— 12 — 2014-12-09 — main —

Software Design, Modelling and Analysis in UML

Lecture 12: Core State Machines I1

2014-12-09

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 12 — 2014-12-09 — Sprelim —

Last Lecture:

e State machine syntax

o Core state machines

This Lecture:
¢ Educational Objectives: Capabilities for following tasks/questions.

e What does this State Machine mean? What happens if | inject this event?
e Can you please model the following behaviour.
e What is: Signal, Event, Ether, Transformer, Step, RTC.

e Content:

e The basic causality model
o Ether
e System Configuration, Transformer

Examples for transformer

Run-to-completion Step

— 12 — 2014-12-09 — main —

Recall: Core State Machines

Recall: Core State Machine

— 12 — 2014-12-09 — Sstmsyn —

Definition.
A core state machine over signature .¥ = (Z,%,V,atr,&) is a
tuple
M = (S, S0, —>)
where
¢ S is a non-empty, finite set of (basic) states,
e sy € S is an initial state,

e and
— CSx (U{.}) x Expr, x Acty xS
—_— Y—— =

trigger guard action

is a labelled transition relation.

We assume a set Ezpr o of boolean expressions (may be OCL, may

be something else) and a set Act o of actions over .. y

From UML to Core State Machines: By Example

s
UML state machine diagram SM: \E
annot , \9 @

annot (event)[" (event)]* | [‘[Aguard) 7] [*/" (action)] |

with
_f naé»'m

(default: true, assumed to be in Ezpr)

o event € &,
o guard € Expr o,
e action € Acty (default: skip, assumed to be in Acts)

maps to

M(SM) = ({s1,s2}, s1,(s1, event, guard, action, s
(SM) = ({51,852}, 51, (51 g 2))

— 12 — 2014-12-09 — Sstmsyn —

s 50 -
5/50
Annotations and Defaults in the Standard
Reconsider the syntax of transition annotations:
annot = [(event)] ' (event)]* ['[' (guard) || ['/' {action)]]
4, qusd o,
and let’s play a bit with the defaults: f% / / E—l5]
A o~ e ship (s, o, sh s
Mmo*""‘ / - r Sy, —, T, Siep, S,)
/act ~ _ tpa ack
E/act ~ € twm act
[opd o - up kP
Legidlack ns — g i E.F6 [og]
In the standard, the syntax is even more elaborate: ®~———>(547
e F(v) — when consuming E in object u, 5’
attribute v of u is assigned the by

corresponding attribute of E. (Q/_N@
e E(v:T7)— similar, but v is a local variable,
scope is the transition ¢ Teip] 6/50

— 12 — 2014-12-09 — Sstmsyn —

What is that useful for?

— 12 — 2014-12-09 — Sstmsyn —

e No Event: (s /act
1

[’w‘t 1
E/ g =)

-

e No annotation: Jocks

D—————:BL,
=/
> /40‘7
\'713

State-Machines belong to Classes

— 12 — 2014-12-09 — Sstmsyn —

In the following, we assume that a UML models consists of a set ¥ % of class
diagrams and a set .“# of state chart diagrams (each comprising one state
machines SM).

Furthermore, we assume that each state machine SM ¢ 4
is associated with a class Cspy € €(.7).

For simplicity, we even assume a bijection, i.e. we assume that each class
C € €(.) has a state machine SM¢ and that its class Cspq, is C.

If not explicitly given, then this one:
SMy := ({50}, 50, 0).
We'll see later that, semantically, this choice does no harm.

Intuition 1: SM describes the behaviour of the instances of class C.
Intuition 2: Each instance of C executes SM ¢ with own “program counter”.

Note: we don't consider multiple state machines per class.
(Because later (when we have AND-states) we'll see that this case can be viewed as a
single state machine with as many AND-states.)

8/50

— 12 — 2014-12-09 — main —

The Basic Causality Model

6.2.3 The Basic Causality Model (2, 12

— 12 = 2014-12-09 — Sstmstd —

“Causality model’ is a specification of how things happen at run time [...].

The causality model is quite straightforward:

o Objects respond to messages that are generated by objects executing
communication actions.

o When these messages arrive, the receiving objects eventually respond by
executing the behavior that is matched to that message.

e The dispatching method by which a particular behavior is associated with a
given message depends on the higher-level formalism used and is not
defined in the UML specification
(i.e., it is a semantic variation point).

The causality model also subsumes behaviors invoking each other and passing
information to each other through arguments to parameters of the invoked

behavior, [...].

This purely ‘procedural’ or ‘process’ model can be used by itself or in
conjunction with the object-oriented model of the previous example.”
10/50

6.2.3 The Basic Causality Model (2, 12

— 12 = 2014-12-09 — Sstmstd —

15.3.12 StateMachine 2, 563

o Objects respond to messages

that are generated by objects executing communication actions.

o When these messages arrive, the receiving objects eventually re-
spond by executing the behavior that is matched to that message.

x: Int

— 12 - 2014-12-09 — Sstmsigl -

Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with
all entry/exit/internal-activities (but not
necessarily do-activities) completed.

11/50

The same conditions apply after the run-
to-completion step is completed.

Thus, an event occurrence will never be
processed [...] in some intermediate and
inconsistent si ion.

consistent situatio kbl

[IOW,] The run—to—compjlltion step is
the passage between twoéstate configu-
rations of the state machine.

The run-to-completion assumption
simplifies the transition function of the
StM, since concurrency conflicts are
avoided during the processing of event,
allowing the StM to safely complete its
run-to-completion step.

12/50

15.3.12 StateMachine 2, 563

e The order of dequeuing is
leaving open the possibility of modellng
different priority-based schemes.

o Run-to-completion may be implemented

in e

— 12 = 2014-12-09 — Sstmstd —

13/50

14/50

— 12 = 2014-12-09 — Sstmstd —

— 12 = 2014-12-09 — Sstmstd —

And?

En#0]/x:=z+1n!F

S1 —y

,/'DSQ
Flx :0/n =10
We have to formally define what event occurrence is.
We have to define where events are stored — what the event pool is.
We have to explain how transitions are chosen — “matching”.
We have to explain what the effect of actions is — on state and event pool.

We have to decide on the granularity — micro-steps, steps, run-to-completion
steps (aka. super-steps)?
We have to formally define a notion of stability and RTC-step completion.

And then: hierarchical state machines.

— 12 = 2014-12-09 — Sstmstd —

/ / /
1 2 3
15/50
Roadmap: Chronologically
(i) What do we (have to) cover?
UML State Machine Diagrams Syntax.
(i) Def.: Signature with signals.
(iii) Def.: Core state machine.
(iv) Map UML State Machine Diagrams
to core state machines. "
cP.SM | peocL D, SD
Semantics: Y. [v
The Basic Causality Model & = (7%, V,air), SM expr &, SD
]
v) Def.: Ether (aka. event pool v :
() (. p.) M = (25, Ay, ~su) v B = (Qsp, 40, Ay, —sp. |
(vi) Def.: System configuration. v
(vii) Def.: Event. !
7 = (00,20) T (g1). A n = (3, consi, S
(viii) Def.: Transformer. S ’ ‘ T
(ix) Def.: Transition system, computation. G=(N,E,f)

—
X
—

X,
~—

v
Transition relation induced by core state op

machine.

Def.: step, run-to-completion step. 16/50

— 12 — 2014-12-09 — main —

System Configuration, Ether, Transformer

Ether aka. Event Pool

— 12 — 2014-12-09 — Sether —

and & a structure.

We call a tuple (Eth, ready,®,o,[-]) an ether over . and

object, i.e.

ready : Eth x 2(€) — 27

® a operation to insert an event destined for atg‘}ven object, i.e.

fac g véu(. " e\g: . olih&.mnfygl
@ : Eth x 2(€¢) x 2(&) — Eth
® a operation to remove an event, i.e.)
&N € in
©: Eth x 2(8) — Eth

® an operation to clear the ether for a given object, i.e.

. [-]: Eth x 9(€) — Eth.

Definition. Let . = (7, %,V, atr, &) be a signature with signals

and only if it provides fov an vt oud cn ot . obtmin « stb of

g oty ... qw/ 1h$
e aready operation which yields a set of eyents that%ready for a given

7 if

(o eV

(23

J

)

17/50

18/50

Ether: Examples

— 12 — 2014-12-09 — Sether —

o A (single, global, shared, reliable) FIFO queue is an ether:

o Bth= (D) x D))’* eg. £=(v.0),60) (ve;)

Hee g){' d{w A'hdlé S‘Cf«lﬂ—w ’K fn-'fs (U'elé.@(t)KcD(e)
ready{ (ve)e€, v)~{{(2¢)§ fh‘:x reddy (€ \v/) =&
@(6 ® e) = . (ue)

,}_? {,
o)z, b) = i(mi'f,uff& e(éf)=¢

o []: ewere ol (ye) paies fon 4}#«:‘. HYeeLe

e One FIFO queue per active object is an ether.

o Lossy queue (@ becomes a relation then).
e One-place buffer.

e Priority queue.

o Multi-queues (one per sender).

o Trivial example: sink, “black hole".

e ... 19/50

15.3.12 StateMachine 2, 563

— 12 — 2014-12-09 — Sether —

e The order of dequeuing is
leaving open the possibility of modellng
different priority-based schemes.

e Run-to-completion may be implemented

in e

20/50

