
–
0
7
–
2
0
1
4
-1
1
-1
3
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 07: Class Diagrams II

2014-11-13

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
p
re
li
m

–

2/25

Last Lecture:

• Representing class diagrams as (extended) signatures — for the moment without
associations (see Lecture 08).

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a class diagram?

• For what purposes are class diagrams useful?

• Could you please map this class diagram to a signature?

• Could you please map this signature to a class diagram?

• What is visibility good for?

• Content:

• Map class diagram to (extended) signature cont’d.

• Stereotypes – for documentation.

• Visibility as an extension of well-typedness.



Mapping UML CDs to Extended Signatures

–
0
7
–
2
0
1
4
-1
1
-1
3
–
m
a
in

–

3/25

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
cd

m
a
p
co

n
t
–

4/25

From Class Boxes to Extended Signatures

–
0
6
–
2
0
1
4
-1
1
-1
1
–
S
cd

m
a
p
–

18/30

A class box n induces an (extended) signature class as follows:

n: 〈〈S1, . . . , Sk 〉〉
C

ξ1 v1 : τ1 = v0,1 {P1,1, . . . , P1,m1
}

...
ξℓ vℓ : τℓ = v0,ℓ {Pℓ,1, . . . , Pℓ,mℓ

}

 

C (n) := 〈C, {S1, . . . , Sk}, a(n), t(n)〉

V (n) := {〈v1 : τ1, ξ1, v0,1, {P1,1, . . . , P1,m1
}〉, . . . , 〈vℓ : τℓ, ξℓ, v0,ℓ, {Pℓ,1, . . . , Pℓ,mℓ

}〉}

atr(n) := {C 7→ {v1, . . . , vℓ}}

where

• “abstract” is determined by the font:

a(n) =

{

true , if n = C or n = C {A}

false , otherwise

• “active” is determined by the frame:

t(n) =

{

true , if n = C or n = C

false , otherwise



Recall: Example

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
cd

m
a
p
co

n
t
–

5/25



What If Things Are Missing?

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
cd

m
a
p
co

n
t
–

6/25

• For instance, what about the box above?

C
v : Int

• v has no visibility, no initial value, and (strictly speaking) no properties.

It depends.

• What does the standard say? [OMG, 2007a, 121]

“Presentation Options.

The type, visibility, default, multiplicity, property string may be

suppressed from being displayed, even if there are values in the model.”

• Visibility: There is no “no visibility” — an attribute has a visibility in the
(extended) signature.

Some (and we) assume public as default, but conventions may vary.

• Initial value: some assume it given by domain (such as “leftmost value”, but
what is “leftmost” of Z?).
Some (and we) understand non-deterministic initialisation.

• Properties: probably safe to assume ∅ if not given at all.

From Class Diagrams to Extended Signatures

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
cd

m
a
p
co

n
t
–

7/25

• We view a class diagram CD as a graph with nodes {n1, . . . , nN}
(each “class rectangle” is a node).

• C (CD) :=
⋃

N

i=1
C (ni)

• V (CD) :=
⋃

N

i=1
V (ni)

• atr(CD) :=
⋃

N

i=1
atr(ni)

• In a UML model, we can have finitely many class diagrams,

C D = {CD1, . . . , CDk},

which induce the following signature:

S (C D) =

(

T ,

k
⋃

i=1

C (CDi),

k
⋃

i=1

V (CDi),

k
⋃

i=1

atr(CDi)

)

.

(Assuming T given. In “reality” (i.e. in full UML), we can introduce types in class

diagrams, the class diagram then contributes to T . Example: enumeration types.)



Is the Mapping a Function?

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
cd

m
a
p
co

n
t
–

8/25

• Is S (C D) well-defined?

Two possible sources for problems:

(1) A class C may appear in multiple class diagrams:

(i)

C
v : Int

CD1

C
w : Int

CD2

(ii)

C
v : Int

CD1

C
v : Bool

CD2

Simply forbid the case (ii) — easy syntactical check on diagram.



Is the Mapping a Function?

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
cd

m
a
p
co

n
t
–

9/25

(2) An attribute v may appear in multiple classes:

C
v : Bool

D
v : Int

Two approaches:

• Require unique attribute names.
This requirement can easily be established (implicitly, behind the scenes) by
viewing v as an abbreviation for

C::v or D::v

depending on the context. (C::v : Bool and D::v : Int are unique.)

• Subtle, formalist’s approach: observe that

〈v : Bool , . . . 〉 and 〈v : Int , . . . 〉

are different things in V . But we don’t follow that path. . .

Class Diagram Semantics

–
0
7
–
2
0
1
4
-1
1
-1
3
–
m
a
in

–

10/25



Semantics

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
cd

se
m

–

11/25

The semantics of a set of class diagrams C D first of all is the induced
(extended) signature S (CD).
The signature gives rise to a set of system states given a structure D .

• Do we need to redefine/extend D? No.

(Would be different if we considered the definition of enumeration types in class

diagrams. Then the domain of an enumeration type τ , i.e. the set D(τ ), would be

determined by the class diagram, and not free for choice.)

Semantics

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
cd

se
m

–

11/25

The semantics of a set of class diagrams C D first of all is the induced
(extended) signature S (CD).
The signature gives rise to a set of system states given a structure D .

• Do we need to redefine/extend D? No.

(Would be different if we considered the definition of enumeration types in class

diagrams. Then the domain of an enumeration type τ , i.e. the set D(τ ), would be

determined by the class diagram, and not free for choice.)

• What is the effect on ΣD
S
? Little.

For now, we only remove abstract class instances, i.e.

σ : D(C ) 9 (V 9 (D(T ) ∪ D(C∗)))

is now only called system state if and only if, for all 〈C, SC , 1, t〉 ∈ C ,

dom(σ) ∩ D(C) = ∅.

With a = 0 as default “abstractness”, the earlier definitions apply directly.
We’ll revisit this when discussing inheritance.



What About The Rest?

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
cd

se
m

–

12/25

• Classes:

• Active: not represented in σ.
Later: relevant for behaviour, i.e., how system states evolve over time.

• Stereotypes: in a minute.

• Attributes:

• Initial value: not represented in σ.
Later: provides an initial value as effect of “creation action”.

• Visibility: not represented in σ.
Later: viewed as additional typing information for well-formedness of
system transformers; and with inheritance.

• Properties: such as readOnly, ordered, composite
(Deprecated in the standard.)

• readOnly — later treated similar to visibility.

• ordered — not considered in our UML fragment (→ sets vs. sequences).

• composite — cf. lecture on associations.

Stereotypes

–
0
7
–
2
0
1
4
-1
1
-1
3
–
m
a
in

–

13/25



Stereotypes as Labels or Tags

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
st
er
eo

–

14/25

• So, a class is 〈C, SC , a, t〉 with
the abstractness flag a, activeness flag t, and a set of stereotypes SC .

• What are Stereotypes?

• Not represented in system states.

• Not contributing to typing rules.
(cf. later lecture on type theory for UML)

• [Oestereich, 2006]:
View stereotypes as (additional) “labelling” (“tags”) or as “grouping”.

Useful for documentation and MDA.

• Documentation: e.g. layers of an architecture.
Sometimes, packages (cf. the standard) are sufficient and “right”.

• Model Driven Architecture (MDA): later.

Example: Stereotypes for Documentation

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
st
er
eo

–

15/25

Core

View

Application/Qt

Trace

sort

move

filter

jump

zoom

View/Qt

• Example: Timing Diagram Viewer
[Schumann et al., 2008]

• Architecture of four layers:

• core, data layer

• abstract view layer

• toolkit-specific view layer/widget

• application using widget

• Stereotype “=” layer “=” colour



Stereotypes as Inheritance

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
st
er
eo

–

16/25

• Another view (due to whom?): distinguish

• Technical Inheritance

If the target platform, such as the programming language for the

implementation of the blueprint, is object-oriented, assume a 1-to-1 relation

between inheritance in the model and on the target platform.

• Conceptual Inheritance

Only meaningful with a common idea of what stereotypes stand for. For
instance, one could label each class with the team that is responsible for
realising it. Or with licensing information (e.g., LGPL and proprietary).

Or one could have labels understood by code generators (cf. lecture on MDSE).

• Confusing:

• Inheritance is often referred to as the “is a”-relation.
Sharing a stereotype also expresses “being something”.

• We can always (ab-)use
UML-inheritance for the
conceptual case, e.g.

Core

Cell Trace

Visibility

–
0
7
–
2
0
1
4
-1
1
-1
3
–
m
a
in

–

17/25



The Intuition by Example

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
vi
si
ty
p
–

18/25

S = ({Int}, {C,D}, {n : D0,1,

m : D0,1, 〈x : Int , ξ, expr
0
, ∅〉},

{C 7→ {n}, D 7→ {x,m}}

C

D
ξ x : Int = expr

0× •
n

0, 1

×

•
m

0, 1

c : C d1 : D

x = 1
d2 : D

n m

Assume w1 : τC and w2 : τD are logical variables. Which of the following
syntactically correct (?) OCL expressions shall we consider to be well-typed?

ξ of x: public private protected package
w1 . n . x = 0 ✔ ✔ later not

✘ ✘

? ?
w2 . m . x = 0 ✔ ✔ later not

✘ ✘

? ?

References

–
0
7
–
2
0
1
4
-1
1
-1
3
–
m
a
in

–

24/25



–
0
7
–
2
0
1
4
-1
1
-1
3
–
m
a
in

–

25/25

[Oestereich, 2006] Oestereich, B. (2006). Analyse und Design mit UML 2.1,

8. Auflage. Oldenbourg, 8. edition.

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0.
Technical Report formal/06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure,
version 2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure,
version 2.1.2. Technical Report formal/07-11-02.

[Schumann et al., 2008] Schumann, M., Steinke, J., Deck, A., and Westphal,
B. (2008). Traceviewer technical documentation, version 1.0. Technical
report, Carl von Ossietzky Universität Oldenburg und OFFIS.


