
–
1
4
–
2
0
1
4
-1
2
-1
8
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 14: Core State Machines IV

2014-12-18

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
p
re
li
m

–

2/37

Last Lecture:

• System configuration

• Transformer

• Action language: skip, update

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What is: Signal, Event, Ether, Transformer, Step, RTC.

• Content:

• Action Language: send (create/destroy later)

• Run-to-completion Step

• Putting It All Together

Transformer Cont’d

–
1
4
–
2
0
1
4
-1
2
-1
8
–
m
a
in

–

3/37

Transformer: Skip

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
a
ct
la
n
g
–

4/37

abstract syntax concrete syntax

skip

intuitive semantics

do nothing

well-typedness

./.
semantics

t[ux](σ, ε) = {(σ, ε)}
observables

Obsskip[ux](σ, ε) = ∅
(error) conditions

Transformer: Update

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
a
ct
la
n
g
–

5/37

abstract syntax concrete syntax

update(expr1, v, expr2)
intuitive semantics

Update attribute v in the object denoted by expr1 to the

value denoted by expr2.

well-typedness

expr1 : τC and v : τ ∈ atr(C); expr2 : τ ;
expr1, expr2 obey visibility and navigability

semantics

tupdate(expr1,v,expr2)[ux](σ, ε) = {(σ′, ε)}

where σ′ = σ[u 7→ σ(u)[v 7→ IJexpr2K(σ, ux)]]
with u = IJexpr1K(σ, ux).

observables

Obsupdate(expr1,v,expr2)[ux] = ∅
(error) conditions

Not defined if IJexpr1K(σ, β) or IJexpr2K(σ, β) not defined.

Update Transformer Example

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
a
ct
la
n
g
–

6/37

SMC :
s1 s2

/x := x+ 1

tupdate(expr
1
,v,expr

2
)[ux](σ, ε) = (σ′ = σ[u 7→ σ(u)[v 7→ IJexpr2K(σ, ux)]], ε), u = IJexpr1K(σ, ux)

σ: u1 : C

x = 4
y = 0

u1 : C

x = 5
y = 0

:σ′

ε: :ε′

Transformer: Send

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
a
ct
la
n
g
–

7/37

abstract syntax concrete syntax

send(E(expr1, ..., exprn), exprdst)
intuitive semantics

Object ux : C sends event E to object exprdst , i.e. create a fresh

signal instance, fill in its attributes, and place it in the ether.

well-typedness

exprdst : τD, C,D ∈ C \ E ; E ∈ E ; atr(E) = {v1 : τ1, . . . , vn : τn};
expr i : τi, 1 ≤ i ≤ n;

all expressions obey visibility and navigability in C
semantics

(σ′, ε′) ∈ tsend(E(expr1,...,exprn),exprdst)
[ux](σ, ε)

iff σ′ = σ ∪̇ {u 7→ {vi 7→ di | 1 ≤ i ≤ n}}; ε′ = ε⊕ (udst , u);
if udst = IJexprdstK(σ, ux) ∈ dom(σ); di = IJexpr iK(σ, ux) for

1 ≤ i ≤ n;
u ∈ D(E) a fresh identity, i.e. u 6∈ dom(σ),

and where (σ′, ε′) = (σ, ε) if udst 6∈ dom(σ).
observables

Obssend[ux] = {(ux, u, (E, d1, . . . , dn), udst)}
(error) conditions

IJexprK(σ, ux) not defined for any
expr ∈ {exprdst , expr1, . . . , exprn}

Send Transformer Example

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
a
ct
la
n
g
–

8/37

SMC :
s1 s2

/ . . . ;n !F (x+ 1); . . .

tsend(exprsrc ,E(expr1,...,exprn),exprdst)
[ux](σ, ε) ∋ (σ′, ε′) iff ε′ = ε⊕ (udst , u);

σ′ = σ ∪̇ {u 7→ {vi 7→ di | 1 ≤ i ≤ n}}; udst = IJexprdstK(σ, ux) ∈ dom(σ);

di = IJexpr iK(σ, ux), 1 ≤ i ≤ n; u ∈ D(E) a fresh identity;

σ: u1 : C

x = 5

:σ′

ε: :ε′

Sequential Composition of Transformers

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
a
ct
la
n
g
–

9/37

• Sequential composition t1 ◦ t2 of transformers t1 and t2 is canonically
defined as

(t2 ◦ t1)[ux](σ, ε) = t2[ux](t1[ux](σ, ε))

with observation

Obs(t2◦t1)[ux](σ, ε) = Obst1 [ux](σ, ε) ∪Obst2 [ux](t1(σ, ε)).

• Clear: not defined if one the two intermediate “micro steps” is not defined.

Transformers And Denotational Semantics

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
a
ct
la
n
g
–

10/37

Observation: our transformers are in principle the denotational semantics
of the actions/action sequences. The trivial case, to be precise.

Note: with the previous examples, we can capture

• empty statements, skips,

• assignments,

• conditionals (by normalisation and auxiliary variables),

• create/destroy,

but not possibly diverging loops.

Our (Simple) Approach: if the action language is, e.g. Java,
then (syntactically) forbid loops and calls of recursive functions.

Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted
into transition cycles in the state machine.

Step and Run-to-completion Step

–
1
4
–
2
0
1
4
-1
2
-1
8
–
m
a
in

–

11/37

Transition Relation, Computation

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

12/37

Definition. Let A be a set of actions and S a (not necessarily
finite) set of of states.

We call
−→ ⊆ S ×A× S

a (labelled) transition relation.

Let S0 ⊆ S be a set of initial states. A sequence

s0
a0−→ s1

a1−→ s2
a2−→ . . .

with si ∈ S, ai ∈ A is called computation of the labelled transi-
tion system (S,−→, S0) if and only if

• initiation: s0 ∈ S0

• consecution: (si, ai, si+1) ∈−→ for i ∈ N0.

Active vs. Passive Classes/Objects

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

13/37

• Note: From now on, assume that all classes are active for simplicity.

We’ll later briefly discuss the Rhapsody framework which proposes a way
how to integrate non-active objects.

• Note: The following RTC “algorithm” follows [?] (i.e. the one realised by
the Rhapsody code generation) where the standard is ambiguous or leaves
choices.

From Core State Machines to LTS

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

14/37

Definition. Let S0 = (T0,C0, V0, atr0,E) be a signature with signals (all
classes active), D0 a structure of S0, and (Eth, ready,⊕,⊖, [·]) an ether over
S0 and D0.
Assume there is one core state machine MC per class C ∈ C .

We say, the state machines induce the following labelled transition re-
lation on states S := (ΣD

S
∪̇ {#} × Eth) with actions A :=

(

2D(C)×(D(E) ∪̇ {⊥})Evs(E ,D)×D(C)
)2

:

• (σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′) if and only if

(i) an event with destination u is discarded,

(ii) an event is dispatched to u, i.e. stable object processes an event, or

(iii) run-to-completion processing by u commences,
i.e. object u is not stable and continues to process an event,

(iv) the environment interacts with object u,

• s
(cons,∅)
−−−−−→ # if and only if

(v) s = # and cons = ∅, or an error condition occurs during consumption
of cons.

(i) Discarding An Event

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

15/37

(σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′)

if

• an E-event (instance of signal E) is ready in ε for object u of a class C , i.e. if

u ∈ dom(σ) ∩ D(C) ∧ ∃uE ∈ D(E) : uE ∈ ready(ε, u)

• u is stable and in state machine state s, i.e. σ(u)(stable) = 1 and σ(u)(st) = s,

• but there is no corresponding transition enabled (all transitions incident with
current state of u either have other triggers or the guard is not satisfied)

∀ (s, F, expr , act , s′) ∈→ (SMC) : F 6= E ∨ IJexprK(σ) = 0

and

• the system configuration doesn’t change, i.e. σ′ = σ

• the event uE is removed from the ether, i.e.

ε′ = ε⊖ uE ,

Example: Discard

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

16/37

SMC : s1 s2
G[x > 0]/x := y

[x > 0]/x := x− 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C
x, z : Int
y : Int 〈〈env〉〉

n

0, 1

σ: c : C

x = 1, z = 0, y = 2
st = s1

stable = 1

ε:
J for c,
G for c

• ∃u ∈ dom(σ) ∩ D(C)
∃uE ∈ D(E) : uE ∈ ready(ε, u)

• ∀ (s, F, expr , act , s′) ∈→ (SMC) :
F 6= E ∨ IJexprK(σ) = 0

• σ(u)(stable) = 1, σ(u)(st) = s,

• σ′ = σ, ε′ = ε⊖ uE

• cons = {(u, (E, σ(uE)))}, Snd = ∅

(ii) Dispatch

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

17/37

(σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′) if

• u ∈ dom(σ) ∩ D(C) ∧ ∃uE ∈ D(E) : uE ∈ ready(ε, u)

• u is stable and in state machine state s, i.e. σ(u)(stable) = 1 and σ(u)(st) = s,

• a transition is enabled, i.e.

∃ (s, F, expr , act , s′) ∈→ (SMC) : F = E ∧ IJexprK(σ̃) = 1

where σ̃ = σ[u.paramsE 7→ uE].

and

• (σ′, ε′) results from applying tact to (σ, ε) and removing uE from the ether, i.e.

(σ′′, ε′) = tact (σ̃, ε⊖ uE),

σ′ = (σ′′[u.st 7→ s′, u.stable 7→ b, u.paramsE 7→ ∅])|D(C)\{uE}

where b depends:

• If u becomes stable in s′, then b = 1. It does become stable if and only if there
is no transition without trigger enabled for u in (σ′, ε′).

• Otherwise b = 0.

• Consumption of uE and the side effects of the action are observed, i.e.

cons = {(u, (E, σ(uE)))}, Snd = Obstact (σ̃, ε⊖ uE).

Example: Dispatch

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

18/37

SMC : s1 s2
G[x > 0]/x := y

[x > 0]/x := x− 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C
x, z : Int
y : Int 〈〈env〉〉

n

0, 1

σ: c : C

x = 1, z = 0, y = 2
st = s1

stable = 1

ε:

G for c

• ∃u ∈ dom(σ) ∩ D(C)
∃uE ∈ D(E) : uE ∈ ready(ε, u)

• ∃ (s, F, expr , act , s′) ∈→ (SMC) :
F = E ∧ IJexprK(σ̃) = 1

• σ̃ = σ[u.paramsE 7→ uE].

• σ(u)(stable) = 1, σ(u)(st) = s,

• (σ′′, ε′) = tact(σ̃, ε⊖ uE)

• σ′ = (σ′′[u.st 7→ s′, u.stable 7→ b, u.paramsE 7→
∅])|D(C)\{uE}

• cons = {(u, (E, σ(uE)))}, Snd = Obstact (σ̃, ε⊖ uE)

(iii) Commence Run-to-Completion

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

19/37

(σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′)

if

• there is an unstable object u of a class C , i.e.

u ∈ dom(σ) ∩ D(C) ∧ σ(u)(stable) = 0

• there is a transition without trigger enabled from the current state s = σ(u)(st),
i.e.

∃ (s, , expr , act , s′) ∈→ (SMC) : IJexprK(σ) = 1

and

• (σ′, ε′) results from applying tact to (σ, ε), i.e.

(σ′′, ε′) ∈ tact [u](σ, ε), σ′ = σ′′[u.st 7→ s′, u.stable 7→ b]

where b depends as before.

• Only the side effects of the action are observed, i.e.

cons = ∅, Snd = Obstact (σ, ε).

Example: Commence

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

20/37

SMC : s1 s2
G[x > 0]/x := y

[x > 0]/x := x− 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C
x, z : Int
y : Int 〈〈env〉〉

n

0, 1

σ: c : C

x = 2, z = 0, y = 2
st = s2

stable = 0

ε:

• ∃u ∈ dom(σ) ∩ D(C) : σ(u)(stable) = 0

• ∃ (s, , expr , act , s′) ∈→ (SMC) :
IJexprK(σ) = 1

• σ(u)(stable) = 1, σ(u)(st) = s,

• (σ′′, ε′) = tact(σ, ε),
σ′ = σ′′[u.st 7→ s′, u.stable 7→ b]

• cons = ∅, Snd = Obs tact (σ, ε)

(iv) Environment Interaction

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

21/37

Assume that a set Eenv ⊆ E is designated as environment events and a set
of attributes venv ⊆ V is designated as input attributes.

Then
(σ, ε)

(cons,Snd)
−−−−−−→

env
(σ′, ε′)

if

• environment event E ∈ Eenv is spontaneously sent to an alive object u ∈ D(σ), i.e.

σ′ = σ ∪̇ {uE 7→ {vi 7→ di | 1 ≤ i ≤ n}, ε′ = ε⊕ uE

where uE /∈ dom(σ) and atr(E) = {v1, . . . , vn}.

• Sending of the event is observed, i.e. cons = ∅, Snd = {(env , E(~d))}.

or

• Values of input attributes change freely in alive objects, i.e.

∀ v ∈ V ∀u ∈ dom(σ) : σ′(u)(v) 6= σ(u)(v) =⇒ v ∈ Venv .

and no objects appear or disappear, i.e. dom(σ′) = dom(σ).

• ε′ = ε.

Example: Environment

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

22/37

SMC : s1 s2
G[x > 0]/x := y

[x > 0]/x := x− 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C
x, z : Int
y : Int 〈〈env〉〉

n

0, 1

σ: c : C

x = 0, z = 0, y = 2
st = s2

stable = 1

ε:

• σ′ = σ ∪̇ {uE 7→ {vi 7→ di | 1 ≤ i ≤ n}

• ε′ = ε⊕ uE where uE /∈ dom(σ)
and atr(E) = {v1, . . . , vn}.

• u ∈ dom(σ)

• cons = ∅,
Snd = {(env , E(~d))}.

(v) Error Conditions

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

23/37

s
(cons,Snd)
−−−−−−→

u
#

if, in (ii) or (iii),

• IJexprK is not defined for σ, or

• tact is not defined for (σ, ε),

and

• consumption is observed according to (ii) or (iii), but Snd = ∅.

Examples:

•

s2
s1

s3

E[x/0]/ac
t

E[true]/act

• s1 s2
E[expr]/x := x/0

Example: Error Condition

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
rt
c
–

24/37

SMC : s1 s2
G[x > 0]/x := y

[x > 0]/x := x− 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C
x, z : Int
y : Int 〈〈env〉〉

n

0, 1

σ: c : C

x = 0, z = 0, y = 27
st = s2

stable = 1

ε:

H for c

• IJexprK not defined for σ, or

• tact is not defined for (σ, ε)

• consumption according to (ii) or (iii)

• Snd = ∅

Notions of Steps: The Step

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
st
ep

–

25/37

Note: we call one evolution (σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′) a step.

Thus in our setting, a step directly corresponds to

one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We’re going for an interleaving semantics without true parallelism.

Notions of Steps: The Step

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
st
ep

–

25/37

Note: we call one evolution (σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′) a step.

Thus in our setting, a step directly corresponds to

one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We’re going for an interleaving semantics without true parallelism.

Remark: With only methods (later), the notion of step is not so clear.
For example, consider

• c1 calls f() at c2, which calls g() at c1 which in turn calls h() for c2.

• Is the completion of h() a step?

• Or the completion of f()?

• Or doesn’t it play a role?

It does play a role, because constraints/invariants are typically (= by convention)
assumed to be evaluated at step boundaries, and sometimes the convention is meant
to admit (temporary) violation in between steps.

Notions of Steps: The Run-to-Completion Step

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
st
ep

–

26/37

What is a run-to-completion step...?

• Intuition: a maximal sequence of steps, where the first step is a dispatch
step and all later steps are commence steps.

• Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable — one
transition may be taken multiple times during an RTC-step.

Example:

s1 s2

E[x > 0]/

/x := x− 1

σ:
: C

x = 2

ε:

E for u

Notions of Steps: The RTC Step Cont’d

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
st
ep

–

27/37

Proposal: Let

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

. . .
(consn−1,Sndn−1)
−−−−−−−−−−−→

un−1

(σn, εn), n > 0,

be a finite (!), non-empty, maximal, consecutive sequence such that

• object u is alive in σ0,

• u0 = u and (cons0, Snd0) indicates dispatching to u, i.e. cons = {(u,~v 7→ ~d)},

• there are no receptions by u in between, i.e.

cons i ∩ {u} × Evs(E ,D) = ∅, i > 1,

• un−1 = u and u is stable only in σ0 and σn, i.e.

σ0(u)(stable) = σn(u)(stable) = 1 and σi(u)(stable) = 0 for 0 < i < n,

Notions of Steps: The RTC Step Cont’d

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
st
ep

–

27/37

Proposal: Let

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

. . .
(consn−1,Sndn−1)
−−−−−−−−−−−→

un−1

(σn, εn), n > 0,

be a finite (!), non-empty, maximal, consecutive sequence such that

• object u is alive in σ0,

• u0 = u and (cons0, Snd0) indicates dispatching to u, i.e. cons = {(u,~v 7→ ~d)},

• there are no receptions by u in between, i.e.

cons i ∩ {u} × Evs(E ,D) = ∅, i > 1,

• un−1 = u and u is stable only in σ0 and σn, i.e.

σ0(u)(stable) = σn(u)(stable) = 1 and σi(u)(stable) = 0 for 0 < i < n,

Let 0 = k1 < k2 < · · · < kN = n be the maximal sequence of indices such that
uki

= u for 1 ≤ i ≤ N .

Notions of Steps: The RTC Step Cont’d

–
1
4
–
2
0
1
4
-1
2
-1
8
–
S
st
m
st
ep

–

27/37

Proposal: Let

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

. . .
(consn−1,Sndn−1)
−−−−−−−−−−−→

un−1

(σn, εn), n > 0,

be a finite (!), non-empty, maximal, consecutive sequence such that

• object u is alive in σ0,

• u0 = u and (cons0, Snd0) indicates dispatching to u, i.e. cons = {(u,~v 7→ ~d)},

• there are no receptions by u in between, i.e.

cons i ∩ {u} × Evs(E ,D) = ∅, i > 1,

• un−1 = u and u is stable only in σ0 and σn, i.e.

σ0(u)(stable) = σn(u)(stable) = 1 and σi(u)(stable) = 0 for 0 < i < n,

Let 0 = k1 < k2 < · · · < kN = n be the maximal sequence of indices such that
uki

= u for 1 ≤ i ≤ N . Then we call the sequence

(σ0(u) =) σk1
(u), σk2

(u) . . . , σkN
(u) (= σn−1(u))

a (!) run-to-completion computation of u (from (local) configuration σ0(u)).

