— 20 — 2015-02-03 — main —

Software Design, Modelling and Analysis in UML

Lecture 20: Live Sequence Charts

2015-02-03

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 20 — 2015-02-03 — Sprelim —

Last Lecture:

e Hierarchical State Machines completed.

o Behavioural feature (aka. methods).

This Lecture:
¢ Educational Objectives: Capabilities for following tasks/questions.
e What does this LSC mean?
e Are this UML model's state machines consistent with the interactions?
Please provide a UML model which is consistent with this LSC.

What is: activation, hot/cold condition, pre-chart, etc.?

e Content:
o Reflective description of behaviour.
e LSC concrete and abstract syntax.

e LSC semantics.

You are here.

Course Map
CD, SM p e OCL CD, 8D s
T .
7 =(J,%,V,atr), SM expr <, 8D
il o pl O
M= (2%,Ay,—su) B = (Qsp, 90, A, —sp, Fsp)
(4 X
‘L}i i‘a
m = (00,€0) M) (01,€1) - - <> wr = ((03, cons;, Snd;)) ;e
G=(N,E,f)
S
E oD

3/51

4/51

— 20 — 2015-02-03 — main —

Motivation: Reflective, Dynamic Descriptions of Behaviour

Recall: Constructive vs. Reflective Descriptions

— 20 — 2015-02-03 — Sbehav —

[Harel, 1997] proposes to distinguish constructive and reflective descriptions:

e "A language is constructive if it contributes to the dynamic semantics of
the model. That is, its constructs contain information needed in executing
the model or in translating it into executable code.”

A constructive description tells how things are computed (which can then
be desired or undesired).

e "Other languages are reflective or assertive, and can be used by the
system modeler to capture parts of the thinking that go into building the
model — behavior included —, to derive and present views of the model,
statically or during execution, or to set constraints on behavior in
preparation for verification.”

A reflective description tells what shall or shall not be computed.

Note: No sharp boundaries!

Recall: What is a Requirement?

— 20 — 2015-02-03 — Sreflective —

— 20 — 2015-02-03 — main —

Recall:

e The semantics of the UML model M = (¢2, 4,0 P) is the transition
system (S, —,Sy) constructed according to discard/dispatch/commence-rules.

e The computations of M, denoted by [M], are the computations of (S, —, Sp).

Now:

A reflective description tells what shall or shall not be computed.

More formally: a requirement 1 is a property of computations;
something which is either satisfied or not satisfied by a computation

(consg,Sndg) (consi,Sndy)
™= (0-0780) —0£_> (O-lasl) —1i_> € [[M]]a

denoted by 7 = ¢ and 7 [~ ¢, resp.
Simplest case: OCL constraint.

Live Sequence Charts — Concrete Syntax

Example ; Lve Stjeomcc (bats 1377ty g

— 20 — 2015-02-03 — Slscsyn —

““&S‘Ja M.Si')‘ﬁthc
bt
LSC: L v{ffu
AC: actcond
AM: invariant I: strict N

/ ’Environment‘ ’:LightsCtrl‘ CrossingCtrI‘

nS
I ; Seq[req J | { /
\ 7 lL »—Zt(lO) i J/ /oC {
7 . |)
' lights_on barrier_down | /"l/l wl
X P .
S:MU”WM\) ; (\/ Operational \/\ : k
“ﬂ‘o‘n 7 RO | 1,5] ﬁmv@
/ lights_ok ')
7
q /
(ondiRaS 7 : V\
7 |
- c&wé
cold Oftginn
SS«‘J«JO\&M /
((signal, env)) W i'ls’l"“lWOd
secreq Tights_ok() MS%
’ NN
baﬁs':]rnzlo» n LightsCtrl BarrierCtrl
er-dow Operational : Bool MvUp : Bool
ba;ner,ok Tights on()
one

Example: What Is Required?

— 20 — 2015-02-03 — Slscsyn —

LSC: L CrossingCtrl
AC: actcond

AM: invariant I: stfict | 1 { 1 1
/ \
/ : L [i K i \
/ ‘Envlronment‘ ‘ : LightsCtrl ‘ ‘ CrosslngCtr‘ ‘ BamerCtr\‘ \ ‘ LightsCtrl ‘ BarrierCtrl
\ 7 sedreq i i K
\ 7 ! —4—Xt(10) ! /
7 L] |
A PRy SR LU f’%h\“"’" { barrier. down,_!
; N Operational > |
/7 |
7 [1.3] . } [1,5] —~MvUp >
7 lights_ok . X
; i barrier-ok
| H
7 i
7 dde 4t !
7 | | 1
4 | | i

Whenever the CrossingCtrl has consumed a ‘secreq’ event
then it shall finally send ‘lights_on’ and ‘barrier_down’ to LightsCtrl and BarrierCtrl,

if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn't apply; maybe there’'s another LSC for that case.

if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights_ok’ within 1-3 time units,

the BarrierCtrl shall reply with ‘barrier_ok’ within 1-5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

‘lights_ok’ and ‘barrier_ok’ may occur in any order.

After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

9/51

10/51

Building Blocks

LsC: L
AC: actcond
AM: invariant I strict

\ 7 segreq |

\

\ s T T ———4-X1(10)

CrossingCtrl

1
i\

‘ LightsCtrl ‘ ‘ BarrierCtrl ‘

/
’

lights_on

, T
< erational > |
N ’ |

|

7
/

7

7 Operational

A 1

/ (1.3 lights ok !
/

7

7

/

7

Z

barrier. down
"

e Instance Lines:

N\

@
<

3
Q

\

\

N T T —— 4 %110

‘ Environment ‘ ’ e ‘
c
@
g 7
n 7
| 7/
I32)
o
I
o
)
—
o
I3
|
o
«
|
Building Blocks
LSC: L CrossingCtrl
AC: actcond
AM: invariant I strict | v N
/ \
(/ ‘Environment‘ ‘:LightsCtrI‘ ‘: Cruss‘ingCtv‘ ‘:Barr?erCtr\ \\\ ‘ LightsCtrl ‘ ‘ BarrierCtrl ‘

/
/
’

lights_on

. ==
.
N Operatlfial/ >

/.

2

4

7

2 i

1,:

f (1.3 lights_ok !
7 H
7

/.

7

7

4

e 18MS-ON L barrier down
— -t L L

o Messages: (asynchronous or synchronous/instantaneous)

— 20 — 2015-02-03 — Slscsyn —

——

11/51

12/51

Building Blocks

LSC: L CrossingCtrl
AC: actcond

AM: _invariant I: strict | p’ { N\

/ \
’ i - Li A 1 . i \
/ ‘Enwronment‘ ‘ : LightsCtrl ‘ ‘ Cross‘lngCtr‘ ‘ Barr:erCtrl‘ N ‘ LightsCtrl BarrierCtrl

/

\
N
N

segreq |
I

HRi0) | /

/Q

t
! lights_on
PO UL

. =
.
N Operational >

I
,,,,,, I
| 1,5 =MvUp
TE) P R IC}
:‘ barrier-ok

| H

/ ddne 4t i
| | |
I I i

barrier.down !
"

AN

W\

e Conditions and Local Invariants: (expry, expry, exprs € Expr)

Ci e G T

— 20 — 2015-02-03 — Slscsyn —

13/51

Intuitive Semantics: A Partial Order on Simclasses

(i) Strictly After:

expry

(iii) Explicitly Unordered: (co-region)

|

c

>

n

O
e
%)

|
[sa] .
o 4“ >
& B
S : b

T B e ——
L H
—
o
N

|
o
[\

|

14/51

Partial Order Requirements

— 20 — 2015-02-03 — Slscsyn —

LSC: L CrossingCtrl
AC: actcond

AM: _invariant I: strict | 1, { 1 |

(// ‘Environment‘ ‘ : LightsCtrl ‘ ‘: Cross‘ingCtr‘ ‘: Barr?erCtH‘ \\\\ ‘ LightsCtrl

‘ BarrierCtrl

\ 7 segreq |

\ s T T ———4-X1(10)

\

’
’

Q-M barrier. down
777777 N

; =
“ Operational >

o Whenever the CrossingCtrl has consumed a ‘secreq’ event
e then it shall finally send ‘lights_on’ and ‘barrier_.down’ to LightsCtrl and BarrierCtrl,

e if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there's another LSC for that case.

e if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1-3 time units,

o the BarrierCtrl shall reply with ‘barrier_ok’ within 1-5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

o ‘lights_ok’' and ‘barrier_ok’ may occur in any order.

e After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

LSC Specialty: Modes

With LSCs,

e whole charts,
e locations, and

e elements

have a mode — one of hot or cold (graphically indicated by outline).

chart location message condition/
local inv.
a
b
hot: b
——————
i_ - - b //7‘7\\
) A A P
cold: | | ™ ~1-7
| | |
b — — -
always vs. at must vs. may mustn't vs. necessary vs.
least once progress may get lost legal exit

— 20=2015E0202 _ Gl

15/51

16/51

Example: Modes

CrossingCtrl

LSC: L
AC: actcond
AM: invariant I: stret | 1 LN
/ \
K ‘Environment‘ ‘ : LightsCtrl ‘ ‘: CrossingCtr‘ ‘: BarrierCtrI‘ \\\ ‘ LightsCtrl ‘ BarrierCtrl
< 7 segreq i ; /
'\ /\
\ ; ! —4—Xt(10) ! /
4 i I |
2 L‘M barrier. down_ !
7 < Operational > }
4 \ZPEEen
ST e | Gy
2 lights ok . .
7 ? barrier.ok
| H
7 |
7 wt |
z ‘ ‘ ‘
. ! ! ‘

e Whenever the CrossingCtrl has consumed a ‘secreq’ event

e then it shall finally send ‘lights_on’ and 'barrier_.down’ to LightsCtrl and BarrierCtrl,

o if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

— 20 — 2015-02-03 — Slscsyn —

LSC Specialty: Activation

e After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

One major defect of MSCs and SDs:
they don't say when the scenario has
to/may be observed.

— 20 — 2015-02-03 — Slscsyn —

o if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights_ok’ within 1-3 time units,

e the BarrierCtrl shall reply with ‘barrier_ok’ within 1-5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

e ‘lights_ok’ and ‘barrier_ok’ may occur in any order.

17/51

LSCs: Activation condition (AC € Expr),
activation mode (AM € {init, inv}),
and pre-chart.

LSC: L

AC: expr

AM: invariant |1 strict
/ —
a R

c J|_:»

{ |
\ /
\ }X“ ,
\ | /
|

—

18/51

LSC Specialty: Activation

— 20 — 2015-02-03 — Slscsyn —

One major defect of MSCs and SDs:
they don't say when the scenario has
to/may be observed.

LSCs: Activation condition (AC € Expr),
activation mode (AM € {init, inv}),
and pre-chart.

LSC: L

AC: expr

AM: invariant |: strict

) .
[> e

/ T
\ ! /
a \ a | /
N ,
/

Intuition: (universal case)

e given a computation 7, whenever expr holds in a configuration (o, ¢;) of &

e which is initial, i.e. k =0, or (AM = initial)
e whose k is not further restricted, (AM = invariant)

and if the pre-chart is observed from k to k + n,
then the main-chart has to follow from k +n + 1. 18/51

Example: What Is Required?

— 20 — 2015-02-03 — Slscsyn —

e After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

LSC: L CrossingCtrl
AC: actcond

AM: invariant I: striet | 1 LN
/ \
, - - [. . i N
’ ‘Enwronment‘ ‘ : LightsCtrl ‘ ‘ CrosslngCtr‘ ‘ BamerCtrI‘ N ‘ LightsCtrl ‘ BarrierCtrl
S ; sedreq | ! /
N7 ! TR L
4 i i |
g L‘M barrier. down !
7 N
; < Operational > !
7 \Dperational I
7 3] | [1,5] ﬁMV@
2 ’ lights_ok ! .
; it barrier-ok
| H
7 |
2 e 1
2 ‘ ‘ :
/ ! ! ‘

e Whenever the CrossingCtrl has consumed a ‘secreq’ event
e then it shall finally send ‘lights_on’ and ‘barrier_down’ to LightsCtrl and BarrierCtrl,

e if LightsCtrl is not ‘operational’ when receiving that event,

the rest of this scenario doesn’t apply; maybe there's another LSC for that case.

e if LightsCtrl is ‘operational’ when receiving that event,

it shall reply with ‘lights_ok’ within 1-3 time units,

e the BarrierCtrl shall reply with ‘barrier_ok’ within 1-5 time units, during this time

(dispatch time not included) it shall not be in state ‘MvUp’,

e ‘lights_ok’ and ‘barrier_ok’ may occur in any order.

19/51

Live Sequence Charts — Semantics in a Nutshell

— 20 - 2015-02-03 — main —

Restricted Syntax

e v L =
— £]
— £]
G

— 20 - 2015-02-03 — main —

20/51

21/51

Restricted Abstract Syntax

|
£
|
o
2
N
o
S
g
o
N
|
Cuts
o [o [e
li,0 12,0 lag
i< / PN
lan
o
IA R I
hE SN | s
122 j Ny ,,’]
—_— — 35—
\/7) G
7 ~ jad
| T2 12,3
g
|
o
2
N
o
&
g
o
N
|

A sl (el is
aled ot #

22/51

6 dowyiiaid closed @A

o chosed it

,a{[({—w«_éz.
fexf:siéw&é?«

((yf oy ﬁéﬂ* e,
meérv/)

23/51

Firedsets

/[1

. . /
\’Jf'z\‘ ‘ ‘ ,'?f"x ‘ ‘ :,Z‘:s‘
. ,’ll . . ’,” - . ,’IU -
; Al TN \
@ ha< l IA
'{?1,1} A 21
|)\ (/ N F 1
\\7‘[\{; \\'
2,2 <
A - 31
G I
. Thae ™ s
z
Towards Automata
Cy

vl i
o F A0
c (\C=F

[3

ol et

phps w7,

¥

o direl sSH(:

VeleF Fe'el 0%
A \CEX p'de

>e%e!
24/51
Cs ’zEKI O ,
e ’ \{/EK'IH
Cs G0
: 4
3ﬁ (LEK,g
& o
‘5;3 gL:F_)..}
Cy 7
% S:Fg N rx
272 5 i/(/ s

25/51

Alphabet — Progress Transitions

— 20 — 2015-02-03 — main —

26/51

27/51

— 20 — 2015-02-03 — main —

Language

— 20 — 2015-02-03 — main —

— 20 — 2015-02-03 — main —

You are here.

28/51

29/51

Course Map

— 20 - 2015-02-03 — main —

— 20 - 2015-02-03 — main —

v

o€ OCL CD, SD s

v ¢

(Z,6,V, atr), SM expr 7, 8D

7 N,

= (Qsp, 90, As,—sp, Fsp)

X
e = (o cons S0
N b 4 ___/
G=WE - o
s
oD
Language of a Model

3051

31/51

Words over Signature

Definition. Let .¥ = (J,%,V, atr,&) be a signature and Z a
structure of .. A word over .% and ¥ is an infinite sequence

(04, cons;, Snd;)ieN,
c (E?p % 92(€)x Evs(8,2)xD(€) 29(%)><Evs(é”,@)><@(%))w'

32/51

— 20 — 2015-02-03 — Smodellang —

The Language of a Model

Recall: A UML model M = (¢2, %# ,0%) and a structure & denotes a
set [M] of (initial and consecutive) computations of the form

(00,€0) 2 (01,61) 25 (02,€2) 25 ... where

a; = (COTLSZ‘, Sndz,ul) e 2@("{)><Evs(é?,@)><@(‘€) % 2@(‘5)><Evs((§,@)><@(‘€) x@(%)

~~

=:A
For the connection between models and interactions, we disregard the
configuration of the ether and who made the step, and define as follows:

e N
Definition. Let M = (¢9, %4, 0 %) be a UML model and Z a
structure. Then

L(M) = {(034, cons;, Snd;)ien, € (E?@ X fl)“’ |

consg,Snd
3 (i, us)iewo :((G0\0) ~2 MK (51 61 € [M]}

uo

is the language of M.
\ S 3351

— 20 — 2015-02-03 — Smodellang —

Example: The Language of a Model

L(M) := {(0i, cons;, Snd;)ien, € (E% X [1)“ |

consg,Snd
3 (&i, w)ien, : (00, €0) Leonso,Sndo), (o1,€1)--- € [M]}

Uo

— 20 — 2015-02-03 — Smodellang —

Signal and Attribute Expressions

o Let ' = (T,%,V, atr,&) be a signature and X a set of logical variables,

o The signal and attribute expressions Expr (&, X) are defined by the
grammar: /?

| ?
g = true| eapr | Bl | EL, |~ |1 vl EL

where expr : Bool € Expr o, E € &, x,y € X.
W et of wnal ks

— 20 — 2015-02-03 — Smodellang —

34/51

35/51

o Let (0, cons, Snd) € £% x A be a triple - bkd /i

consisting of system state, consume set, and send set. e i
o Let 8: X — 2(€) be a valuation of the logical variables.\™=] =
F
Then

e (o, cons, Snd) =3 true
e (o, cons, Snd) =3 = if and only if not (o, cons, Snd) |=g ¥

e (o, cons, Snd) =5 11 V 1)y if and only if
(0, cons, Snd) =g 11 or (o, cons, Snd) =5 12

o

(0, cons, Snd) =g expr if and only if I[ezpr](c,) =1

e (o, cons, Snd) =3 Ei’y if and only if 3d e (3(z), (E,d), B(y)) € Snd

—

e (0, cons, Snd) =3 E;y if and only if 3d e (3(z), (E,d), B(y)) € cons

Observation: semantics of models keeps track of sender and receiver at
sending and consumption time. We disregard the event identity.
Alternative: keep track of event identities. 36/51

— 20 — 2015-02-03 — Smodellang —

TBA over Signature

Definition. A TBA
B = (EIPTB(X), Xa Qv Qini, =7 QF)

where Ezprg(X) is the set of signal and attribute expressions
Ezpr (&, X) over signature . is called TBA over .7.

\

e Any word over . and Z is then a word for B.
(By the satisfaction relation defined on the previous slide; 2(X) = 2(%).)

e Thus a TBA over . accepts words of models with signature ..
(By the previous definition of TBA.)

— 20 — 2015-02-03 — Smodellang —

37/51

TBA over Signature Example

— 20 — 2015-02-03 — Smodellang —

— 20 — 2015-02-03 — main —

(o, cons, Snd) =g expr iff I[expr] (o, B) = 1;

(0, cons, Snd) s E. , iff (B(z), (B, d),B(y)) € Snd

Activation, Chart Mode

38/51

39/51

Activation Condition

— 20 — 2015-02-03 — main —

M:)ﬂst:&fi
e JL v [-
\147<>
—
G

40/51

Universal vs. Existential Charts

— 20 — 2015-02-03 — main —

ewfﬁkw(‘ﬂ(
Y S
| e = !
| . ‘
, \
| — | {
| . [
I
| } bl

41/51

Prechart

42/51

- ulew — €0-20-610C — 0T —

Conditions

43/51

— ulew — €0-20-510C — 0Z —

Conditions

— 20 — 2015-02-03 — main —

Biy A gnso WIRERA,
S L HEise §
F;;m Y = (0‘,;(46,‘,3#(') Y/
0; Fpy wltond
= (Oir, o089y Sala),
(oa2 w,,;,s,,{,)
is akepled Ly

— 20 — 2015-02-03 — main —

Ao (15

4451

Back to UML: Interactions

45/51

Model Consistency wrt. Interaction

— 20 — 2015-02-03 — Sinteract —

o We assume that the set of interactions .# is partitioned into two (possibly
empty) sets of universal and existential interactions, i.e.

I =I5 U A

s

and

Definition. A model

M= (€9, 5H,69,5)

VI e A L(M)C L(T)

VI € 95: LM)NLT) £ 0.

is called consistent (more precise: the constructive description of
behaviour is consistent with the reflective one) if and only if

J 46/51

Interactions as Reflective Description

e In UML, reflective (temporal) descriptions are subsumed by interactions.
o AUML model M = (62,94 ,02,.%) has a set of interactions ..
e An interaction Z € .# can be (OMG claim: equivalently) diagrammed as

e sequence diagram,

timing diagram, or

e communication diagram (formerly known as collaboration diagram).

jure 14.26 - Sequence Dia

— 20 - 2015-02-03 - Sj

tex [estavisnaccessctegal Py

lew Diagram representing a High Level 1{@bdfan 2A9Zh, 518]

‘‘‘‘‘

Lifeline

Figure 14.30 - Compact Lifeline with States

State or condition DurationConstraint

sd UserAcc_User
{d..3*d}
V
—~—
Leipcgess e

[OMG, 2007b, 522]

VTR

“Time Observation

!
JOMG, 2007b, 522]

Interactions as Reflective Description

e In UML, reflective (temporal) descriptions are subsumed by interactions.

e A UML model M = (62,94 ,02,.%) has a set of interactions ..

e An interaction Z € .# can be (OMG claim: equivalently) diagrammed as
e sequence diagram, timing diagram, or

e communication diagram (formerly known as collaboration diagram).

InteractionUse Lifeline State or condition DurationConstraint

t

sd UserAcc_User)

DurationObservation——_| Duration Constrain

(.3}
—~

DurationConstraint,

TimeConstraint

{ Timeobservation 1

—_—
WaitCard XWaitAccess Idle
R e

. [OMG, 2007b, 522]

i i
S
N ading = length (Subject queue)
Q (0. Subject capacity) T— Me:
o
b=y ot
N
o
N “Time Observation
: Figure 1428 - Interaction Overview Diagram representing a High Level 1{@Mfan 29, 518] Figure 14:31 - Timing Diagram with mer UEMW.K,,MEWE{OMG, 2007b, 522]
Why Sequence Diagrams?
Most Prominent: Sequence Diagrams — with long history:
o Message Sequence Charts, standardized by the ITU in different versions,
often accused to lack a formal semantics.
e Sequence Diagrams of UML 1.x
Most severe drawbacks of these formalisms:
e unclear interpretation:
example scenario or invariant?
. . LS(_:: L
e unclear activation: AG. feteond | et ‘
. . e ———— .
What trlggers the requ"ement' // ‘Environment‘ ‘:LightsCtrI‘ %CrossingCtr‘ ‘: BarrierCtrl | '\
H . ¢ 7 se ! T ;
e unclear progress requirement: ;%«LX&N) ; y
3 must all messages be observed? — T ‘ |
g . ; P o lg\s,on %\
£ e conditions merely comments g </ Operational > !
N 7 T al | 1,5 -MvUp
! e no means to express g O T Ue)
Q . . / ™ parrier.ok
g forbidden scenarios Y/ ! d |
> Z/QM%O ;
g 7 1 l ‘
o
(9]
|

4851

Thus: Live Sequence Charts

e SDs of UML 2.x address some issues, yet the standard exhibits unclarities
and even contradictions [Harel and Maoz, 2007, Storrle, 2003]

o For the lecture, we consider Live Sequence Charts (LSCs)
[Damm and Harel, 2001, Klose, 2003, Harel and Marelly, 2003], who have a
common fragment with UML 2.x SDs [Harel and Maoz, 2007]

o Modelling guideline: stick to that fragment.

— 20 — 2015-02-03 — Sinteract —

References

— 20 — 2015-02-03 — main —

49/51

50/51

— 20 — 2015-02-03 — main —

[Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into
Message Sequence Charts. Formal Methods in System Design, 19(1):45-80.

[Harel, 1997] Harel, D. (1997). Some thoughts on statecharts, 13 years later. In
Grumberg, O., editor, CAV, volume 1254 of LNCS, pages 226-231.

Springer-Verlag.

[Harel and Maoz, 2007] Harel, D. and Maoz, S. (2007). Assert and negate revisited:
Modal semantics for UML sequence diagrams. Software and System Modeling
(SoSyM). To appear. (Early version in SCESM'06, 2006, pp. 13-20).

[Harel and Marelly, 2003] Harel, D. and Marelly, R. (2003). Come, Let’s Play:
Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag.

[Klose, 2003] Klose, J. (2003). LSCs: A Graphical Formalism for the Specification of
Communication Behavior. PhD thesis, Carl von Ossietzky Universitat Oldenburg.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

[Storrle, 2003] Storrle, H. (2003). Assert, negate and refinement in UML-2
interactions. In Jurjens, J., Rumpe, B., France, R., and Fernandez, E. B., editors,
CSDUML 2003, number TUM-10323. Technische Universitdt Munchen.

51/51

