
–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 20: Live Sequence Charts

2015-02-03

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
p
re
li
m

–

2/51

Last Lecture:

• Hierarchical State Machines completed.

• Behavioural feature (aka. methods).

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this LSC mean?

• Are this UML model’s state machines consistent with the interactions?

• Please provide a UML model which is consistent with this LSC.

• What is: activation, hot/cold condition, pre-chart, etc.?

• Content:

• Reflective description of behaviour.

• LSC concrete and abstract syntax.

• LSC semantics.

You are here.

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

3/51

Course Map

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

4/51

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr), SM

M = (ΣD
S
, AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi,Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✘

✘

✘

✘✔

✔

✔

✔

✔

Motivation: Reflective, Dynamic Descriptions of Behaviour

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

5/51

Recall: Constructive vs. Reflective Descriptions

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
b
eh

a
v
–

6/51

[Harel, 1997] proposes to distinguish constructive and reflective descriptions:

• “A language is constructive if it contributes to the dynamic semantics of
the model. That is, its constructs contain information needed in executing
the model or in translating it into executable code.”

A constructive description tells how things are computed (which can then
be desired or undesired).

• “Other languages are reflective or assertive, and can be used by the
system modeler to capture parts of the thinking that go into building the
model – behavior included –, to derive and present views of the model,
statically or during execution, or to set constraints on behavior in
preparation for verification.”

A reflective description tells what shall or shall not be computed.

Note: No sharp boundaries!

Recall: What is a Requirement?

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
re
fl
ec
ti
ve

–

7/51

Recall:

• The semantics of the UML model M = (C D ,SM ,OD) is the transition
system (S,−→, S0) constructed according to discard/dispatch/commence-rules.

• The computations of M, denoted by JMK, are the computations of (S,−→, S0).

Now:

A reflective description tells what shall or shall not be computed.

More formally: a requirement ϑ is a property of computations;
something which is either satisfied or not satisfied by a computation

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→ (σ1, ε1)

(cons1,Snd1)
−−−−−−−−→ · · · ∈ JMK,

denoted by π |= ϑ and π 6|= ϑ, resp.
Simplest case: OCL constraint.

Live Sequence Charts — Concrete Syntax

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

8/51

Example

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
ls
cs
yn

–

9/51

LSC: L
AC: actcond
AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

〈〈signal , env〉〉

secreq

CrossingCtrl

lights ok()

〈〈signal〉〉

barrier down
barrier ok

done

LightsCtrl
Operational : Bool
lights on()

BarrierCtrl
MvUp : Bool

1
1

1
1

Example: What Is Required?

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
ls
cs
yn

–

10/51

LSC: L
AC: actcond
AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

Building Blocks

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
ls
cs
yn

–

11/51

LSC: L
AC: actcond
AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Instance Lines:

Environment : C

Building Blocks

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
ls
cs
yn

–

12/51

LSC: L
AC: actcond
AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Messages: (asynchronous or synchronous/instantaneous)

a b

Building Blocks

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
ls
cs
yn

–

13/51

LSC: L
AC: actcond
AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Conditions and Local Invariants: (expr1, expr2, expr3 ∈ ExprS)

expr1 expr2
expr3

Intuitive Semantics: A Partial Order on Simclasses

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
ls
cs
yn

–

14/51

(i) Strictly After:

a

b
a

(ii) Simultaneously: (simultaneous region)

a

expr1

b c

(iii) Explicitly Unordered: (co-region)

a

b

Partial Order Requirements

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
ls
cs
yn

–

15/51

LSC: L
AC: actcond
AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

LSC Specialty: Modes

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
ls
cs
yn

–

16/51

With LSCs,

• whole charts,

• locations, and

• elements

have a mode — one of hot or cold (graphically indicated by outline).

chart location message condition/
local inv.

hot:

a

b

b p

cold:

a

b

b p

always vs. at
least once

must vs. may
progress

mustn’t vs.
may get lost

necessary vs.
legal exit

Example: Modes

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
ls
cs
yn

–

17/51

LSC: L
AC: actcond
AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

LSC Specialty: Activation

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
ls
cs
yn

–

18/51

One major defect of MSCs and SDs:
they don’t say when the scenario has
to/may be observed.

LSCs: Activation condition (AC ∈ ExprS),
activation mode (AM ∈ {init , inv}),
and pre-chart.

: C : D

a

b

LSC: L
AC: expr
AM: invariant I: strict

: C : D

a

b

LSC Specialty: Activation

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
ls
cs
yn

–

18/51

One major defect of MSCs and SDs:
they don’t say when the scenario has
to/may be observed.

LSCs: Activation condition (AC ∈ ExprS),
activation mode (AM ∈ {init , inv}),
and pre-chart.

: C : D

a

b

LSC: L
AC: expr
AM: invariant I: strict

: C : D

a

b

Intuition: (universal case)

• given a computation π, whenever expr holds in a configuration (σi, εi) of ξ

• which is initial, i.e. k = 0, or (AM = initial)

• whose k is not further restricted, (AM = invariant)

and if the pre-chart is observed from k to k + n,
then the main-chart has to follow from k + n+ 1.

Example: What Is Required?

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
ls
cs
yn

–

19/51

LSC: L
AC: actcond
AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

CrossingCtrl

LightsCtrl BarrierCtrl

1
1

1
1

• Whenever the CrossingCtrl has consumed a ‘secreq’ event

• then it shall finally send ‘lights on’ and ‘barrier down’ to LightsCtrl and BarrierCtrl,

• if LightsCtrl is not ‘operational’ when receiving that event,
the rest of this scenario doesn’t apply; maybe there’s another LSC for that case.

• if LightsCtrl is ‘operational’ when receiving that event,
it shall reply with ‘lights ok’ within 1–3 time units,

• the BarrierCtrl shall reply with ‘barrier ok’ within 1–5 time units, during this time
(dispatch time not included) it shall not be in state ‘MvUp’,

• ‘lights ok’ and ‘barrier ok’ may occur in any order.

• After having consumed both, CrossingCtrl may reply with ‘done’ to the environment.

Live Sequence Charts — Semantics in a Nutshell

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

20/51

Restricted Syntax

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

21/51

x : y : z :

E

F

G

Restricted Abstract Syntax

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

22/51

x : y : z :

E

F

G

(I, (L ,�),∼,S ,Msg)

Cuts

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

23/51

x : y : z :

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

�
�

�
�

�

�

�

�

∼

Firedsets

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

24/51

x : y : z :

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

�
�

�
�

�

�

�

�

∼

Towards Automata

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

25/51

x : y : z :

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

�
�

�
�

�

�

�

�

∼

Alphabet — Progress Transitions

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

26/51

x : y : z :

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

�
�

�
�

�

�

�

�

∼

q1

q2

q3

q4

q5 q6

q7

E!
x,y

E?
x,y

F !
y,x

F ?
y,z ∧ ¬G?!

y,x

G?!
y,x ∧ ¬F ?

y,z

G?!
y,x F ?

y,z

F ?
y,z ∧G

?!
y,x

Loops

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

27/51

x : y : z :

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

�
�

�
�

�

�

�

�

∼

q1

q2

q3

q4

q5 q6

q7

E!
x,y

E?
x,y

F !
y,x

F ?
y,z ∧ ¬G?!

y,x

G?!
y,x ∧ ¬F ?

y,z

G?!
y,x F ?

y,z

F ?
y,z ∧G

?!
y,x

¬E!
x,y

¬E?
x,y

¬F !
y,x

¬(F ?
y,z ∨G

?!
y,x)

¬G?!
y,x

¬F ?
y,z

true

Language

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

28/51

x : y : z :

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

�
�

�
�

�

�

�

�

∼

q1

q2

q3

q4

q5 q6

q7

E!
x,y

E?
x,y

F !
y,x

F ?
y,z ∧ ¬G?!

y,x

G?!
y,x ∧ ¬F ?

y,z

G?!
y,x F ?

y,z

F ?
y,z ∧G

?!
y,x

¬E!
x,y

¬E?
x,y

¬F !
y,x

¬(F ?
y,z ∨G

?!
y,x)

¬G?!
y,x

¬F ?
y,z

true

You are here.

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

29/51

Course Map

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

30/51

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr), SM

M = (ΣD
S
, AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi,Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✘

✔

✔

✘✔

✔

✔

✔

✔

Language of a Model

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

31/51

Words over Signature

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
m
o
d
el
la
n
g
–

32/51

Definition. Let S = (T,C, V, atr ,E) be a signature and D a
structure of S . A word over S and D is an infinite sequence

(σi, consi,Snd i)i∈N0

∈
(

ΣD
S × 2D(C)×Evs(E ,D)×D(C) × 2D(C)×Evs(E ,D)×D(C)

)ω

.

The Language of a Model

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
m
o
d
el
la
n
g
–

33/51

Recall: A UML model M = (C D ,SM ,OD) and a structure D denotes a
set JMK of (initial and consecutive) computations of the form

(σ0, ε0)
a0−→ (σ1, ε1)

a1−→ (σ2, ε2)
a2−→ . . . where

ai = (consi,Snd i, ui) ∈ 2D(C)×Evs(E ,D)×D(C) × 2D(C)×Evs(E ,D)×D(C)
︸ ︷︷ ︸

=:Ã

×D(C).

For the connection between models and interactions, we disregard the
configuration of the ether and who made the step, and define as follows:

Definition. Let M = (CD ,SM ,OD) be a UML model and D a
structure. Then

L(M) := {(σi, cons i,Snd i)i∈N0
∈ (ΣD

S × Ã)ω |

∃ (εi, ui)i∈N0
: (σ0, ε0)

(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1) · · · ∈ JMK}

is the language of M.

Example: The Language of a Model

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
m
o
d
el
la
n
g
–

34/51

L(M) := {(σi, consi, Snd i)i∈N0
∈ (ΣD

S × Ã)ω |

∃ (εi, ui)i∈N0
: (σ0, ε0)

(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1) · · · ∈ JMK}

Signal and Attribute Expressions

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
m
o
d
el
la
n
g
–

35/51

• Let S = (T,C, V, atr ,E) be a signature and X a set of logical variables,

• The signal and attribute expressions ExprS (E , X) are defined by the
grammar:

ψ ::= true | expr | E!
x,y | E?

x,y | ¬ψ | ψ1 ∨ ψ2,

where expr : Bool ∈ ExprS , E ∈ E , x, y ∈ X.

Satisfaction of Signal and Attribute Expressions

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
m
o
d
el
la
n
g
–

36/51

• Let (σ, cons,Snd) ∈ ΣD
S

× Ã be a triple
consisting of system state, consume set, and send set.

• Let β : X → D(C) be a valuation of the logical variables.

Then

• (σ, cons,Snd) |=β true

• (σ, cons,Snd) |=β ¬ψ if and only if not (σ, cons,Snd) |=β ψ

• (σ, cons,Snd) |=β ψ1 ∨ ψ2 if and only if
(σ, cons,Snd) |=β ψ1 or (σ, cons,Snd) |=β ψ2

• (σ, cons,Snd) |=β expr if and only if IJexprK(σ, β) = 1

• (σ, cons,Snd) |=β E
!
x,y if and only if ∃ ~d • (β(x), (E, ~d), β(y)) ∈ Snd

• (σ, cons,Snd) |=β E
?
x,y if and only if ∃ ~d • (β(x), (E, ~d), β(y)) ∈ cons

Observation: semantics of models keeps track of sender and receiver at
sending and consumption time. We disregard the event identity.
Alternative: keep track of event identities.

TBA over Signature

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
m
o
d
el
la
n
g
–

37/51

Definition. A TBA

B = (ExprB(X), X,Q, qini ,→, QF)

where ExprB(X) is the set of signal and attribute expressions
ExprS (E , X) over signature S is called TBA over S .

• Any word over S and D is then a word for B.
(By the satisfaction relation defined on the previous slide; D(X) = D(C).)

• Thus a TBA over S accepts words of models with signature S .
(By the previous definition of TBA.)

TBA over Signature Example

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
m
o
d
el
la
n
g
–

38/51

(σ, cons ,Snd) |=β expr iff IJexprK(σ, β) = 1;

(σ, cons ,Snd) |=β E!
x,y iff (β(x), (E, ~d), β(y)) ∈ Snd

q1

q2

q3

q4

q5 q6

q7

E!
x,y

E?
x,y

F !
y,x

F ?
y,z ∧ ¬G?!

y,x

G?!
y,x ∧ ¬F ?

y,z

G?!
y,x F ?

y,z

F ?
y,z ∧G

?!
y,x

¬E!
x,y

¬E?
x,y

¬F !
y,x

¬(F ?
y,z ∨G

?!
y,x)

¬G?!
y,x

¬F ?
y,z

true

Activation, Chart Mode

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

39/51

Activation Condition

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

40/51

x : y : z :

E

F

G

Universal vs. Existential Charts

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

41/51

x : y : z :

E

F

G

Prechart

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

42/51

x : y : z :

E

F

G

Conditions

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

43/51

Conditions

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

44/51

q1

q2

q3

q4

q5 q6

q7

E!
x,y

E?
x,y

F !
y,x

F ?
y,z ∧ ¬G?!

y,x

G?!
y,x ∧ ¬F ?

y,z

G?!
y,x F ?

y,z

F ?
y,z ∧G

?!
y,x

¬E!
x,y

¬E?
x,y

¬F !
y,x

¬(F ?
y,z ∨G

?!
y,x)

¬G?!
y,x

¬F ?
y,z

true

Back to UML: Interactions

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

45/51

Model Consistency wrt. Interaction

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
in
te
ra
ct

–

46/51

• We assume that the set of interactions I is partitioned into two (possibly
empty) sets of universal and existential interactions, i.e.

I = I∀ ∪̇ I∃.

Definition. A model

M = (CD ,SM ,OD ,I)

is called consistent (more precise: the constructive description of
behaviour is consistent with the reflective one) if and only if

∀ I ∈ I∀ : L(M) ⊆ L(I)

and
∀ I ∈ I∃ : L(M) ∩ L(I) 6= ∅.

Interactions as Reflective Description

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
in
te
ra
ct

–

47/51

• In UML, reflective (temporal) descriptions are subsumed by interactions.

• A UML model M = (CD ,SM ,OD ,I) has a set of interactions I .

• An interaction I ∈ I can be (OMG claim: equivalently) diagrammed as

• sequence diagram, timing diagram, or

• communication diagram (formerly known as collaboration diagram).

Figure 14.26 - Sequence Diagram with time and timing concepts

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation

[OMG, 2007b, 513]

quence-term ‘. ’ . . . ‘: ’

[integer | name] [ence]

‘ * ’ ‘ [’ se ‘] ’an i

‘ [’ gu ‘] ’a bran

Figure 14.27 - Communication diagram

sd M

:r s[k]:B

s[u]:B

1a:m1

2:m21b:m3

1b.1:m3 1b.1.1:m3,
1b.1.1.1:m2

Lifeline

Message
with
Sequence
number

Messages

[OMG, 2007b, 515]

Figure 14.30 - Compact Lifeline with States

sd UserAcc_User

Idle WaitCard WaitAccess Idle

{d..3*d}

:User

State or conditionLifeline DurationConstraint

[OMG, 2007b, 522]

Figure 14.31 - Timing Diagram with more than one Lifeline and with Messages

sd UserAccepted

Idle

WaitCard

WaitAccess

{t..t+3}

{d..3*d}

:U
se

r

0 1 2 t

HasCard

NoCard

:A
C

S
ys

te
m

Code

CardOut
{0..13}

OK

Unlock

d
t=now

State or conditionLifelines

Duration Observation

Duration Constraints

Time Observation

Time Constraint

Message

[OMG, 2007b, 522]

Figure 14.28 - Interaction Overview Diagram representing a High Level Interaction diagram

sd OverviewDiagram lifelines :User, :ACSystem

ref
EstablishAccess("Illegal PIN")

sd

:User :ACSystem

CardOut

sd

:User :ACSystem

Msg("Please Enter")

ref
OpenDoor

[pin ok]

{0..25}

{1..14}

InteractionUse

(inline) Interaction

decision

interaction constraint

Duration Constraint

[OMG, 2007b, 518]

Interactions as Reflective Description

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
in
te
ra
ct

–

47/51

• In UML, reflective (temporal) descriptions are subsumed by interactions.

• A UML model M = (CD ,SM ,OD ,I) has a set of interactions I .

• An interaction I ∈ I can be (OMG claim: equivalently) diagrammed as

• sequence diagram, timing diagram, or

• communication diagram (formerly known as collaboration diagram).

Figure 14.26 - Sequence Diagram with time and timing concepts

sd UserAccepted

:User :ACSystem

Code d=duration

CardOut {0..13}

OK
Unlock

{d..3*d}

t=now

{t..t+3}

DurationConstraint

TimeObservation

TimeConstraint

DurationObservation

[OMG, 2007b, 513]

quence-term ‘. ’ . . . ‘: ’

[integer | name] [ence]

‘ * ’ ‘ [’ se ‘] ’an i

‘ [’ gu ‘] ’a bran

Figure 14.27 - Communication diagram

sd M

:r s[k]:B

s[u]:B

1a:m1

2:m21b:m3

1b.1:m3 1b.1.1:m3,
1b.1.1.1:m2

Lifeline

Message
with
Sequence
number

Messages

[OMG, 2007b, 515]

Figure 14.30 - Compact Lifeline with States

sd UserAcc_User

Idle WaitCard WaitAccess Idle

{d..3*d}

:User

State or conditionLifeline DurationConstraint

[OMG, 2007b, 522]

Figure 14.31 - Timing Diagram with more than one Lifeline and with Messages

sd UserAccepted

Idle

WaitCard

WaitAccess

{t..t+3}

{d..3*d}

:U
se

r

0 1 2 t

HasCard

NoCard

:A
C

S
ys

te
m

Code

CardOut
{0..13}

OK

Unlock

d
t=now

State or conditionLifelines

Duration Observation

Duration Constraints

Time Observation

Time Constraint

Message

[OMG, 2007b, 522]

Figure 14.28 - Interaction Overview Diagram representing a High Level Interaction diagram

sd OverviewDiagram lifelines :User, :ACSystem

ref
EstablishAccess("Illegal PIN")

sd

:User :ACSystem

CardOut

sd

:User :ACSystem

Msg("Please Enter")

ref
OpenDoor

[pin ok]

{0..25}

{1..14}

InteractionUse

(inline) Interaction

decision

interaction constraint

Duration Constraint

[OMG, 2007b, 518]

Figure 9.11 - The internal structure of the Observer collaboration shown inside the collaboration icon (a connection is
shown between the Subject and the Observer role).

Observer

Observer : SlidingBarIconSubject : CallQueue

[OMG, 2007b, 170]

Figure 9.12 - In the Observer collaboration two roles, a Subject and an Observer, collaborate to produce the desired
behavior. Any instance playing the Subject role must possess the properties specified by CallQueue, and similarly for
the Observer role.

Observer

SlidingBarIcon
Observer

CallQueue Subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

Observer.reading = length (Subject.queue)

capacity: Integer

Observer.range = (0 .. Subject.capacity)

[OMG, 2007b, 170]

Why Sequence Diagrams?

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
in
te
ra
ct

–

48/51

Most Prominent: Sequence Diagrams — with long history:

• Message Sequence Charts, standardized by the ITU in different versions,
often accused to lack a formal semantics.

• Sequence Diagrams of UML 1.x

Most severe drawbacks of these formalisms:

• unclear interpretation:
example scenario or invariant?

• unclear activation:
what triggers the requirement?

• unclear progress requirement:
must all messages be observed?

• conditions merely comments

• no means to express
forbidden scenarios

LSC: L
AC: actcond
AM: invariant I: strict

Environment : LightsCtrl

Operational

[1, 3]

: CrossingCtrl

t(10)

t

: BarrierCtrl

[1, 5]

secreq

lights on barrier down

lights ok
barrier ok

¬MvUp

done

Thus: Live Sequence Charts

–
2
0
–
2
0
1
5
-0
2
-0
3
–
S
in
te
ra
ct

–

49/51

• SDs of UML 2.x address some issues, yet the standard exhibits unclarities
and even contradictions [Harel and Maoz, 2007, Störrle, 2003]

• For the lecture, we consider Live Sequence Charts (LSCs)
[Damm and Harel, 2001, Klose, 2003, Harel and Marelly, 2003], who have a
common fragment with UML 2.x SDs [Harel and Maoz, 2007]

• Modelling guideline: stick to that fragment.

References

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

50/51

–
2
0
–
2
0
1
5
-0
2
-0
3
–
m
a
in

–

51/51

[Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into
Message Sequence Charts. Formal Methods in System Design, 19(1):45–80.

[Harel, 1997] Harel, D. (1997). Some thoughts on statecharts, 13 years later. In
Grumberg, O., editor, CAV, volume 1254 of LNCS, pages 226–231.
Springer-Verlag.

[Harel and Maoz, 2007] Harel, D. and Maoz, S. (2007). Assert and negate revisited:
Modal semantics for UML sequence diagrams. Software and System Modeling
(SoSyM). To appear. (Early version in SCESM’06, 2006, pp. 13-20).

[Harel and Marelly, 2003] Harel, D. and Marelly, R. (2003). Come, Let’s Play:
Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag.

[Klose, 2003] Klose, J. (2003). LSCs: A Graphical Formalism for the Specification of
Communication Behavior. PhD thesis, Carl von Ossietzky Universität Oldenburg.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version
2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

[Störrle, 2003] Störrle, H. (2003). Assert, negate and refinement in UML-2
interactions. In Jürjens, J., Rumpe, B., France, R., and Fernandez, E. B., editors,
CSDUML 2003, number TUM-I0323. Technische Universität München.

