Prof. Dr. A. Podelski, Dr. B. Westphal Ch. Herrera

Software Design, Modeling, and Analysis in UML

http://swt.informatik.uni-freiburg.de/teaching/WS2014-15/sdmauml

Exercise Sheet 4

Early submission: Monday, 2014-12-15, 12:00 Regular submission: Tuesday, 2014-12-16, 8:00

Exercise 1

(5/20 Points)

<pre>class A { public void doA(B b) {b.doB();} }</pre>	<pre>class C { private A itsA; private B itsB; public void doC() {itsA.doA(itsB);}</pre>
class B { public void doB() {;} }	}
Figure 1: Java program.	

Propose a UML model corresponding to the Java program [Stevens, 2002] in Figure 1.

Hint: As always, explain your model, discuss your choices, etc. That is, if you follow the proposal of [Stevens, 2002], explain why you do so, if not, why not. Please in particular address the fact that one can identify different "qualities" of relations between objects at run-time. For instance, compare the one between C and B, or the one between B and A when doA() is called.

Exercise 2

(7/20 Points)

- (i) Give the core state machine corresponding to the diagram shown in Figure 2. (3)
- (ii) Core state machines are defined wrt. a signature. If the core state machine corresponding to Figure 2 is a core state machine wrt. signature \mathscr{S} , what can we conclude for \mathscr{S} ? (2)
- (iii) Core state machines are defined wrt. an expression and an action language. What can we conclude for those two sets from Figure 2?

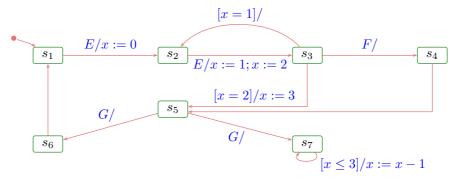


Figure 2: State machine for Exercise 1.

Exercise 3

(8/20 Points)

Let ε be a FIFO which comprises exactly the four events e_1, e_2, e_3, e_4 for an object u in that order $(e_1 \text{ is first}, e_4 \text{ is last})$ where

- e_1, e_2 are instances of signal E,
- e_3 is an instance of signal F, and
- e_4 is an instance of signal G.

Assume e_5 is another instance of signal F and u_2 is an object different from u. Let

$$\varepsilon' := \ominus(\ominus(\oplus(\ominus(\varepsilon, e_1), u, e_5), e_3), e_2).$$

What is $ready(\varepsilon', u)$ and $ready(\varepsilon', u_2)$?

References

[Stevens, 2002] Stevens, P. (2002). On the interpretation of binary associations in the Unified Modelling Language. *Journal of Software and Systems Modeling*, 1(1).