— 17 — 2014-01-20 — main —

Sdtware Design, Modelling andAnalysisin UML

Ledure 17: Hierarchical Sate Machines||

201401-20

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 17 — 2014-01-20 — Sprelim —

Last Lecture:
o State Machines and OCL

o Hierarchical State Machines Syntax

o Initial and Final State

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.
o What does this State Machine mean? What happens if | inject this event?
o Can you please model the following behaviour.
o What does this hierarchical State Machine mean? What may happen if |
inject this event?
o What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...

o Content:
o Composite State Semantics

o The Rest

2/44

— 17 — 2014-01-20 — main —

Composite Sates
(formalisation follows [Dammet al., 2003)

344

Compaosite Sates

— 17 — 2014-01-20 — Shierstm —

o In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

o ldea: in Tron, for the Player's Statemachine,
instead of

write

resigned resigned

444

Composite Sates

— 17 — 2014-01-20 — Shierstm —

and instead of

— -

_———

Reall: Syntax — —_ —_

al

— 17 — 2014-01-20 — Shierstm —

\

N
y
)I

4

S1

(
/
I
(
\

R

=) (2]
=

52
translates to — .
(¢ i)
({<t0pa St), (5’ St)’ <Sla St) (5/15 St)(827 St)(sév St)(83, St)(séa St)}a
S,kind
b / ’ / /
{top = {3}7 S {{813 51}’ {82’ 52}’ {537 '53}}’ §1 07 S1 @, s }7
region

—, 1), annot)

6/44

Compasite Sates. Blessng a Curse?

— 17 — 2014-01-20 — Shierstm —

States:

o what are legal state
configurations?

o what is the type of the
implicit st attribute?
Transitions:

o what are legal
transitions?

o when is a transition
enabled?

o what effects do transi-
tions have?

N\
E/

6

\Cj/
®

o what may happen on E7?
o what may happen on E, F?
e can E, G kill the object?

844

of shles
o ks
sE=§
NEL): st 25 <— wfs of states
st = {s,4f
=19, bpt equiva leut
;wﬁr(tfnaﬁawf
$€={‘§.$§.Sv -~ o ¢={55',ng
1%, s, -
% & 5‘/ SQ‘, é"’f’}
o ={2,500 WCcoNSsTEVT

Sate Configuation

— 17 — 2014-01-20 — Shierstm —

The type of st is from now on a set of states, i.e. st : 2°

A set S; C S is called (legal) state configurations if and only if

top € S1, and
for each state s € Sy, for each non-empty region) # R € region(s),
exactly one (non pseudo-state) child of s (from R) is in St i.e.

[{so € R| kind(so) € {st, fin}} N S1| = 1.

9/44

"

Syntax: Fork/Join

— 17 — 2014-01-20 — Shierstm —

For brevity, we always consider transitions with (possibly) multiple

sources and targets, i.e. set "FZ"G sprles /sc(f fl‘/;w sE.
b (=) = (25\0) x (2°\ 0) SPECIAY.

CASE:
assuus s owe awucl: fu“-H*«_'

For instance, p

o ” way
[51)\, f / 51 A s

J
7

gt [gd]/act |
ﬁ?

translates to

(S, kind, region, {t1}, {t1 — ({s2, s3}, {s5,56})}, {t1 — (tr, gd, act)})
~—

— P annot

Naming convention: ¥(t) = (source(t), target(t)).

7 /24

A Partial Order on Sates

— 17 — 2014-01-20 — Shierstm —

The substate- (or child-) relation induces a partial order on states:
top < s, for all s € S,
s < ¢, for all §' € child(s),

transitive, reflexive, antisymmetric,

s’ < sand s” < s implies s’ < 5" or s < g'.
< s
L\ Al
< I S’! S': S‘i <! P
AN = A o A v,
3 < s $

10/44

A Partial Order on Sates

— 17 — 2014-01-20 — Shierstm —

The substate- (or child-) relation induces a partial order on states:
o top < s, forall sc S, \Vse s¢s
o s< ¢, forall ' € child(s), wnle s2s ff ses
o transitive, reflexive, antisymmetric,

o s’ <sand s” <simplies s’ <s" ors” <¢.

10/44

Least Comnon Ancestor and Ting

— 17 — 2014-01-20 — Shierstm —

« The least common ancestor is the function lca : 2° \ {#} — S such that
o The states in Sy are (transitive) children of lca(S1), i.e.

lea(S1) < s, for aI/I§ €5, CS,

o lca(S1) is minimal, i.e. if § < s for all s € 51, then § < lca(Sh)
o Note: lca(S1) exists for all S; C S (last candidate: top).

11/24

Least Comnon Ancestor and Ting

— 17 — 2014-01-20 — Shierstm —

o Two states s, 52 € S are called orthogonal, denoted s; | sg, if and only if

o they are unordered, i.e. s;1 £ s3 and sy £ s1, and
o they “live" in different regions of an AND-state, i.e.

s, region(s) = {S1,..., 8.} 1 < i # j<n:s1 € child"(S;) A s2 € child"(S;),

12/44

Least Comnon Ancestor and Ting

o A set of states S; C S is called consistent, denoted by | S7,
if and only if for each s,s’ € Sy,

e s< ¢, or
o 5" <s, or
e sl .
P N
v N e -
< I N
S A \ ‘j,:’”’-l' 'q) |\‘l
\[51) \\ \ si) o [sa)y s
P = P At
—~ b)) sl
1N | v

— 17 — 2014-01-20 — Shierstm —

13/44

Legal Transitions

— 17 — 2014-01-20 — Shierstm —

A hiearchical state-machine (5, kind, region, —, 1, annot) is called well-
formed if and only if for all transitions ¢t €—,

{(I) source and destination are consistent, i.e. | source(t) and | target(t),]

(ii) source (and destination) states are pairwise orthogonal, i.e.
forall s¢s’ € source(t) (€ target(t)), s L s,

(iii) the top state is neither Eatmple :
source nor destination, i.e. O
top & source(t) U powred(t).
tasget t

Recall: final states are

not sources of transitions. (?6\»6 %7‘[

1444

Legal Transitions

— 17 — 2014-01-20 — Shierstm —

A hiearchical state-machine (S, kind, region, —, 1, annot) is called well-
formed if and only if for all transitions t €—,

(i) source and destination are consistent, i.e. | source(t) and | target(t),
(ii) source (and destination) states are pairwise orthogonal, i.e.
forall sfs’ € source(t) (€ target(t)), s L s,

(i) the top state is neither
source nor destination, i.e. /

top ¢ source(t) U powred(t). A
P poure)

Recall: final states are
not sources of transitions.

Example:

The Depth of Sates

— 17 — 2014-01-20 — Shierstm —

depth(top) = 0,
depth(s’) = depth(s) + 1, for all s’ € child(s)

by @

Example:

: ‘\
[true] /\\\ | //E

‘ / .

15/44

Enakdednessin Hierarchical Sate-Machines

— 17 — 2014-01-20 — Shierstm —

The scope (“set of possibly affected states”) of a transition ¢ is the least
common region of

source(t) U target(t).
Two transitions t1,to are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

The priority of transition ¢ is the depth of its innermost source state, i.e.

prio(t) := max{depth(s) | s € source(t)}

A set of transitions T' C— is enabled in an object u if and only if
T is consistent,
T is maximal wrt. priority,
all transitions in T' share the same trigger,
all guards are satisfied by o(u), and
for all t € T, the source states are active, i.e.

source(t) C o(u)(st) (CS).
16/44

Transitions in Hierarchical Sate-Machines

— 17 — 2014-01-20 — Shierstm —

Let 7" be a set of transitions enabled in w.
,Snd .

Then (o,¢) {eons,Snd), (o, if

o'(u)(st) consists of the target states of ¢,

i.e. for simple states the simple states themselves, for composite
states the initial states,

o', €, cons, and Snd are the effect of firing each transition t € T
one by one, in any order, i.e. foreacht € T,

the exit transformer of all affected states, highest depth first, ~—
the transformer of ¢, Vet

the entry transformer of all affected states, lowest depth first.

~ adjust (2.), (3.), (5.) accordingly.

1744

Entry/Do/Exit Actions, Interna Transitions

— 17 — 2014-01-20 — main —

1844

Entry/Do/Exit Actions

— 17 — 2014-01-20 — Sentryexit —

s)
In general, with each state e"tr)//‘fintry
s € S there is associated dO'/GCtlexit trlgd]/ act entry/acte™
an entry, a do, and an exit exit/acty do/actde
action (default: skip) Er/actp, exit/ act gt
a possibly empty set of N

trigger/action pairs called \En/acte,)

internal transitions,
(default: empty). E1,...,E, € &, ‘entry’, 'do’, ‘exit’ are reserved names!

Recall: each action's supposed to have a transformer. Here: t_ ey, t, e, ...
acty acty

Taking the transition above then amounts to applying

t

acti";ry o tact o tactgxl"’

instead of only
lact
~+ adjust (2.), (3.) accordingly.
19/14

Internal Transitions
e

— 17 — 2014-01-20 — Sentryexit —

S1

entry

entry/ act]
d

do/ acti® ' trlgd]/act

exit/ act§"

Ei/actp,

entry

entry/ acts

do/actd®

exit/ act§¥"

E,/actg,

For internal transitions, taking the one for F1, for instance, still
amounts to taking only lacts, -

Intuition: The state is neither left nor entered, so: no exit, no entry.

~ adjust (2.) accordingly.

Note: internal transitions also start a run-to-completion step.

Note: the standard seems not to clarify whether internal transitions have
priority over regular transitions with the same trigger at the same state.

Some code generators assume that internal transitions have priority!
20/44

Alternative Miew: Entry/Exit/Internal as Abbreviations

— 17 — 2014-01-20 — Sentryexit —

3

52

trolgd,]/acto entry/ acti”"y try[gd,]/ acty

entry

entry/acts

exit/ act§™

50

exit/act§™ trofgds,]/acts
Ei/actg,

et
QC‘ég /' dCtZ_
e That is: Entry/Internal/Exit don’t add expressivé‘zogr/eﬂ‘[o Core State Machines.
If internal actions should have priority, s1 can be embedded into an OR-state
(see later).
o Abbreviation may avoid confusion in context of hierarchical states (see later).
21/44

Do Actions

— 17 — 2014-01-20 — Sentryexit —

S1

entry

entry/ act]
d

do/ acti® _ trlgd]/act

exit/ act§"

Ei/actp,

entry/acts™™

do/actd®

exit/act

exit
2

E,/actg,

Intuition: after entering a state, start its do-action.

If the do-action terminates,
o then the state is considered completed,

otherwise,
o if the state is left before termination, the do-action is stopped.

Recall the overall UML State Machine philosophy:
“An object is either idle or doing a run-to-completion step.”

Now, what is it exactly while the do action is executing...?

22/14

— 17 — 2014-01-20 — main —

References

4344

References

— 17 — 2014-01-20 — main —

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody
statecharts: not all models are created equal. Software and Systems Modeling,
6(4):415-435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal
semantics for a UML kernel language 1.2. I1ST/33522/WP 1.1/D1.1.2-Part1, Version 1.2.

[Fecher and Schénborn, 2007] Fecher, H. and Schénborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L., Haverkort,

B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume 4346 of LNCS,
pages 244-260. Springer.

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with
statecharts. IEEE Computer, 30(7):31-42.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of
statecharts. In Ehrig, H., Damm, W., GroBe-Rhode, M., Reif, W., Schnieder, E., and
Westkamper, E., editors, Integration of Software Specification Techniques for Applications
in Engineering, number 3147 in LNCS, pages 325—-354. Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal /07-11-02.

44 /44

