Software Design, Modelling and Analysis in UML Lecture 18: Hierarchical State Machines II

2015-01-22

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- 18 - 2015-01-22 - main

- Hierarchical State Machine Syntax
- Entry/Exit Actions

This Lecture:

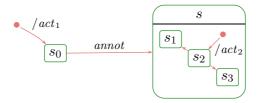
- Educational Objectives: Capabilities for following tasks/questions.
 - What does this State Machine mean? What happens if I inject this event?
 - Can you please model the following behaviour.
 - What does this **hierarchical** State Machine mean? What **may happen** if I inject this event?
 - What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...

• Content:

- Initial and Final State
- Composite State Semantics
- The Rest

Initial Pseudostates and Final States

Initial Pseudostate



Principle:

- when entering a region without a specific destination state,
- then go to a state which is destination of an initiation transition,
- execute the action of the chosen initiation transitions **between** exit and entry actions.

Special case: the region of *top*.

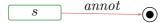
- If class ${\cal C}$ has a state-machine, then "create- ${\cal C}$ transformer" is the concatenation of
 - the transformer of the "constructor" of C (here not introduced explicitly) and
 - a transformer corresponding to one initiation transition of the top region.

Towards Final States: Completion of States

- Transitions without trigger can **conceptionally** be viewed as being sensitive for the "completion event".
- Dispatching (here: E) can then alternatively be viewed as
 - (i) fetch event (here: E) from the ether,
 - (ii) take an enabled transition (here: to s_2),
 - (iii) remove event from the ether,
 - (iv) after having finished entry and do action of current state (here: s_2) the state is then called **completed** —,
 - (v) raise a **completion event** with strict priority over events from ether!
 - (vi) if there is a transition enabled which is sensitive for the completion event,
 - then take it (here: (s_2, s_3)).
 - otherwise become stable.

5/30

Final States



• If

18 - 2015-01-22 - Sinitfin

18 - 2015-01-22 - Sinitfin

- a step of object u moves u into a final state $(s,\mathit{fin}),$ and
- all sibling regions are in a final state,

then (conceptionally) a completion event for the current composite state \boldsymbol{s} is raised.

- If there is a transition of a **parent state** (i.e., inverse of *child*) of *s* enabled which is sensitive for the completion event,
 - then take that transition,
 - otherwise kill u

 \rightsquigarrow adjust (2.) and (3.) in the semantics accordingly

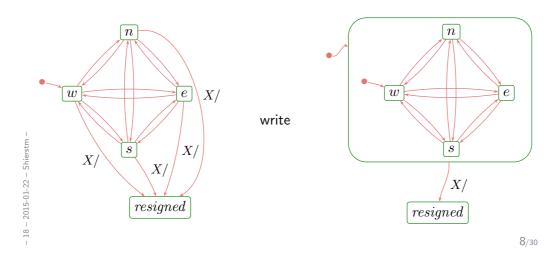
• One consequence:

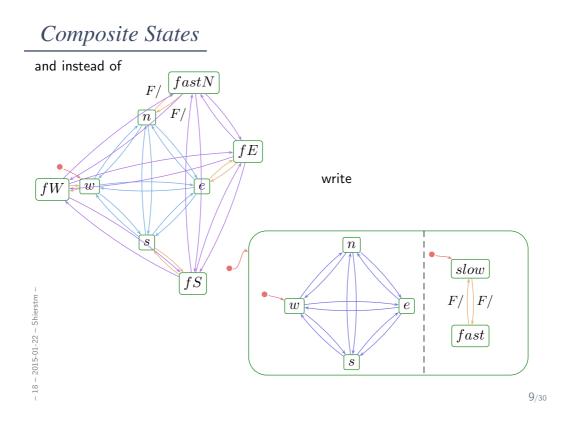
u never "survives" reaching a state (s, fin) with $s \in child(top)$.

Composite States (formalisation follows [Damm et al., 2003])

Composite States

- In a sense, composite states are about abbreviation, structuring, and avoiding redundancy.
- Idea: in Tron, for the Player's Statemachine, instead of





Recall: Syntax

	s	
s_1	s_2	s_3
s'_1	s_2'	s'_3

translates to

$$\underbrace{\{\underbrace{(top, st), (s, st), (s_1, st)(s'_1, st)(s_2, st)(s'_2, st)(s_3, st)(s'_3, st)\}}_{S,kind}, \underbrace{\{top \mapsto \{\!\!\{s\}\!\!\}, s \mapsto \{\{s_1, s'_1\}, \{s_2, s'_2\}, \{s_3, s'_3\}\}, s_1 \mapsto \emptyset, s'_1 \mapsto \emptyset, \dots\}}_{region}, \cdots, \psi, annot)$$

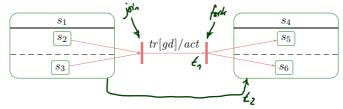
- 18 - 2015-01-22 - Shierstm -

Syntax: Fork/Join

• For brevity, we always consider transitions with (possibly) multiple sources and targets, i.e.

$$\psi: (\to) \to (2^S \setminus \emptyset) \times (2^S \setminus \emptyset)$$

• For instance,

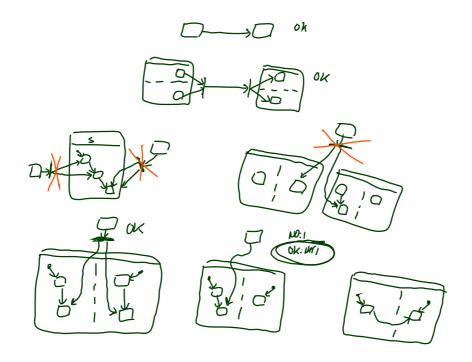


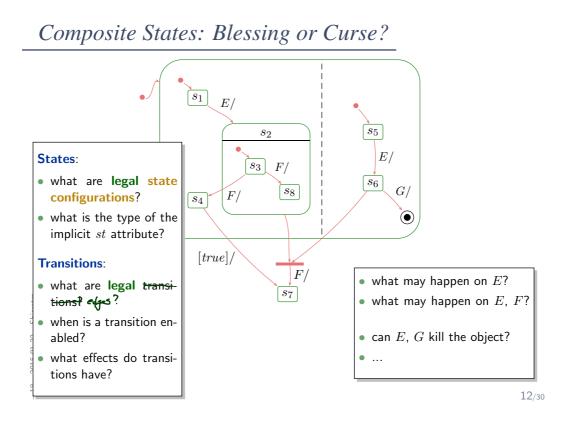
translates to

- 18 - 2015-01-22 - Shierstm -

$$(S, kind, region, \underbrace{\{t_1\}}_{\rightarrow}, \underbrace{\{t_1 \mapsto (\{s_2, s_3\}, \{s_5, s_6\})\}}_{\textbf{t}_{2} \mapsto (\{s_1\}, \{s_4\})}, \underbrace{\{t_1 \mapsto (tr, gd, act)\}}_{annot})$$

• Naming convention: $\psi(t) = (source(t), target(t))$.





State Configuration

- The type of st is from now on a set of states, i.e. $st: 2^S$
- A set $S_1 \subseteq S$ is called (legal) state configurations if and only if
 - $top \in S_1$, and
 - for each state $s \in S_1$, for each non-empty region $\emptyset \neq R \in region(s)$, exactly one (non pseudo-state) child of s (from R) is in S_1 , i.e.

$$|\{s_0 \in R \mid kind(s_0) \in \{st, fin\}\} \cap S_1| = 1.$$

• Examples:

 s_1

s

 s_2

 s_3

 $S = \{s_2\} \times (top \text{ purpsing})$ $S = \{s_2, top\} \times (no \text{ child up top's region})$ $S = \{top, s, s_2\} \checkmark$

-18 - 2015-01-22 - Shierstm

State Configuration

- The type of st is from now on a set of states, i.e. $st: 2^S$
- A set $S_1 \subseteq S$ is called (legal) state configurations if and only if
 - $top \in S_1$, and
 - for each state $s \in S_1$, for each non-empty region $\emptyset \neq R \in region(s)$, exactly one (non pseudo-state) child of s (from R) is in S_1 , i.e.

$$|\{s_0 \in R \mid kind(s_0) \in \{st, fin\}\} \cap S_1| = 1.$$

• Examples:

- 18 - 2015-01-22 - Shierstm

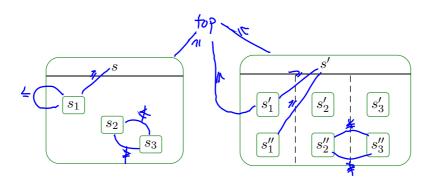
	$S = \{+s_{0}, s_{1}, s_{2}, s_{3}\}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NOTE: S can be abbreviated as {s,, s2, s3}

13/30

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- $top \leq s$, for all $s \in S$,
- $s \leq s'$, for all $s' \in child(s)$,
- transitive, reflexive, antisymmetric,
- $s' \leq s$ and $s'' \leq s$ implies $s' \leq s''$ or $s'' \leq s'$.



-18 - 2015-01-22 - Shierstm

- The least common ancestor is the function $lca:2^S\setminus\{\emptyset\}\to S$ such that
 - The states in S_1 are (transitive) children of $lca(S_1)$, i.e.

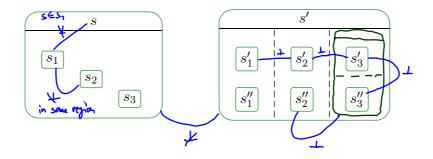
 $lca(S_1) \leq s$, for all $s \in S_1 \subseteq S$,

- $lca(S_1)$ is minimal, i.e. if $\hat{s} \leq s$ for all $s \in S_1$, then $\hat{s} \leq lca(S_1)$
- $l_{Ca}(\{s',s',j\}) = s'$ • Note: $lca(S_1)$ exists for all $S_1 \subseteq S$ (last candidate: top). s's- 18 - 2015-01-22 - Shierstm s'_3 s_1 s'_1 s'_2 s_2 s_1'' s_2'' s_3'' s_3 15/30

Least Common Ancestor and Ting

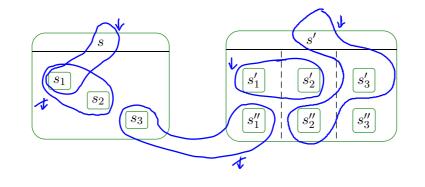
- Two states $s_1, s_2 \in S$ are called **orthogonal**, denoted $s_1 \perp s_2$, if and only if
 - they are unordered, i.e. $s_1 \not\leq s_2$ and $s_2 \not\leq s_1$, and
 - transitive child • they "live" in different regions of an AND-state, i.e.

 $\exists s, region(s) = \{S_1, \dots, S_n\} \exists 1 \le i \ne j \le n : s_1 \in child^*(S_i) \land s_2 \in child^*(S_j), s_3 \in child^*(S_j), s_4 \in child^*($



Least Common Ancestor and Ting

- A set of states $S_1 \subseteq S$ is called **consistent**, denoted by $\downarrow S_1$, if and only if for each $s, s' \in S_1$,
 - $s \leq s'$, or
 - $s' \leq s$, or
 - $s \perp s'$.



- 18 - 2015-01-22 - Shierstm

17/30

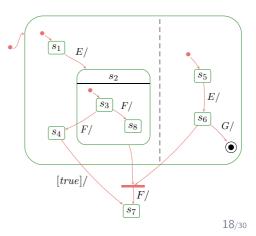
Legal Transitions (درمه الم

A hiearchical state-machine $(S, kind, region, \rightarrow, \psi, annot)$ is called **well-formed** if and only if for all transitions $t \in \rightarrow$,

- \mathbb{C} (i) source and destination are consistent, i.e. \downarrow source(t) and \downarrow target(t)] (ii) source (and destination) states are pairwise orthogonal, i.e.
 - - forall $s \neq s' \in source(t)$ ($\in target(t)$), $s \perp s'$,
 - (iii) the top state is neither source nor destination, i.e.
 - $top \notin source(t) \cup source(t)$.
- Recall: final states are not sources of transitions.

Example:

- 18 - 2015-01-22 - Shierstm



References

29/30

- [Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models are created equal. Software and Systems Modeling, 6(4):415–435.
- [Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A formal semantics for a UML kernel language 1.2. IST/33522/WP 1.1/D1.1.2-Part1, Version 1.2.
- [Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state machines: Complete formal semantics via core state machines. In Brim, L., Haverkort, B. R., Leucker, M., and van de Pol, J., editors, *FMICS/PDMC*, volume 4346 of *LNCS*, pages 244–260. Springer.
- [Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics of statecharts. In Ehrig, H., Damm, W., Große-Rhode, M., Reif, W., Schnieder, E., and Westkämper, E., editors, *Integration of Software Specification Techniques for Applications in Engineering*, number 3147 in LNCS, pages 325–354. Springer-Verlag.
- [OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.