
–
0
8
–
2
0
1
4
-1
1
-2
0
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 08: Class Diagrams II

2014-11-20

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
0
8
–
2
0
1
4
-1
1
-2
0
–
S
p
re
li
m

–

2/50

Last Lectures:

• completed class diagrams... except for visibility and associations

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Please explain this class diagram with associations.

• Which annotations of an association arrow are semantically relevant?

• What’s a role name? What’s it good for?

• What is “multiplicity”? How did we treat them semantically?

• What is “reading direction”, “navigability”, “ownership”, . . . ?

• What’s the difference between “aggregation” and “composition”?

• Content:

• Study concrete syntax for “associations”.

• (Temporarily) extend signature, define mapping from diagram to signature.

• Study effect on OCL.

• Btw.: where do we put OCL constraints?



Visibility Cont’d

–
0
8
–
2
0
1
4
-1
1
-2
0
–
m
a
in

–

3/50

–
0
8
–
2
0
1
4
-1
1
-2
0
–
S
vi
si
ty
p
co

n
t
–

4/50

The Intuition by Example

–
0
7
–
2
0
1
4
-1
1
-1
3
–
S
vi
si
ty
p
–

18/25

S = ({Int}, {C,D}, {n : D0,1,

m : D0,1, 〈x : Int , ξ, expr
0
, ∅〉},

{C 7→ {n}, D 7→ {x,m}}

C

D
ξ x : Int = expr

0× •
n

0, 1

×

•
m

0, 1

c : C d1 : D

x = 1
d2 : D

n m

Assume w1 : τC and w2 : τD are logical variables. Which of the following
syntactically correct (?) OCL expressions shall we consider to be well-typed?

ξ of x: public private protected package
w1 . n . x = 0 ✔ ✔ later not

✘ ✘

? ?
w2 . m . x = 0 ✔ ✔ later not

✘ ✘

? ?



Context

–
0
8
–
2
0
1
4
-1
1
-2
0
–
S
vi
si
ty
p
co

n
t
–

5/50

S = ({Int}, {C,D},
{r : D0,1, 〈v : Int , ξ,✩, ∅〉},
{C 7→ {r}, D 7→ {v, r}}

• Example:

C

D
− v : Int

r

0, 1

r

0, 1

self D . v > 0

self D . r . v > 0

self C . r . v > 0

• That is, whether an expression involving attributes with visibility is
well-typed depends on the class of objects for which it is evaluated.

Attribute Access in Context

–
0
8
–
2
0
1
4
-1
1
-2
0
–
S
vi
si
ty
p
co

n
t
–

6/50

Recall: attribute access in OCL Expressions, C,D ∈ C .

v(expr1) : τC → τ(v)

r1(expr1) : τC → τD

r2(expr1) : τC → Set(τD)

• v : τ(v) ∈ atr(C), τ(v) ∈ T ,

• r1 : D0,1 ∈ atr(C),

• r2 : D∗ ∈ atr(C),

New rules:

v(w) : τC → τ(v) 〈v : τ, ξ, expr0, PC 〉 ∈ atr(C)

r1(w) : τC → τD 〈r1 : D0,1, ξ, expr0, PC 〉 ∈ atr(C)

r2(w) : τC → Set(τD) 〈r1 : D∗, ξ, expr0, PC 〉 ∈ atr(C)

v(expr1(w)) : τC2
→ τ(v) 〈v : τ, ξ, expr0, PC 〉 ∈ atr(C),

expr1(w) : τC2
, w : τC1

, and C1 = C2 or ξ = +

r1(expr1(w)) : τC2
→ τD 〈v : D0,1, ξ, expr0, PC 〉 ∈ atr(C),

expr1(w) : τC2
, w : τC1

, and C1 = C2 or ξ = +



Example

–
0
8
–
2
0
1
4
-1
1
-2
0
–
S
vi
si
ty
p
co

n
t
–

7/50

v(w) : τC → τ(v) 〈v : τ, ξ, expr0, PC 〉 ∈ atr(C)

r1(w) : τC → τD 〈r1 : D0,1, ξ, expr0, PC 〉 ∈ atr(C)

v(expr1(w)) : τC2
→ τ(v) 〈v : τ, ξ, expr0, PC 〉 ∈ atr(C),

expr1(w) : τC2
, w : τC1

, and C1 = C2 or ξ = +

r1(expr1(w)) : τC2
→ τD 〈v : D0,1, ξ, expr0, PC 〉 ∈ atr(C),

expr1(w) : τC2
, w : τC1

, and C1 = C2 or ξ = +

C

D
− v : Int

r

0, 1

r

0, 1

• self D . v > 0

• self D . r . v > 0

• self C . r . v > 0

The Semantics of Visibility

–
0
8
–
2
0
1
4
-1
1
-2
0
–
S
vi
si
ty
p
co

n
t
–

8/50

• Observation:

• Whether an expression does or does not respect visibility
is a matter of well-typedness only.

• We only evaluate (= apply I to) well-typed expressions.

→ We need not adjust the interpretation function I to support visibility.



What is Visibility Good For?

–
0
8
–
2
0
1
4
-1
1
-2
0
–
S
vi
si
ty
p
co

n
t
–

9/50

• Visibility is a property of attributes —

C

D
− x : Int× •

n

0, 1

: C : D

x = 3

nis it useful to consider it in OCL?

• In other words: given the diagram above,
is it useful to state the following invariant (even though x is private in D)

context C inv : n.x > 0 ?

It depends. (cf. [OMG, 2006], Sect. 12 and 9.2.2)

• Constraints and pre/post conditions:

• Visibility is sometimes not taken into account. To state “global” requirements,
it may be adequate to have a “global view”, be able to look into all objects.

• But: visibility supports “narrow interfaces”, “information hiding”, and similar
good design practices. To be more robust against changes, try to state
requirements only in the terms which are visible to a class.

Rule-of-thumb: if attributes are important to state requirements on design
models, leave them public or provide get-methods (later).

• Guards and operation bodies:
If in doubt, yes (= do take visibility into account).

Any so-called action language typically takes visibility into account.

References

–
0
8
–
2
0
1
4
-1
1
-2
0
–
m
a
in

–

49/50



–
0
8
–
2
0
1
4
-1
1
-2
0
–
m
a
in

–

50/50

[Oestereich, 2006] Oestereich, B. (2006). Analyse und Design mit UML 2.1,

8. Auflage. Oldenbourg, 8. edition.

[OMG, 2006] OMG (2006). Object Constraint Language, version 2.0.
Technical Report formal/06-05-01.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure,
version 2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure,
version 2.1.2. Technical Report formal/07-11-02.


