Software Design, Modelling and Analysis in UML

 Lecture 13: Core State Machines III2014-12-16
Prof. Dr. Andreas Podelski, Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- Basic causality model
- Ether

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What does this State Machine mean? What happens if I inject this event?
- Can you please model the following behaviour.
- What is: Signal, Event, Ether, Transformer, Step, RTC.

- Content:

- System configuration
- Transformer
- Examples for transformer

System Configuration, Ether, Transformer

Ether aka. Event Pool

Definition. Let $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V, a t r, \mathscr{E})$ be a signature with signals and \mathscr{D} a structure.
We call a tuple (Eth, ready, $\oplus, \ominus,[\cdot])$ an ether over \mathscr{S} and \mathscr{D} if and only if it provides for an event ...and an object ... obtain a set of pool \&... identity u.,. signal instancore events)

- a ready operation which yields a set of events that are ready for a given object, ie.

$$
\text { ready }: \text { Eth } \times \mathscr{D}(\mathscr{C}) \rightarrow 2^{\mathscr{D}(\mathscr{E})}
$$

- a operation to insert an event destined for a given object, ie.

$$
\begin{aligned}
& f\left(\varepsilon_{\pi} \cdots \text { dost } t_{i d}\right. \\
& \oplus: E t h \times \mathscr{D}(\mathscr{C}) \times \mathscr{D}(\mathscr{E}) \rightarrow E t h{ }^{\text {event } p \text { pol }} \varepsilon^{\prime}
\end{aligned}
$$

- a operation to remove an event, ie.

$$
\begin{gathered}
\varepsilon_{n} \stackrel{e_{n}}{\varepsilon_{n}^{\prime}} \\
\ominus: E t h \times \mathscr{D}(\mathscr{E}) \rightarrow E t h
\end{gathered}
$$

- an operation to clear the ether for a given object, ie.

$$
[\cdot]: \text { Eth } \times \mathscr{D}(\mathscr{C}) \rightarrow \text { Eth }
$$

Ether: Examples

- A (single, global, shared, reliable) FIFO queue is an ether:

the set of all finite sequences of pairs $(v, e) \in D(\varepsilon) \times D(\varepsilon)$
- ready $((u, e), \varepsilon, v)=\left\{\begin{array}{ccc}\{(u, e)\} & \text { if } r=u \\ \theta & \text { othen'sise } & \operatorname{ready}(\epsilon, v)=\varnothing \\ R\end{array}\right.$

- [.]: remove all (ne) pairs from a given segerence
- One FIFO queue per active object is an ether.
- Lossy queue (\oplus becomes a relation then).
- One-place buffer.
- Priority queue.
- Multi-queues (one per sender).
- Trivial example: sink, "black hole".

15.3.12 StateMachine [OMG, 2007b, 563]

- The order of dequeuing is not defined, leaving open the possibility of modeling different priority-based schemes.
- Run-to-completion may be implemented in various ways. [...]

Ether and [OMG, 2007b]

The standard distinguishes, e.g., SignalEvent [OMG, 2007b, 450], Reception [OMG, 2007b, 447].

On SignalEvents, it says
A signal event represents the receipt of an asynchronous signal instance. A signal event may, for example, cause a state machine to trigger a transition. [OMG, 2007b, 449] [...]

Semantic Variation Points

The means by which requests are transported to their target depend on the type of requesting action, the target, the properties of the communication medium, and numerous other factors.
In some cases, this is instantaneous and completely reliable while in others it may involve transmission delays of variable duration, loss of requests, reordering, or duplication.
(See also the discussion on page 421.) [OMG, 2007b, 450]
Our ether is a general representation of the possible choices.
Often seen minimal requirement: order of sending by one object is preserved.
But: we'll later brieflv discuss "discarding" of events.

Events Are Instances of Signals

Definition. Let \mathscr{D}_{0} be a structure of the signature with signals $\mathscr{S}_{0}=$ $\left(\mathscr{T}_{0}, \mathscr{C}_{0}, V_{0}, a^{2 t} r_{0}, \mathscr{E}\right)$ and let $E \in \mathscr{E}_{0}$ be a signal.
Let $\operatorname{atr}(E)=\left\{v_{1}, \ldots, v_{n}\right\}$. We call

$$
e=\left(E,\left\{v_{1} \mapsto d_{1}, \ldots, v_{n} \mapsto d_{n}\right\}\right)
$$

or shorter (if mapping is clear from context)

$$
\left(E,\left(d_{1}, \ldots, d_{n}\right)\right) \text { or }(E, \vec{d})
$$

an event (or an instance) of signal E (if type-consistent).
We use $\operatorname{Evs}\left(\mathscr{E}_{0}, \mathscr{D}_{0}\right)$ to denote the set of all events of all signals in \mathscr{S}_{0} wrt. \mathscr{D}_{0}.

As we always try to maximize confusion...:

- By our existing naming convention, $u \in \mathscr{D}(E)$ is also called instance of the (signal) class E in system configuration (σ, ε) if $u \in \operatorname{dom}(\sigma)$.
- The corresponding event is then $(E, \sigma(u))$.

Signals? Events...? Ether...?!
The idea is the following:

- Signals are types (classes).
- Instances of signals (in the standard sense) are kept in the system state component σ of system configurations (σ, ε).
- Identities of signal instances are kept in the ether.
- Each signal instance is in particular an event - somehow "a recording that this signal occurred" (without caring for its identity)
- The main difference between signal instance and event:

Events don't have an identity.

- Why is this useful? In particular for reflective descriptions of behaviour, we are typically not interested in the identity of a signal instance, but only whether it is an " E " or " F ", and which parameters it carries.

System Configuration

Definition. Let $\mathscr{S}_{0}=\left(\mathscr{T}_{0}, \mathscr{C}_{0}, V_{0}\right.$, atr $\left._{0}, \mathscr{E}\right)$ be a signature with signals, \mathscr{D}_{0} a structure of $\mathscr{S}_{0},($ Eth, ready $, \oplus, \ominus,[\cdot])$ an ether over \mathscr{S}_{0} and \mathscr{D}_{0}.
Furthermore assume there is one core state machine M_{C} per class $C \in \mathscr{C}$.
A system configuration over $\mathscr{S}_{0}, \mathscr{D}_{0}$, and $E t h$ is a pair

System Configuration: Example

System Configuration Step-by-Step

- We start with some signature with signals $\mathscr{S}_{0}=\left(\mathscr{T}_{0}, \mathscr{C}_{0}, V_{0}, a t r_{0}, \mathscr{E}\right)$.
- A system configuration is a pair (σ, ε) which comprises a system state σ wrt. \mathscr{S} (not wrt. \mathscr{S}_{0}).
- Such a system state σ wrt. \mathscr{S} provides, for each object $u \in \operatorname{dom}(\sigma)$,
- values for the explicit attributes in V_{0},
- values for a number of implicit attributes, namely
- a stability flag, i.e. $\sigma(u)($ stable $)$ is a boolean value,
- a current (state machine) state, i.e. $\sigma(u)(s t)$ denotes one of the states of core state machine M_{C},
- a temporary association to access event parameters for each class, i.e. $\sigma(u)\left(\right.$ params $\left._{E}\right)$ is defined for each $E \in \mathscr{E}$.
- For convenience require: there is no link to an event except for params ${ }_{E}$.

Stability

Definition.

Let (σ, ε) be a system configuration over some $\mathscr{S}_{0}, \mathscr{D}_{0}$, Eth.
We call an object $u \in \operatorname{dom}(\sigma) \cap \mathscr{D}\left(\mathscr{C}_{0}\right)$ stable in σ if and only if

$$
\sigma(u)(\text { stable })=\text { true } .
$$

Where are we?

- Wanted: a labelled transition relation

$$
(\sigma, \varepsilon) \xrightarrow[u_{x}]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

on system configuration, labelled with the consumed and sent events, ($\sigma^{\prime}, \varepsilon^{\prime}$) being the result (or effect) of one object u_{x} taking a transition of its state machine from the current state machine state $\sigma\left(u_{x}\right)\left(s t_{C}\right)$.

- Have: system configuration (σ, ε) comprising current state machine state and stability flag for each object, and the ether.

- Plan:

(i) Introduce transformer as the semantics of action annotions. Intuitively, $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ is the effect of applying the transformer of the taken transition.
(ii) Explain how to choose transitions depending on ε and when to stop taking transitions - the run-to-completion "algorithm".

Why Transformers?

- Recall the (simplified) syntax of transition annotations:

$$
\text { annot } \left.::=\left[\begin{array}{lll}
\langle\text { event }\rangle & {[\text { '[' }\langle\text { guard }\rangle}
\end{array} \text { ']'] }\right] \quad[\text { '/' }\langle\text { action }\rangle]\right]
$$

- Clear: \langle event \rangle is from \mathscr{E} of the corresponding signature.
- But: What are \langle guard \rangle and \langle action \rangle ?
- UML can be viewed as being parameterized in expression language (providing \langle guard \rangle) and action language (providing \langle action \rangle).
- Examples:
- Expression Language:
- OCL
- Java, C++, ...expressions

```
- ...
```

- Action Language:
- UML Action Semantics, "Executable UML"
- Java, C++, ...statements (plus some event send action)
- ...

Transformer not, function, to model na-retruncism

Definition.
Let $\Sigma_{\mathscr{S}}^{\mathscr{D}}$ the set of system configurations over some $\mathscr{S}_{0}, \mathscr{D}_{0}$, Eth.
We call a relation ofjentitity of the cc "exerculs"

$$
t \subseteq \mathscr{D}(\mathscr{C}) \times\left(\Sigma_{\mathscr{S}}^{\text {the actia }} \times E t h\right) \times\left(\Sigma_{\Sigma_{\mathscr{S}}^{\mathscr{D}} \times E t h}\right.
$$

a (system configuration) transformer. system confjecuntion action
before eve. The

- In the following, we assume that each application of a transformer t to some system configuration (σ, ε) for object u_{x} is associated with a set of observations

$$
\begin{aligned}
& \text { id of event } \\
& \text { special sesubals for }
\end{aligned}
$$

- An observation $\left(u_{s r c}, u_{e},(E, \vec{d}), u_{d s t}\right) \in O b s_{t}\left[u_{x}\right](\sigma, \varepsilon)$ crate and destroy represents the information that, as a "side effect" of u_{x} executing t, an event (!) (E, \vec{d}) has been sent from $u_{s r c}$ to $u_{d s t}$.
Special cases: creation/destruction.

Transformers as Abstract Actions!

In the following, we assume that we're given

- an expression language Exp for guards, and
- an action language Act for actions,
and that we're given

$$
\begin{aligned}
& \text { example; } \\
& \text { OCR }
\end{aligned}
$$

$$
I \mathbb{C e q u i v}^{\log (\sigma, v):=}
$$

$$
\left\{\text { tace, if } \mathrm { I } _ { \mathrm { occ } } \mathbb { C } _ { 0 } \text { op id } \left(\sigma_{0},\right.\right.
$$

whys. otheren'se

- a semantics for boolean expressions in form of a partial function

$$
I \llbracket \cdot \rrbracket(\cdot, \cdot): \operatorname{Expr} \rightarrow\left(\Sigma_{\mathscr{S}}^{\mathscr{O}} \times \mathscr{D}(\mathscr{C}) \rightarrow \mathbb{B}\right)
$$

which evaluates expressions in a given system configuration,
Assuming I to be partial is a way to treat "undefined" during runtime. If I is not defined (for instance because of dangling-reference navigation or division-by-zero), we want to go to a designated "error" system configuration.

- a transformer for each action: for each act \in Act, we assume to have

$$
t_{a c t} \subseteq \mathscr{D}(\mathscr{C}) \times\left(\Sigma_{\mathscr{S}}^{\mathscr{S}} \times E t h\right) \times\left(\Sigma_{\mathscr{S}}^{\mathscr{D}} \times E t h\right)
$$

Expression/Action Language Examples

We can make the assumptions from the previous slide because instances exist:

- for OCL, we have the OCL semantics from Lecture 03. Simply remove the pre-images which map to " \perp ".
- for Java, the operational semantics of the SWT lecture uniquely defines transformers for sequences of Java statements.

We distinguish the following kinds of transformers:

- skip: do nothing - recall: this is the default action
- send: modifies ε - interesting, because state machines are built around sending/consuming events
- create/destroy: modify domain of σ - not specific to state machines, but let's discuss them here as were at it
- update: modify own or other objects' local state - boring

A Simple Action Language

In the following we we
$A_{c t}:=\{\operatorname{ship}\}$

$u\left\{\right.$ create $(C$, ever, $v) \mid C \in \mathcal{C} \backslash \varepsilon$, egg. $\left.\in O C \in E=\frac{1}{1}, v \in V\right)$
$u\{$ dorky (expel) \mid expo $\in O<E$ Ex, $\}$

if (new $C \neq N u C$)...
$v:=$ new C_{i}
if $(v \neq$ NL $)$..

Transformer Examples: Presentation

abstract syntax op	concrete syntax
intuitive semantics	
well-typedness	
$\left((\sigma, \varepsilon),\left(\sigma^{\prime}, \varepsilon^{\prime}\right)\right) \in t_{\text {op }}\left[u_{x}\right] \text { iff } \ldots$ or $t_{\text {op }}\left[u_{x}\right](\sigma, \varepsilon)=\left\{\left(\sigma^{\prime}, \varepsilon^{\prime}\right) \mid \text { where } \ldots\right\}$	
observables $O b s_{\text {op }}\left[u_{x}\right]=\{\ldots\}$, not a relation, depends on choice	
(error) condition	

Transformer: Skip

abstract syntax skip		concrete syntax skip
intuitive semantics	do nothing	
well-typedness	.$/$	
semantics	$t\left[u_{x}\right](\sigma, \varepsilon)=\{(\sigma, \varepsilon)\}$	
observables	$O b s_{\text {skip }}\left[u_{x}\right](\sigma, \varepsilon)=\emptyset$	
(error) conditions		

Transformer: Update

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. IEEE Computer, 30(7):31-42.
[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04.
[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

