSLs (based on UML, and “within" UML): Profiles. One mechanism to define DSLs (based on UML, and “within” UML): Profiles.

9100 ! 91/

0

' 9100

Benefits for Languag Design Cont'd

« For each DSL defined by a Profile, we immediately have
« in memory representations,
« modelling tools,
« file representations.

Note: here, the semantics of the stereotypes (and thus the language of
Gtk-UML) lies in the code-generator.

That's the first “reader” that these special
(And that's what's meant in the standard when they're tal
stereotypes semantics).

.

One can also impose additional well-formedness rules, for instance that
certain components shall all implement a certa terface (and thus have
certain methods available). (Cf. [Stahl and Vélter, 2005].)

Benefits for Model (to Model) Transformation

» There are manifold applications for model-to-model transformations:

» For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of

MOF.
The graph to be rewritten is the UML model

92/

95/

Benefits for Languag Design Cont’d

« One step further:
= Nobody hinders us to obtain a model of UML (written in MOF),
o throw out parts unnecessary for our purposes,
isting hierarchy) more adequat new
g more close to

« add (= integrate into the e
constructs, for instance, contracts or somet|
hardware as interrupt or sensor or driver,

» and maybe also stereotypes.

— a new language standing next to UML, CWM, etc.

Drawback: the resulting language is not necessarily UML any more,
so we can’t use proven UML modelling tools. ,

« But we can use all tools for MOF (or MOF-
For instance, Eclipse EMF/GMF/GEF.

e things).

Benefits: Overview

« We'll (superficially) look at three aspects:

« Benefits for Modelling Tools. [J
« Benefits for Language Design. [
« Benefits for Code Generation and MDA.

] 93/ ' 9400
Benefits for Model (to Model) Transformation Benefits for Model (to Model) Transformation
« There are manifold applications for model-to-model transformations: » There are manifold applications for model-to-model transformations:
« For instance, tool support for re-factorings, like moving common « For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy. attributes upwards the inheritance hierarchy.
This can now be defined as graph-rewriting rules on the level of This can now be defined as graph-rewriting rules on the level of
MOF. MOF.
The graph to be rewritten is the UML model The graph to be rewritten is the UML model
= Similarly, one could transform a Gtk-UML model into a UML model « Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit: where the inheritance from classes like Gtk::Button is made explicit:
The transformation would add this class Gtk::Button and the The transformation would add this class Gtk::Button and the
heritance relation and remove the stereotype. inheritance relation and remove the stereotype.
: : « Similarly, one could have a GUI-UML model transformed into a
Gtk-UML model, or a Qt-UML model.
g g The former a PIM (Platform Independent Model), the latter a PSM
H : (Platform Specific Model) — cf. MDA.
i 95/50 ! 9530

Spedal Case: Code Generation

» Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformation;

only the destination looks quite

ifferent.

96/

References

9809

Spedal Case: Code Generation

01402

» Recall that we said that, e.g. Java code, can also be seen as a model.
So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

« Note: Code generation needn't be as expensive as buying a modelling
tool with full fledged code generation.

If we have the UML model (or the DSL model) given as an XML file,

.
code generation can be as simple as an XSLT script.

“Can be” in the sense of
“There may be situation where a graphical and abstract
representation of something is desired which has a clear and
direct mapping to some textual representation.”

In general, code generation can (in colloquial terms) become arf
difficult.

96790

References

[Buschermhle and Oelerink, 2008] Buschermdhle, R. and Oelerink, J. (2008). Rich meta object
facility. In Proc. Ist IEEE Int'l workshop UML and Formal Methods
[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody
statecharts: not all models are created equal. Software and Systems Modeling, 6(4):415-435.
[Fischer and Wehrheim, 2000] Fischer, C. and Wehrheim, H. (2000). Behavioural subtyping relations
for object-oriented formalisms. In Rus, T, editor, AMAST, number 1816 in Lecture Notes in
Computer Science. Springer-Verlag.
[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object mod
IEEE Computer, 30(7):31-42
[Liskov, 1988] Liskov, B. (1988). Data abstraction and hierarchy. SIGPLAN Not., 23(5):17-34.
[Liskov and Wing, 1994] Liskov, B. H. and Wing, J. M. (1994). A behavioral notion of subtyping.
ACM T ions on ing Languages and Systems (TOPLAS), 16(6):1811-1841
[OMG, 2003] OMG (2003). Uml 2.0 proposal of the 2U group, version 0.2,
http://www. 2uworks . org/uml2submission.
[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical
Report formal /07-11-04,
- [OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical
Report formal /07-11-02
[Stahl and Vélter, 2005] Stahl, T. and Vélter, M. (2005). Modellgetriebene Softwareentwicklun,
dpunkt.verlag, Heidelberg.

ng with statecharts,

2014.02.03

9990

Example: Model and XMI

(65002 update | (NET2270))
| ControllerA T UsbA

{pt100) gather
SensorA 1

<7xml version = '1.0’ encoding = 'UTF-8’ 7>
<KMI xmi.version = °1.2’ xnlns:UML = org.omg.xni.namespace.UML’ timestamp = 'Mon Feb 02 18:23:12 CET 2009'>
<XUI. content>
<UML:Model xmi.id = ...%>
<UML:Namespace .ounedElement>
<UML:Class xmi.id = ...’ name = ’Sensorh’>
<UML:ModelElenent . stereotype>
<UML:Stereotype name = pti00’/>
</UML:Hode1ELement . stereotype>

*..." name = 'Controllerh’>
<UML:ModelElenent . stereotype>
<UML:Stereotype name = 65C027/>
</UML:Hode1ELement . stereotype>
</UML:Class>
<UML:Class xui.id = ...’ name = *UsbA’>
<UML:Mode1Elenent .stereotype>
<UNL:Stereotype name = "NET2270’/>
</UML:Hode1ELement . stereotype>
</UML: Association>
+</UML: Association>

name = ‘out’ >.

g </UML:Namespace . ounedELenent>
S </UMLiModer>

| </mi.contant>

% </mur>,

! 970

