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Software Design, Modelling and Analysis in UML

Lecture 16: Hierarchical State Machines I

2015-01-15

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
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Last Lecture:

• Missing transformers: create and destroy

• Step and run-to-completion (RTC) step, divergence

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What does this hierarchical State Machine mean? What may happen if I
inject this event?

• What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, . . .

• Content:

• Putting it all together: UML model semantics (so far)

• State Machines and OCL

• Hierarchical State Machines Syntax

• Initial and Final State



Putting It All Together
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The Missing Piece: Initial States
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Recall: a labelled transition system is (S,−→, S0). We have

• S: system configurations (σ, ε)

• −→: labelled transition relation (σ, ε)
(cons,Snd)
−−−−−−→

u

(σ′, ε′).

Wanted: initial states S0.

Proposal:
Require a (finite) set of object diagrams OD as part of a UML model

(C D ,SM ,OD).

And set
S0 = {(σ, ε) | σ ∈ G−1(OD),OD ∈ OD , ε empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes.
We can read that as an abbreviation for an object diagram.



Semantics of UML Model — So Far
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The semantics of the UML model

M = (CD ,SM ,OD)

where

• some classes in CD are stereotyped as ‘signal’ (standard), some signals and
attributes are stereotyped as ‘external’ (non-standard),

• there is a 1-to-1 relation between classes and state machines,

• OD is a set of object diagrams over C D ,

is the transition system (S,−→, S0) constructed on the previous slide.

The computations of M are the computations of (S,−→, S0).

State Machines and OCL
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OCL Constraints and Behaviour
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• Let M = (C D ,SM ,OD) be a UML model.

• We call M consistent iff, for each OCL constraint expr ∈ Inv(CD),

σ |= expr for each “reasonable point” (σ, ε) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(SM ) similar to Inv(CD).

OCL Constraints and Behaviour
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• Let M = (C D ,SM ,OD) be a UML model.

• We call M consistent iff, for each OCL constraint expr ∈ Inv(CD),

σ |= expr for each “reasonable point” (σ, ε) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(SM ) similar to Inv(CD).

Pragmatics:

• In UML-as-blueprint mode, if SM doesn’t exist yet, then M = (CD , ∅,OD) is
typically asking the developer to provide SM such that M′ = (CD ,SM ,OD) is
consistent.

If the developer makes a mistake, then M′ is inconsistent.

• Not common: if SM is given, then constraints are also considered when
choosing transitions in the RTC-algorithm. In other words: even in presence of
mistakes, the SM never move to inconsistent configurations.



Pragmatics: Example
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Rhapsody Demo II
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