
–
1
6
–
2
0
1
5
-0
1
-1
5
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 16: Hierarchical State Machines I

2015-01-15

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
1
6
–
2
0
1
5
-0
1
-1
5
–
S
p
re
li
m

–

2/28

Last Lecture:

• Missing transformers: create and destroy

• Step and run-to-completion (RTC) step, divergence

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What does this hierarchical State Machine mean? What may happen if I
inject this event?

• What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, . . .

• Content:

• Putting it all together: UML model semantics (so far)

• State Machines and OCL

• Hierarchical State Machines Syntax

• Initial and Final State



Putting It All Together

–
1
6
–
2
0
1
5
-0
1
-1
5
–
m
a
in

–

3/28

The Missing Piece: Initial States

–
1
6
–
2
0
1
5
-0
1
-1
5
–
S
to
g
et
h
er

–

4/28

Recall: a labelled transition system is (S,−→, S0). We have

• S: system configurations (σ, ε)

• −→: labelled transition relation (σ, ε)
(cons,Snd)
−−−−−−→

u

(σ′, ε′).

Wanted: initial states S0.

Proposal:
Require a (finite) set of object diagrams OD as part of a UML model

(C D ,SM ,OD).

And set
S0 = {(σ, ε) | σ ∈ G−1(OD),OD ∈ OD , ε empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes.
We can read that as an abbreviation for an object diagram.



Semantics of UML Model — So Far

–
1
6
–
2
0
1
5
-0
1
-1
5
–
S
to
g
et
h
er

–

5/28

The semantics of the UML model

M = (CD ,SM ,OD)

where

• some classes in CD are stereotyped as ‘signal’ (standard), some signals and
attributes are stereotyped as ‘external’ (non-standard),

• there is a 1-to-1 relation between classes and state machines,

• OD is a set of object diagrams over C D ,

is the transition system (S,−→, S0) constructed on the previous slide.

The computations of M are the computations of (S,−→, S0).

State Machines and OCL

–
1
6
–
2
0
1
5
-0
1
-1
5
–
m
a
in

–

6/28



OCL Constraints and Behaviour

–
1
6
–
2
0
1
5
-0
1
-1
5
–
S
st
m
o
cl

–

7/28

• Let M = (C D ,SM ,OD) be a UML model.

• We call M consistent iff, for each OCL constraint expr ∈ Inv(CD),

σ |= expr for each “reasonable point” (σ, ε) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(SM ) similar to Inv(CD).

OCL Constraints and Behaviour

–
1
6
–
2
0
1
5
-0
1
-1
5
–
S
st
m
o
cl

–

7/28

• Let M = (C D ,SM ,OD) be a UML model.

• We call M consistent iff, for each OCL constraint expr ∈ Inv(CD),

σ |= expr for each “reasonable point” (σ, ε) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(SM ) similar to Inv(CD).

Pragmatics:

• In UML-as-blueprint mode, if SM doesn’t exist yet, then M = (CD , ∅,OD) is
typically asking the developer to provide SM such that M′ = (CD ,SM ,OD) is
consistent.

If the developer makes a mistake, then M′ is inconsistent.

• Not common: if SM is given, then constraints are also considered when
choosing transitions in the RTC-algorithm. In other words: even in presence of
mistakes, the SM never move to inconsistent configurations.



Pragmatics: Example

–
1
6
–
2
0
1
5
-0
1
-1
5
–
S
st
m
o
cl

–

8/28



Rhapsody Demo II

–
1
6
–
2
0
1
5
-0
1
-1
5
–
m
a
in

–

9/28

–
1
6
–
2
0
1
5
-0
1
-1
5
–
m
a
in

–

10/28


