
–
0
2
–
2
0
1
4
-1
0
-2
3
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 02: Semantical Model

2014-10-23

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
p
re
li
m

–

2/23

Last Lecture:

• Motivation: model-based development of things (houses, software) to cope with
complexity, detect errors early

• Model-based (or -driven) Software Engineering

• UML Mode of the Lecture: Blueprint.

This Lecture:

• Educational Objectives: Capabilities for these tasks/questions:

• Why is UML of the form it is?

• Shall one feel bad if not using all diagrams during software development?

• What is a signature, an object, a system state, etc.?
What’s the purpose of signature, object, etc. in the course?

• How do Basic Object System Signatures relate to UML class diagrams?

• Content:

• Brief history of UML

• Basic Object System Signature, Structure, and System State



Why (of all things) UML?

–
0
2
–
2
0
1
4
-1
0
-2
3
–
m
a
in

–

3/23

Why (of all things) UML?

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
h
is
to
ry

–

4/23

• Pre-Note:
being a modelling languages
doesn’t mean being graphical (or:
being a visual formalism [Harel]).

• [Kastens and Büning, 2008] con-
sider as examples:

• Sets, Relations, Functions

• Terms and Algebras

• Propositional and
Predicate Logic

• Graphs

• XML Schema, Entity Relation
Diagrams, UML Class Diagrams

• Finite Automata, Petri Nets,
UML State Machines

• Pro: visual formalisms are found appealing and easier to grasp.
Yet they are not necessarily easier to write!

• Beware: you may meet people who dislike visual formalisms just for being
graphical — maybe because it is easier to “trick” people with a
meaningless picture than with a meaningless formula.

More serious: it’s maybe easier to misunderstand a picture than a formula.



A Brief History of UML

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
h
is
to
ry

–

5/23

• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software CrisisTM

— Idea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts [Harel, 1987], StateMateTM [Harel et al., 1990]

A Brief History of UML

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
h
is
to
ry

–

5/23

• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software CrisisTM

— Idea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts [Harel, 1987], StateMateTM [Harel et al., 1990]

• Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

• Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]

k
im

ed
ia
.o
rg

(C
C

n
c-
sa

3
.0
,
U
se
r:
A
u
tu
m
n
S
n
o
w
)

http://wikimedia.org (CC nc-sa 3.0, User:AutumnSnow)



A Brief History of UML

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
h
is
to
ry

–

5/23

• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software CrisisTM

— Idea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts [Harel, 1987], StateMateTM [Harel et al., 1990]

• Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

• Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]

• Booch Method and Notation [Booch, 1993]

h
tt
p
:/
/
w
ik
im

ed
ia
.o
rg

(P
u
b
li
c
d
o
m
a
in
,
J
o
h
a
n
n
es

F
a
so
lt
)

A Brief History of UML

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
h
is
to
ry

–

5/23

• Boxes/lines and finite automata are used to visualise software for ages.

• 1970’s, Software CrisisTM

— Idea: learn from engineering disciplines to handle growing complexity.

Languages: Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

• Mid 1980’s: Statecharts [Harel, 1987], StateMateTM [Harel et al., 1990]

• Early 1990’s, advent of Object-Oriented-Analysis/Design/Programming
— Inflation of notations and methods, most prominent:

• Object-Modeling Technique (OMT) [Rumbaugh et al., 1990]

• Booch Method and Notation [Booch, 1993]

• Object-Oriented Software Engineering (OOSE) [Jacobson et al., 1992]

Each “persuasion” selling books, tools, seminars. . .

• Late 1990’s: joint effort UML 0.x, 1.x

Standards published by Object Management Group (OMG), “international,

open membership, not-for-profit computer industry consortium”.

• Since 2005: UML 2.x



UML Overview [OMG, 2007b, 684]

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
h
is
to
ry

–

6/23

Figure A.5 - The taxonomy of structure and behavior diagram

Diagram

Structure
Diagram

Behavior
Diagram

Interaction
Diagram

Use Case
Diagram

Activity
Diagram

Composite
Structure
 Diagram

Class Diagram Component
Diagram

Deployment
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Object
Diagram

State Machine
Diagram

Package
Diagram

Communication
Diagram

Timing
Diagram

OCL

UML Overview [OMG, 2007b, 684]

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
h
is
to
ry

–

6/23

Figure A.5 - The taxonomy of structure and behavior diagram

Diagram

Structure
Diagram

Behavior
Diagram

Interaction
Diagram

Use Case
Diagram

Activity
Diagram

Composite
Structure
 Diagram

Class Diagram Component
Diagram

Deployment
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Object
Diagram

State Machine
Diagram

Package
Diagram

Communication
Diagram

Timing
Diagram

OCL

[Dobing and Parsons, 2006]



Common Expectations on UML

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
h
is
to
ry

–

7/23

• Easily writeable, readable even by customers

• Powerful enough to bridge the gap between idea and implementation

• Means to tame complexity by separation of concerns (“views”)

• Unambiguous

• Standardised, exchangeable between modelling tools

• UML standard says how to develop software

• Using UML leads to better software

• . . .

We will see...

Seriously: After the course, you should have an own opinion on each of these claims.
In how far/in what sense does it hold? Why? Why not? How can it be achieved?
Which ones are really only hopes and expectations? . . . ?

Course Map Revisited

–
0
2
–
2
0
1
4
-1
0
-2
3
–
m
a
in

–

8/23



The Plan

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
le
p
la
n
–

9/23

Recall:

• Overall aim:
a formal language
for software blueprints.

• Approach:

(i) Common semantical
domain.

(ii) UML fragments as syntax.

(iii) Abstract representation
of diagrams.

(iv) Informal semantics:
UML standard

(v) assign meaning to

diagrams.

(vi) Define, e.g., consistency.

Diagram

Structure
Diagram

Behavior
Diagram

Interaction
Diagram

Use Case
Diagram

Activity
Diagram

Composite
Structure
 Diagram

Class Diagram Component
Diagram

Deployment
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Object
Diagram

State Machine
Diagram

Package
Diagram

Communication
Diagram

Timing
Diagram

OCL

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣD
S
, AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ

= ((σi, cons i,Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

UML: Semantic Areas

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
le
p
la
n
–

10/23

pository semantics

Figure 6.1 - A schematic of the UML semantic areas and their dependencies

object behavior ba

intra-object behavior base

Structural Foundations 

Inter-Object Behavior Base Intra-Object Behavior Base

Activities 

Actions 

State Machines Interactions 

[OMG, 2007b, 11]



Common Semantical Domain

–
0
2
–
2
0
1
4
-1
0
-2
3
–
m
a
in

–

11/23

Basic Object System Signature

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
se
m
d
o
m

–

12/23

Definition. A (Basic) Object System Signature is a quadruple

S = (T,C, V, atr )

where

• T is a set of (basic) types,

• C is a finite set of classes,

• V is a finite set of typed attributes, i.e., each v ∈ V has type

• τ ∈ T or

• C0,1 or C∗, where C ∈ C

(written v : τ or v : C0,1 or v : C∗),

• atr : C → 2V maps each class to its set of attributes.

Note: Inspired by OCL 2.0 standard [OMG, 2006], Annex A.



Basic Object System Signature Example

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
se
m
d
o
m

–

13/23

S = (T,C, V, atr ) where

• (basic) types T and classes C , (both finite),

• typed attributes V , τ from T or C0,1 or C∗, C ∈ C ,

• atr : C → 2V mapping classes to attributes.

Example:

S0 = ({Int}, {C,D}, {x : Int , p : C0,1, n : C∗}, {C 7→ {p, n}, D 7→ {x}})

Basic Object System Signature Another Example

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
se
m
d
o
m

–

14/23

S = (T,C, V, atr ) where

• (basic) types T and classes C , (both finite),

• typed attributes V , τ from T or C0,1 or C∗, C ∈ C ,

• atr : C → 2V mapping classes to attributes.

Example:



Basic Object System Structure

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
se
m
d
o
m

–

15/23

Definition. A Basic Object System Structure of S = (T,C, V, atr )
is a domain function D which assigns to each type a domain, i.e.

• τ ∈ T is mapped to D(τ ),

• C ∈ C is mapped to an infinite set D(C) of (object) identities.

Note: Object identities only have the “=” operation;
object identities of different classes are disjoint, i.e. ∀C,D ∈ C : C 6=
D → D(C) ∩ D(D) = ∅.

• C∗ and C0,1 for C ∈ C are mapped to 2D(C).

We use D(C ) to denote
⋃

C∈C
D(C); analogously D(C∗).

Note: We identify objects and object identities, because both uniquely
determine each other (cf. OCL 2.0 standard).

Basic Object System Structure Example

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
se
m
d
o
m

–

16/23

Wanted: a structure for signature

S0 = ({Int}, {C,D}, {x : Int , p : C0,1, n : C∗}, {C 7→ {p, n}, D 7→ {x}})

Recall: by definition, seek a D which maps

• τ ∈ T to some D(τ ),

• c ∈ C to some identities D(C) (infinite, disjoint for different classes),

• C∗ and C0,1 for C ∈ C to D(C0,1) = D(C∗) = 2D(C).

D(Int) = Z

D(C) = N
+ × {C} ∼= {1C , 2C , 3C , ...}

D(D) = N
+ × {D} ∼= {1D, 2D, 3D, ...}

D(C0,1) = D(C∗) = 2D(C)

D(D0,1) = D(D∗) = 2D(D)



System State

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
se
m
d
o
m

–

17/23

Definition. Let D be a structure of S = (T,C, V, atr ).
A system state of S wrt. D is a type-consistent mapping

σ : D(C ) 9 (V 9 (D(T ) ∪ D(C∗))).

That is, for each u ∈ D(C), C ∈ C , if u ∈ dom(σ)

• dom(σ(u)) = atr(C)

• σ(u)(v) ∈ D(τ) if v : τ, τ ∈ T

• σ(u)(v) ∈ D(D∗) if v : D0,1 or v : D∗ with D ∈ C

We call u ∈ D(C ) alive in σ if and only if u ∈ dom(σ).

We use ΣD
S

to denote the set of all system states of S wrt.D .



System State Example

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
se
m
d
o
m

–

18/23

Signature, Structure:

S0 = ({Int}, {C,D}, {x : Int , p : C0,1, n : C∗}, {C 7→ {p, n}, D 7→ {x}})

D(Int) = Z, D(C) = {1C , 2C , 3C , ...}, D(D) = {1D, 2D, 3D, ...}

Wanted: σ : D(C ) 9 (V 9 (D(T ) ∪ D(C∗))) such that

• dom(σ(u)) = atr(C),

• σ(u)(v) ∈ D(τ ) if v : τ, τ ∈ T , • σ(u)(v) ∈ D(C∗) if v : D∗ with D ∈ C .

System State Example

–
0
2
–
2
0
1
4
-1
0
-2
3
–
S
se
m
d
o
m

–

19/23

Signature, Structure:

S0 = ({Int}, {C,D}, {x : Int , p : C0,1, n : C∗}, {C 7→ {p, n}, D 7→ {x}})

D(Int) = Z, D(C) = {1C , 2C , 3C , ...}, D(D) = {1D, 2D, 3D, ...}

Wanted: σ : D(C ) 9 (V 9 (D(T ) ∪ D(C∗))) such that

• dom(σ(u)) = atr(C),

• σ(u)(v) ∈ D(τ ) if v : τ, τ ∈ T ,

• σ(u)(v) ∈ D(C∗) if v : D∗ with D ∈ C .

• Concrete, explicit:

σ = {1C 7→ {p 7→ ∅, n 7→ {5C}}, 5C 7→ {p 7→ ∅, n 7→ ∅}, 1D 7→ {x 7→ 23}}.

• Alternative: symbolic system state

σ = {c1 7→ {p 7→ ∅, n 7→ {c2}}, c2 7→ {p 7→ ∅, n 7→ ∅}, d 7→ {x 7→ 23}}



You Are Here.

–
0
2
–
2
0
1
4
-1
0
-2
3
–
m
a
in

–

20/23

Course Map

–
0
2
–
2
0
1
4
-1
0
-2
3
–
m
a
in

–

21/23

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

CD, SM

S = (T,C, V, atr ), SM

M = (ΣD
S
, AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, cons i,Snd i))i∈N

G = (N,E, f) Mathematics

OD UML



References

–
0
2
–
2
0
1
4
-1
0
-2
3
–
m
a
in

–

22/23

–
0
2
–
2
0
1
4
-1
0
-2
3
–
m
a
in

–

23/23

[Booch, 1993] Booch, G. (1993). Object-oriented Analysis and Design with Applications.
Prentice-Hall.

[Dobing and Parsons, 2006] Dobing, B. and Parsons, J. (2006). How UML is used.
Communications of the ACM, 49(5):109–114.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231–274.

[Harel et al., 1990] Harel, D., Lachover, H., et al. (1990). Statemate: A working
environment for the development of complex reactive systems. IEEE Transactions on

Software Engineering, 16(4):403–414.

[Jacobson et al., 1992] Jacobson, I., Christerson, M., and Jonsson, P. (1992).
Object-Oriented Software Engineering - A Use Case Driven Approach. Addison-Wesley.

[Kastens and Büning, 2008] Kastens, U. and Büning, H. K. (2008). Modellierung,

Grundlagen und Formale Methoden. Carl Hanser Verlag München, 2nd edition.

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0. Technical Report
formal/06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2.
Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal/07-11-02.

[Rumbaugh et al., 1990] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen,
W. (1990). Object-Oriented Modeling and Design. Prentice Hall.


