Software Design, Modelling and Analysis in UML

Lecture 14: Core State Machines IV

2014-12-18
Prof. Dr. Andreas Podelski, Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- System configuration
- Transformer
- Action language: skip, update

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What does this State Machine mean? What happens if I inject this event?
- Can you please model the following behaviour.
- What is: Signal, Event, Ether, Transformer, Step, RTC.

- Content:

- Action Language: send (create/destroy later)
- Run-to-completion Step
- Putting It All Together

Transformer Cont'd

Transformer: Skip

$\left.\begin{array}{lc}\hline \begin{array}{l}\text { abstract syntax } \\ \text { skip }\end{array} & \begin{array}{c}\text { concrete syntax } \\ \text { skip }\end{array} \\ \text { intuitive semantics } & \text { do nothing }\end{array}\right]$

Transformer: Update

$t_{\text {update }\left(\operatorname{expr}_{1}, v, \operatorname{expr}_{2}\right)}\left[u_{x}\right](\sigma, \varepsilon)=\left(\sigma^{\prime}=\sigma\left[u \mapsto \sigma(u)\left[v \mapsto I \llbracket \operatorname{expr}_{2} \rrbracket\left(\sigma, u_{x}\right)\right]\right], \varepsilon\right), u=I \llbracket \operatorname{expr}_{1} \rrbracket\left(\sigma, u_{x}\right)$

$$
I\left[\mathbb{I}_{x+1} 1 \mathbb{D}\left(\sigma, v_{x}\right)=I[x+1]\left(\sigma, v_{x}\right)=5\right.
$$

Transformer: Send

Send Transformer Example

$\mathcal{S M}_{C}:$

$t_{\text {send }\left(\operatorname{expr}_{s r c}, E\left(\operatorname{expr}_{1}, \ldots, \operatorname{expr}_{n}\right), \text { expr }_{d s t}\right)}\left[u_{x}\right](\sigma, \varepsilon) \ni\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ iff $\varepsilon^{\prime}=\varepsilon \oplus\left(u_{d s t}, u\right)$;
$\sigma^{\prime}=\sigma \dot{\cup}\left\{u \mapsto\left\{v_{i} \mapsto d_{i} \mid 1 \leq i \leq n\right\}\right\} ; u_{d s t}=I \llbracket \operatorname{expr}_{d s t} \rrbracket\left(\sigma, u_{x}\right) \in \operatorname{dom}(\sigma) ;$ $d_{i}=I \llbracket \operatorname{expr}_{i} \rrbracket\left(\sigma, u_{x}\right), 1 \leq i \leq n ; u \in \mathscr{D}(E)$ a fresh identity;

Sequential Composition of Transformers

- Sequential composition $t_{1} \circ t_{2}$ of transformers t_{1} and t_{2} is canonically defined as

$$
\left(t_{2} \circ t_{1}\right)\left[u_{x}\right](\sigma, \varepsilon)=t_{2}\left[u_{x}\right]\left(t_{1}\left[u_{x}\right](\sigma, \varepsilon)\right)
$$

with observation

$$
\operatorname{Obs}_{\left(t_{2} \circ t_{1}\right)}\left[u_{x}\right](\sigma, \varepsilon)=\operatorname{Obs}_{t_{1}}\left[u_{x}\right](\sigma, \varepsilon) \cup O b s_{t_{2}}\left[u_{x}\right]\left(t_{1}(\sigma, \varepsilon)\right) .
$$

- Clear: not defined if one the two intermediate "micro steps" is not defined.

Transformers And Denotational Semantics

Observation: our transformers are in principle the denotational semantics of the actions/action sequences. The trivial case, to be precise.
Note: with the previous examples, we can capture

- empty statements, skips,
- assignments,
- conditionals (by normalisation and auxiliary variables),
- create/destroy,
but not possibly diverging loops.

Our (Simple) Approach: if the action language is, e.g. Java, then (syntactically) forbid loops and calls of recursive functions.
Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted into transition cycles in the state machine. \qquad

Step and Run-to-completion Step

Transition Relation, Computation

Definition. Let A be a set of actions and S a (not necessarily finite) set of of states.

We call

$$
\rightarrow \subseteq S \times A \times S
$$

a (labelled) transition relation.
Let $S_{0} \subseteq S$ be a set of initial states. A sequence

$$
\underbrace{s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{a_{1}} s_{2} \xrightarrow{a_{2}} \ldots}
$$

with $s_{i} \in S, a_{i} \in A$ is called computation of the labelled transition system $\left(S, \rightarrow, S_{0}\right)$ if and only if

- initiation: $s_{0} \in S_{0}$
- consecution: $\left(s_{i}, a_{i}, s_{i+1}\right) \in \rightarrow$ for $i \in \mathbb{N}_{0}$.

Active vs. Passive Classes/Objects

- Note: From now on, assume that all classes are active for simplicity.

We'll later briefly discuss the Rhapsody framework which proposes a way how to integrate non-active objects.

- Note: The following RTC "algorithm" follows [?] (i.e. the one realised by the Rhapsody code generation) where the standard is ambiguous or leaves choices.

From Core State Machines to LTS

Definition. Let $\mathscr{S}_{0}=\left(\mathscr{T}_{0}, \mathscr{C}_{0}, V_{0}\right.$, atr $\left._{0}, \mathscr{E}\right)$ be a signature with signals (all classes active), \mathscr{D}_{0} a structure of \mathscr{S}_{0}, and (Eth, ready, $\left.\oplus, \ominus,[\cdot]\right)$ an ether over \mathscr{S}_{0} and \mathscr{D}_{0}.
Assume there is one core state machine M_{C} per class $C \in \mathscr{C}$.
We say, the state machines induce the following labelled transition relation on states $S:=\|$ (

- $(\sigma, \varepsilon) \underset{\underbrace{}_{s}}{\stackrel{(\text { cons,Snd })}{\longrightarrow}}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ if and only if
(i) an event with destination u is discarded,
(ii) an event is dispatched to u, i.e. stable object processes an event, or
(iii) run-to-completion processing by u commences,
i.e. object u is not stable and continues to process an event,
(iv) the environment interacts with object u,
- $s \xrightarrow{(\text { cons, Ø) }} \#$ if and only if
(v) $s=\#$ and cons $=\emptyset$, or an error condition occurs during consumption of cons.

(i) Discarding An Event

$$
(\sigma, \varepsilon) \xrightarrow[u]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if

- an E-event (instance of signal E) is ready in ε for object u of a class \mathscr{C}, ie. if

$$
u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \exists u_{E} \in \mathscr{D}(\mathbb{E}): u_{E} \in \operatorname{ready}(\varepsilon, u)
$$

- u is stable and in state machine state s, ie. $\sigma(u)($ stable $)=1$ and $\sigma(u)(s t)=s$,
- but there is no corresponding transition enabled (all transitions incident with current state of u either have other triggers or the guard is not satisfied)
and

$$
\begin{aligned}
& \forall\left(s, F, \operatorname{expr}, \text { act, } s^{\prime}\right) \in \rightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): F \neq E \vee I \llbracket \operatorname{expr} \rrbracket\left(\tilde{\sigma}_{1}, 4\right)=0 \\
& \text { Current slate assumed above }^{\text {see (ii) }}
\end{aligned}
$$

- the system configuration changes ie. $\sigma^{\prime}=\sigma \backslash\left\{v_{E} \mapsto \sigma\left(v_{E}\right)\right\}$
- the event u_{E} is removed from the ether, ie.

$$
\varepsilon^{\prime}=\varepsilon \ominus u_{E}
$$

Example: Discard

σ°

```
- \existsu\in\operatorname{dom}(\sigma)\cap\mathscr{D}(C)\checkmark
    \exists}\mp@subsup{u}{E}{}\in\mathscr{D}(\mathscr{E}):\mp@subsup{u}{E}{}\in\operatorname{ready}(\varepsilon,u)
- \forall(s,F, expr, act, s') \in->(\mathcal{SM}
    F\not=E\veeI\llbracketexpr\rrbracket(\sigma)=0
- \sigma(u)(stable ) =1/ }\sigma(u)(st)=s.
    - }\mp@subsup{\sigma}{}{\prime}=\mp@subsup{\underbrace}{\sigma,\mp@subsup{\varepsilon}{}{\prime}}{\\mathcal{NE}}=\varepsilon\ominus\mp@subsup{u}{E}{
    -cons ={(u,(E,\sigma(uE)))}, Snd=\emptyset
```


(ii) Dispatch
 $$
(\sigma, \varepsilon) \xrightarrow[u]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right) \text { if }
$$

- $u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \exists u_{E} \in \mathscr{D}(\mathbb{E}): u_{E} \in \operatorname{ready}(\varepsilon, u)$
- u is stable and in state machine state s, i.e. $\sigma(u)($ stable $)=1$ and $\sigma(u)(s t)=s$,
- a transition is enabled, i.e.

$$
\exists\left(s, F, \operatorname{expr}, a c t, s^{\prime}\right) \in \rightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): F=E \wedge I \llbracket \operatorname{expr} \rrbracket(\tilde{\sigma})=1
$$

where $\tilde{\sigma}=\sigma\left[\right.$ u.params $\left._{E} \mapsto u_{E}\right]$.
and

- $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ results from applying $t_{a c t}$ to (σ, ε) and removing u_{E} from the ether, i.e.

$$
\begin{gathered}
\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right) \in t_{\text {act }\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right),}^{〔 \cup]} \\
\sigma^{\prime}=\left.\left(\sigma^{\prime \prime}\left[\text { u.st } \mapsto s^{\prime}, \text { u.stable } \mapsto b, u^{2} \text { params }_{E} \mapsto \emptyset\right]\right)\right|_{\mathscr{D}(\mathscr{C}) \backslash\left\{u_{E}\right\}}
\end{gathered}
$$

where b depends:

- If u becomes stable in s^{\prime}, then $b=1$. It does become stable if and only if there is no transition without trigger enabled for u in $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$.
- Otherwise $b=0$.
- Consumption of u_{E} and the side effects of the action are observed, i.e.

$$
\text { cons }=\left\{\left(u,\left(E, \sigma\left(u_{E}\right)\right)\right)\right\}, \text { Snd }=\text { Obs } \underbrace{\{\cup)}_{t_{a c t}(\tilde{\sigma})}, \varepsilon \ominus u_{E}) \text {. }
$$

Example: Dispatch

$\mathcal{S M}{ }_{C}:$


```
- \existsu\in\operatorname{dom}(\sigma)\cap\mathscr{D}(C)J
    \exists\mp@subsup{u}{E}{}\in\mathscr{D}(\mathcal{E}):\mp@subsup{u}{E}{}\in\operatorname{ready}(\varepsilon,u)\sqrt{}{}
- \exists(s,F, expr,act, s') }->(\mathcal{SM
    F=E\wedgeI\llbracketexpr\rrbracket(\tilde{\sigma})=1J
- \tilde{\sigma}=\sigma[u.params}E \mapsto 泣]
```

- $\sigma(u)($ stable $)=1 \boldsymbol{J} \sigma(u)(s t)=s$,
- $\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right)=t_{a c t}\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right)$
- $\sigma^{\prime}=\left(\sigma^{\prime \prime}\left[u . s t \mapsto s^{\prime}\right.\right.$, u.stable $\mapsto b$, u.params $_{E} \mapsto$
$\emptyset])\left.\right|_{\mathscr{D}(\mathscr{C}) \backslash\left\{u_{E}\right\}}$
 - cons $=\left\{\left(u,\left(E, \sigma\left(u_{E}\right)\right)\right)\right\}$, Snd $=O b s_{t_{a c t}}\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right)$

(iii) Commence Run-to-Completion

$$
(\sigma, \varepsilon) \xrightarrow[u]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if

- there is an unstable object u of a class \mathscr{C}, ie.

$$
u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \sigma(u)(\text { stable })=0
$$

- there is a transition without trigger enabled from the current state $s=\sigma(u)(s t)$, ie.

$$
\exists\left(s,_{-}, \operatorname{expr}, a c t, s^{\prime}\right) \in \rightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): I \llbracket \exp r \rrbracket(\sigma)=1
$$

and

- $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ results from applying $t_{a c t}$ to (σ, ε), i.e.

$$
\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right) \in t_{a c t}[u](\sigma, \varepsilon), \quad \sigma^{\prime}=\sigma^{\prime \prime}\left[u . s t \mapsto s^{\prime}, u . s t a b l e \mapsto b\right]
$$

where b depends as before.

- Only the side effects of the action are observed, ie.

$$
\text { cons }=\emptyset, S n d=O b s_{t_{\text {act }}}(\sigma, \varepsilon) .
$$

Example: Commence

$$
H / z:=y / x
$$

$\sigma:$

$$
\begin{gathered}
c: C \\
\hline x=2, z=0, y=2 \\
\text { st }=s_{2} \\
\text { stable }=0
\end{gathered}
$$

$$
\begin{array}{ll}
-\exists u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C): \sigma(u)(\text { stable })=0 & \bullet\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right)=t_{a c t}(\sigma, \varepsilon), \\
\bullet \exists\left(s,_{-}, \operatorname{expr}, \text { act, } s^{\prime}\right) \in \rightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): & \sigma^{\prime}=\sigma^{\prime \prime}\left[u . s t \mapsto s^{\prime}, u . s t a b l e \mapsto b\right] \\
I \llbracket \operatorname{expr} \rrbracket(\sigma)=1_{\checkmark} & \text { cons }=\emptyset, \text { Sid }=\text { Obs }_{t_{a c t}}(\sigma, \varepsilon)
\end{array}
$$

$$
\sigma(u)(s t a b t e)-11 \sigma(u)(s t)=s_{v}
$$

(iv) Environment Interaction

Assume that a set $\mathscr{E}_{e n v} \subseteq \mathscr{E}$ is designated as environment events and a set of attributes $v_{e n v} \subseteq V$ is designated as input attributes.

Then

$$
(\sigma, \varepsilon) \xrightarrow[e n v]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if

- environment event $E \in \mathscr{E}_{e n v}$ is spontaneously sent to an alive object $u \in \mathscr{D}(\sigma)$, i.e.

$$
\sigma^{\prime}=\sigma \dot{\cup}\left\{u_{E} \mapsto\left\{v_{i} \mapsto d_{i} \mid 1 \leq i \leq n\right\}, \quad \varepsilon^{\prime}=\varepsilon \oplus u_{E}\right.
$$

where $u_{E} \notin \operatorname{dom}(\sigma)$ and $\operatorname{atr}(E)=\left\{v_{1}, \ldots, v_{n}\right\}$.

- Sending of the event is observed, i.e. cons $=\emptyset, \operatorname{Snd}=\{(e n v, E(\vec{d}))\}$.
or
- Values of input attributes change freely in alive objects, i.e.

$$
\forall v \in V \forall u \in \operatorname{dom}(\sigma): \sigma^{\prime}(u)(v) \neq \sigma(u)(v) \Longrightarrow v \in V_{e n v} .
$$

and no objects appear or disappear, i.e. $\operatorname{dom}\left(\sigma^{\prime}\right)=\operatorname{dom}(\sigma)$.

- $\varepsilon^{\prime}=\varepsilon$.

Example: Environment
$\mathcal{S M}_{C}:$

$\stackrel{n}{0,1} \xrightarrow{\substack{x, z: \text { Int } \\ y: \text { Int }\langle\langle e n v\rangle\rangle \\ \hline}}$

$$
\sigma: \begin{array}{c|}
\underline{c: C} \\
\hline x=0, z=0, y=2 \\
\text { st }=s_{2} \\
\text { stable }=1 \\
\hline
\end{array}
$$

- 14 - 2014-12-18 - Sstmrtc -

```
- }\mp@subsup{\sigma}{}{\prime}=\sigma\dot{\cup}{\mp@subsup{u}{E}{}\mapsto{\mp@subsup{v}{i}{}\mapsto\mp@subsup{d}{i}{}|1\leqi\leqn} \quad- u\in\operatorname{dom(\sigma)
- }\mp@subsup{\varepsilon}{}{\prime}=\varepsilon\oplus\mp@subsup{u}{E}{}\mathrm{ where }\mp@subsup{u}{E}{}\not\in\operatorname{dom(\sigma) - cons=\emptyset,
and }\operatorname{atr}(E)={\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}}.\quad Snd ={(env,E(\vec{d})}
```


(v) Error Conditions

$$
\underbrace{(i)}_{\sim}
$$

$$
s \xrightarrow[u]{(\text { cons }, S n d)} \#
$$

if, in (ii) or (iii),

- $I \llbracket$ exp \rrbracket is not defined for σ, or
- $t_{a c t}$ is not defined for (σ, ε),
and
- consumption is observed according to $\underbrace{(i)}_{(\text {(ii) }}$ or (iii), but $\operatorname{Snd}=\emptyset$.

Examples:

-

- $s_{1} \xrightarrow{E[\text { expr }] / x:=x / 0} s_{2}$

Notions of Steps: The Step

Note: we call one evolution $(\sigma, \varepsilon) \xrightarrow[u]{(\text { cons,Snd })}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$
Thus in our setting, a step directly corresponds to

step. one object (namely u) takes a single transition between regular states.
(We have to extend the concept of "single transition" for hierarchical state machines.)
That is: We're going for an interleaving semantics without true parallelism.

Notions of Steps: The Step

Note: we call one evolution $(\sigma, \varepsilon) \xrightarrow[u]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ a step.
Thus in our setting, a step directly corresponds to
one object (namely u) takes a single transition between regular states.
(We have to extend the concept of "single transition" for hierarchical state machines.)
That is: We're going for an interleaving semantics without true parallelism.
Remark: With only methods (later), the notion of step is not so clear.
For example, consider

- c_{1} calls f() at c_{2}, which calls g() at c_{1} which in turn calls h() for c_{2}.
- Is the completion of h() a step?
- Or the completion of $f()$?
- Or doesn't it play a role?

It does play a role, because constraints/invariants are typically (= by convention) assumed to be evaluated at step boundaries, and sometimes the convention is meant to admit (temporary) violation in between steps.

Notions of Steps: The Run-to-Completion Step

What is a run-to-completion step...?

- Intuition: a maximal sequence of steps, where the first step is a dispatch step and all later steps are commence steps.
- Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable - one transition may be taken multiple times during an RTC-step.

Example:

$\sigma:$| $\frac{: C}{}$ |
| :---: |
| $x=2$ |

ε :

Notions of Steps: The RTC Step Cont'd

Proposal: Let

$$
\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow[u_{0}]{\left(\text { cons }_{0}, S n d_{0}\right)} \ldots \xrightarrow[u_{n-1}]{\left(\text { cons }_{n-1}, S n d_{n-1}\right)}\left(\sigma_{n}, \varepsilon_{n}\right), \quad n>0
$$

be a finite (!), non-empty, maximal, consecutive sequence such that

- object u is alive in σ_{0},
- $u_{0}=u$ and $\left(\right.$ cons $\left._{0}, S n d_{0}\right)$ indicates dispatching to u, i.e. cons $=\{(u, \vec{v} \mapsto \vec{d})\}$,
- there are no receptions by u in between, i.e.

$$
\operatorname{cons}_{i} \cap\{u\} \times \operatorname{Evs}(\mathscr{E}, \mathscr{D})=\emptyset, i>1,
$$

- $u_{n-1}=u$ and u is stable only in σ_{0} and σ_{n}, i.e.

$$
\sigma_{0}(u)(\text { stable })=\sigma_{n}(u)(\text { stable })=1 \text { and } \sigma_{i}(u)(\text { stable })=0 \text { for } 0<i<n,
$$

Notions of Steps: The RTC Step Cont'd

Proposal: Let

$$
\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow[u_{0}]{\left(\operatorname{cons}_{0}, S n d_{0}\right)} \ldots \frac{\left(\text { cons }_{n-1}, S n d_{n-1}\right)}{u_{n-1}}\left(\sigma_{n}, \varepsilon_{n}\right), \quad n>0
$$

be a finite (!), non-empty, maximal, consecutive sequence such that

- object u is alive in σ_{0},
- $u_{0}=u$ and $\left(\right.$ cons $\left._{0}, S n d_{0}\right)$ indicates dispatching to u, i.e. cons $=\{(u, \vec{v} \mapsto \vec{d})\}$,
- there are no receptions by u in between, i.e.

$$
\operatorname{cons}_{i} \cap\{u\} \times \operatorname{Evs}(\mathscr{E}, \mathscr{D})=\emptyset, i>1,
$$

- $u_{n-1}=u$ and u is stable only in σ_{0} and σ_{n}, i.e.

$$
\sigma_{0}(u)(\text { stable })=\sigma_{n}(u)(\text { stable })=1 \text { and } \sigma_{i}(u)(\text { stable })=0 \text { for } 0<i<n
$$

Let $0=k_{1}<k_{2}<\cdots<k_{N}=n$ be the maximal sequence of indices such that $u_{k_{i}}=u$ for $1 \leq i \leq N$.

Notions of Steps: The RTC Step Cont'd

Proposal: Let

$$
\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow[u_{0}]{\left(\operatorname{cons}_{0}, S n d_{0}\right)} \ldots \frac{\left(\text { cons }_{n-1}, S n d_{n-1}\right)}{u_{n-1}}\left(\sigma_{n}, \varepsilon_{n}\right), \quad n>0
$$

be a finite (!), non-empty, maximal, consecutive sequence such that

- object u is alive in σ_{0},
- $u_{0}=u$ and $\left(\right.$ cons $\left._{0}, S n d_{0}\right)$ indicates dispatching to u, i.e. cons $=\{(u, \vec{v} \mapsto \vec{d})\}$,
- there are no receptions by u in between, i.e.

$$
\operatorname{cons}_{i} \cap\{u\} \times \operatorname{Evs}(\mathscr{E}, \mathscr{D})=\emptyset, i>1,
$$

- $u_{n-1}=u$ and u is stable only in σ_{0} and σ_{n}, i.e.

$$
\sigma_{0}(u)(\text { stable })=\sigma_{n}(u)(\text { stable })=1 \text { and } \sigma_{i}(u)(\text { stable })=0 \text { for } 0<i<n
$$

Let $0=k_{1}<k_{2}<\cdots<k_{N}=n$ be the maximal sequence of indices such that $u_{k_{i}}=u$ for $1 \leq i \leq N$. Then we call the sequence

$$
\left(\sigma_{0}(u)=\right) \quad \sigma_{k_{1}}(u), \sigma_{k_{2}}(u) \ldots, \sigma_{k_{N}}(u) \quad\left(=\sigma_{n-1}(u)\right)
$$

a (!) run-to-completion computation of u (from (local) configuration $\sigma_{0}(u)$).

