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Software Design, Modelling and Analysis in UML

Lecture 02: Semantical Model
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Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
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Last Lecture:

• Motivation: model-based development of things (houses, software) to cope with
complexity, detect errors early

• Model-based (or -driven) Software Engineering

• UML Mode of the Lecture: Blueprint.

This Lecture:

• Educational Objectives: Capabilities for these tasks/questions:

• Why is UML of the form it is?

• Shall one feel bad if not using all diagrams during software development?

• What is a signature, an object, a system state, etc.?
What’s the purpose of signature, object, etc. in the course?

• How do Basic Object System Signatures relate to UML class diagrams?

• Content:

• Brief history of UML

• Basic Object System Signature, Structure, and System State
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–
0
2
–
2
0
1
4
-1
0
-2
3
–
m
a
in

–

3/23

Why (of all things) UML?

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
h
is
to
ry

–

4/23

• Pre-Note:
being a modelling languages
doesn’t mean being graphical (or:
being a visual formalism [Harel]).

• [Kastens and Büning, 2008] con-
sider as examples:

• Sets, Relations, Functions

• Terms and Algebras

• Propositional and
Predicate Logic

• Graphs

• XML Schema, Entity Relation
Diagrams, UML Class Diagrams

• Finite Automata, Petri Nets,
UML State Machines

• Pro: visual formalisms are found appealing and easier to grasp.
Yet they are not necessarily easier to write!

• Beware: you may meet people who dislike visual formalisms just for being
graphical — maybe because it is easier to “trick” people with a
meaningless picture than with a meaningless formula.

More serious: it’s maybe easier to misunderstand a picture than a formula.
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• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software CrisisTM

— Idea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts [Harel, 1987], StateMateTM [Harel et al., 1990]
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• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software CrisisTM

— Idea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts [Harel, 1987], StateMateTM [Harel et al., 1990]

• Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

• Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]
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• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software CrisisTM

— Idea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts [Harel, 1987], StateMateTM [Harel et al., 1990]

• Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

• Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]

• Booch Method and Notation [Booch, 1993]
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• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software CrisisTM

— Idea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts [Harel, 1987], StateMateTM [Harel et al., 1990]

• Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

• Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]

• Booch Method and Notation [Booch, 1993]

• Object-Oriented Software Engineering (OOSE) [Jacobson et al., 1992]

Each “persuasion” selling books, tools, seminars. . .

• Late 1990’s: joint effort UML 0.x, 1.x

Standards published by Object Management Group (OMG), “international,

open membership, not-for-profit computer industry consortium”.

• Since 2005: UML 2.x
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Figure A.5 - The taxonomy of structure and behavior diagram
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Figure A.5 - The taxonomy of structure and behavior diagram
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Common Expectations on UML

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
h
is
to
ry

–

7/23

• Easily writeable, readable even by customers

• Powerful enough to bridge the gap between idea and implementation

• Means to tame complexity by separation of concerns (“views”)

• Unambiguous

• Standardised, exchangeable between modelling tools

• UML standard says how to develop software

• Using UML leads to better software

• . . .

We will see...

Seriously: After the course, you should have an own opinion on each of these claims.
In how far/in what sense does it hold? Why? Why not? How can it be achieved?
Which ones are really only hopes and expectations? . . . ?

Course Map Revisited
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Recall:

• Overall aim:
a formal language
for software blueprints.

• Approach:

(i) Common semantical
domain.

(ii) UML fragments as syntax.

(iii) Abstract representation
of diagrams.

(iv) Informal semantics:
UML standard

(v) assign meaning to

diagrams.

(vi) Define, e.g., consistency.
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pository semantics

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

object behavior ba

intra-object behavior base

Structural Foundations 

Inter-Object Behavior Base Intra-Object Behavior Base

Activities 

Actions 

State Machines Interactions 

[OMG, 2007b, 11]
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Basic Object System Signature

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
se
m
d
o
m

–

12/23

Definition. A (Basic) Object System Signature is a quadruple

S = (T,C, V, atr )

where

• T is a set of (basic) types,

• C is a finite set of classes,

• V is a finite set of typed attributes, i.e., each v ∈ V has type

• τ ∈ T or

• C0,1 or C∗, where C ∈ C

(written v : τ or v : C0,1 or v : C∗),

• atr : C → 2V maps each class to its set of attributes.

Note: Inspired by OCL 2.0 standard [OMG, 2006], Annex A.
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S = (T,C, V, atr ) where

• (basic) types T and classes C , (both finite),

• typed attributes V , τ from T or C0,1 or C∗, C ∈ C ,

• atr : C → 2V mapping classes to attributes.

Example:

S0 = ({Int}, {C,D}, {x : Int , p : C0,1, n : C∗}, {C 7→ {p, n}, D 7→ {x}})

Basic Object System Signature Another Example
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S = (T,C, V, atr ) where

• (basic) types T and classes C , (both finite),

• typed attributes V , τ from T or C0,1 or C∗, C ∈ C ,

• atr : C → 2V mapping classes to attributes.

Example:
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Definition. A Basic Object System Structure of S = (T,C, V, atr )
is a domain function D which assigns to each type a domain, i.e.

• τ ∈ T is mapped to D(τ ),

• C ∈ C is mapped to an infinite set D(C) of (object) identities.

Note: Object identities only have the “=” operation;
object identities of different classes are disjoint, i.e. ∀C,D ∈ C : C 6=
D → D(C) ∩ D(D) = ∅.

• C∗ and C0,1 for C ∈ C are mapped to 2D(C).

We use D(C ) to denote
⋃

C∈C
D(C); analogously D(C∗).

Note: We identify objects and object identities, because both uniquely
determine each other (cf. OCL 2.0 standard).

Basic Object System Structure Example
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Wanted: a structure for signature

S0 = ({Int}, {C,D}, {x : Int , p : C0,1, n : C∗}, {C 7→ {p, n}, D 7→ {x}})

Recall: by definition, seek a D which maps

• τ ∈ T to some D(τ ),

• c ∈ C to some identities D(C) (infinite, disjoint for different classes),

• C∗ and C0,1 for C ∈ C to D(C0,1) = D(C∗) = 2D(C).

D(Int) = Z

D(C) = N
+ × {C} ∼= {1C , 2C , 3C , ...}

D(D) = N
+ × {D} ∼= {1D, 2D, 3D, ...}

D(C0,1) = D(C∗) = 2D(C)

D(D0,1) = D(D∗) = 2D(D)
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Definition. Let D be a structure of S = (T,C, V, atr ).
A system state of S wrt. D is a type-consistent mapping

σ : D(C ) 9 (V 9 (D(T ) ∪ D(C∗))).

That is, for each u ∈ D(C), C ∈ C , if u ∈ dom(σ)

• dom(σ(u)) = atr(C)

• σ(u)(v) ∈ D(τ) if v : τ, τ ∈ T

• σ(u)(v) ∈ D(D∗) if v : D0,1 or v : D∗ with D ∈ C

We call u ∈ D(C ) alive in σ if and only if u ∈ dom(σ).

We use ΣD
S

to denote the set of all system states of S wrt.D .



System State Example

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
se
m
d
o
m

–

18/23

Signature, Structure:

S0 = ({Int}, {C,D}, {x : Int , p : C0,1, n : C∗}, {C 7→ {p, n}, D 7→ {x}})

D(Int) = Z, D(C) = {1C , 2C , 3C , ...}, D(D) = {1D, 2D, 3D, ...}

Wanted: σ : D(C ) 9 (V 9 (D(T ) ∪ D(C∗))) such that

• dom(σ(u)) = atr(C),

• σ(u)(v) ∈ D(τ ) if v : τ, τ ∈ T , • σ(u)(v) ∈ D(C∗) if v : D∗ with D ∈ C .

System State Example
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Signature, Structure:

S0 = ({Int}, {C,D}, {x : Int , p : C0,1, n : C∗}, {C 7→ {p, n}, D 7→ {x}})

D(Int) = Z, D(C) = {1C , 2C , 3C , ...}, D(D) = {1D, 2D, 3D, ...}

Wanted: σ : D(C ) 9 (V 9 (D(T ) ∪ D(C∗))) such that

• dom(σ(u)) = atr(C),

• σ(u)(v) ∈ D(τ ) if v : τ, τ ∈ T ,

• σ(u)(v) ∈ D(C∗) if v : D∗ with D ∈ C .

• Concrete, explicit:

σ = {1C 7→ {p 7→ ∅, n 7→ {5C}}, 5C 7→ {p 7→ ∅, n 7→ ∅}, 1D 7→ {x 7→ 23}}.

• Alternative: symbolic system state

σ = {c1 7→ {p 7→ ∅, n 7→ {c2}}, c2 7→ {p 7→ ∅, n 7→ ∅}, d 7→ {x 7→ 23}}
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Course Map
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