
–
1
2
–
2
0
1
4
-1
2
-0
9
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 12: Core State Machines II

2014-12-09

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
p
re
li
m

–

2/50

Last Lecture:

• State machine syntax

• Core state machines

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What is: Signal, Event, Ether, Transformer, Step, RTC.

• Content:

• The basic causality model

• Ether

• System Configuration, Transformer

• Examples for transformer

• Run-to-completion Step

Recall: Core State Machines

–
1
2
–
2
0
1
4
-1
2
-0
9
–
m
a
in

–

3/50

Recall: Core State Machine

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
st
m
sy
n
–

4/50

Definition.
A core state machine over signature S = (T,C, V, atr ,E) is a
tuple

M = (S, s0,→)

where

• S is a non-empty, finite set of (basic) states,

• s0 ∈ S is an initial state,

• and
→ ⊆ S × (E ∪ { })

︸ ︷︷ ︸

trigger

×ExprS
︸ ︷︷ ︸

guard

×ActS
︸ ︷︷ ︸

action

×S

is a labelled transition relation.

We assume a set ExprS of boolean expressions (may be OCL, may
be something else) and a set ActS of actions over S .

From UML to Core State Machines: By Example

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
st
m
sy
n
–

5/50

UML state machine diagram SM:

s1 s2
annot

annot ::=
[

〈event〉[‘.’ 〈event〉]∗ [‘[’ 〈guard〉 ‘]’] [‘/’ 〈action〉]
]

with

• event ∈ E ,

• guard ∈ ExprS (default: true, assumed to be in ExprS)

• action ∈ ActS (default: skip, assumed to be in ActS)

maps to

M(SM) =
(
{s1, s2}
︸ ︷︷ ︸

S

, s1
︸︷︷︸

s0

, (s1, event , guard , action, s2)
︸ ︷︷ ︸

→

)

Annotations and Defaults in the Standard

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
st
m
sy
n
–

6/50

Reconsider the syntax of transition annotations:

annot ::=
[

〈event〉[‘.’ 〈event〉]∗ [‘[’ 〈guard〉 ‘]’] [‘/’ 〈action〉]
]

and let’s play a bit with the defaults:

 [true] / skip

/ [true] / skip

E / E [true] / skip

/ act [true] / act

E / act E [true] / act

In the standard, the syntax is even more elaborate:

• E(v) — when consuming E in object u,
attribute v of u is assigned the
corresponding attribute of E.

• E(v : τ) — similar, but v is a local variable,
scope is the transition

What is that useful for?

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
st
m
sy
n
–

7/50

• No Event:

• No annotation:

State-Machines belong to Classes

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
st
m
sy
n
–

8/50

• In the following, we assume that a UML models consists of a set C D of class
diagrams and a set SM of state chart diagrams (each comprising one state
machines SM).

• Furthermore, we assume that each state machine SM ∈ SM

is associated with a class CSM ∈ C (S).

• For simplicity, we even assume a bijection, i.e. we assume that each class
C ∈ C (S) has a state machine SMC and that its class CSMC

is C.

If not explicitly given, then this one:

SM0 := ({s0}, s0, ∅).

We’ll see later that, semantically, this choice does no harm.

• Intuition 1: SMC describes the behaviour of the instances of class C.
Intuition 2: Each instance of C executes SMC with own “program counter”.

Note: we don’t consider multiple state machines per class.
(Because later (when we have AND-states) we’ll see that this case can be viewed as a

single state machine with as many AND-states.)

The Basic Causality Model

–
1
2
–
2
0
1
4
-1
2
-0
9
–
m
a
in

–

9/50

6.2.3 The Basic Causality Model [?, 12]

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
st
m
st
d
–

10/50

“‘Causality model’ is a specification of how things happen at run time [...].

The causality model is quite straightforward:

• Objects respond to messages that are generated by objects executing
communication actions.

• When these messages arrive, the receiving objects eventually respond by
executing the behavior that is matched to that message.

• The dispatching method by which a particular behavior is associated with a
given message depends on the higher-level formalism used and is not
defined in the UML specification
(i.e., it is a semantic variation point).

The causality model also subsumes behaviors invoking each other and passing
information to each other through arguments to parameters of the invoked
behavior, [...].

This purely ‘procedural’ or ‘process’ model can be used by itself or in
conjunction with the object-oriented model of the previous example.”

6.2.3 The Basic Causality Model [?, 12]

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
st
m
st
d
–

11/50

• Objects respond to messages
that are generated by objects executing communication actions.

• When these messages arrive, the receiving objects eventually re-
spond by executing the behavior that is matched to that message.

C
x : Int

n

0..1

×

15.3.12 StateMachine [?, 563]

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
st
m
st
d
–

12/50

• Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

• The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

• Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

• The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

• Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with
all entry/exit/internal-activities (but not
necessarily do-activities) completed.

• The same conditions apply after the run-
to-completion step is completed.

• Thus, an event occurrence will never be
processed [...] in some intermediate and
inconsistent situation.

• [IOW,] The run-to-completion step is
the passage between two state configu-
rations of the state machine.

• The run-to-completion assumption
simplifies the transition function of the
StM, since concurrency conflicts are
avoided during the processing of event,
allowing the StM to safely complete its
run-to-completion step.

15.3.12 StateMachine [?, 563]

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
st
m
st
d
–

13/50

• The order of dequeuing is not defined,
leaving open the possibility of modeling
different priority-based schemes.

• Run-to-completion may be implemented
in various ways. [...]

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
st
m
st
d
–

14/50

And?

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
st
m
st
d
–

15/50

s1 s2

s3

E[n 6= ∅]/x := x+ 1;n !F

/n := ∅F/x := 0

• ...:

• We have to formally define what event occurrence is.

• We have to define where events are stored – what the event pool is.

• We have to explain how transitions are chosen – “matching”.

• We have to explain what the effect of actions is – on state and event pool.

• We have to decide on the granularity — micro-steps, steps, run-to-completion
steps (aka. super-steps)?

• We have to formally define a notion of stability and RTC-step completion.

• And then: hierarchical state machines.

s

s1 s2 s3

s′1 s′2 s′3

E/ E/ E/

E/

Roadmap: Chronologically

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
st
m
st
d
–

16/50

(i) What do we (have to) cover?
UML State Machine Diagrams Syntax.

(ii) Def.: Signature with signals.

(iii) Def.: Core state machine.

(iv) Map UML State Machine Diagrams
to core state machines.

Semantics:
The Basic Causality Model

(v) Def.: Ether (aka. event pool)

(vi) Def.: System configuration.

(vii) Def.: Event.

(viii) Def.: Transformer.

(ix) Def.: Transition system, computation.

(x) Transition relation induced by core state
machine.

(xi) Def.: step, run-to-completion step.

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

W

CD, SM

S = (T,C, V, atr), SM

M = (ΣD
S
, AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , F

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi,Snd

G = (N,E, f) Mathematics

OD UML

✔ !

✔ !

!
✔

✔

✔

✔

✔

System Configuration, Ether, Transformer

–
1
2
–
2
0
1
4
-1
2
-0
9
–
m
a
in

–

17/50

Ether aka. Event Pool

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
et
h
er

–

18/50

Definition. Let S = (T,C, V, atr ,E) be a signature with signals
and D a structure.

We call a tuple (Eth, ready,⊕,⊖, [·]) an ether over S and D if
and only if it provides

• a ready operation which yields a set of events that are ready for a given

object, i.e.

ready : Eth × D(C) → 2D(E)

• a operation to insert an event destined for a given object, i.e.

⊕ : Eth × D(C)× D(E) → Eth

• a operation to remove an event, i.e.

⊖ : Eth × D(E) → Eth

• an operation to clear the ether for a given object, i.e.

[·] : Eth × D(C) → Eth.

Ether: Examples

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
et
h
er

–

19/50

• A (single, global, shared, reliable) FIFO queue is an ether:

• Eth:

• ready:

• ⊕:

• ⊖:

• [·]:

• One FIFO queue per active object is an ether.

• Lossy queue (⊕ becomes a relation then).

• One-place buffer.

• Priority queue.

• Multi-queues (one per sender).

• Trivial example: sink, “black hole”.

• . . .

15.3.12 StateMachine [?, 563]

–
1
2
–
2
0
1
4
-1
2
-0
9
–
S
et
h
er

–

20/50

• The order of dequeuing is not defined,
leaving open the possibility of modeling
different priority-based schemes.

• Run-to-completion may be implemented
in various ways. [...]

