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Software Design, Modelling and Analysis in UML

Lecture 21: Inheritance
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Last Lecture:

• Live Sequence Charts Semantics

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s the Liskov Substitution Principle?

• What is late/early binding?

• What is the subset, what the uplink semantics of inheritance?

• What’s the effect of inheritance on LSCs, State Machines, System States?

• Content:

• Inheritance in UML: concrete syntax

• Liskov Substitution Principle — desired semantics

• Two approaches to obtain desired semantics
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Motivations for Generalisation
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• Re-use,

• Sharing,

• Avoiding Redundancy,

• Modularisation,

• Separation of Concerns,

• Abstraction,

• Extensibility,

• . . .

→ See textbooks on object-oriented analysis, development, programming.



Inheritance: Syntax
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Abstract Syntax
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Recall: a signature (with signals) is a tuple S = (T,C, V, atr ,E ).

Now (finally): extend to

S = (T,C, V, atr ,E , F,mth ,⊳)

where F/mth are methods, analogously to attributes and

⊳ ⊆ ((C \ E )× (C \ E )) ∪ (E × E )

is a generalisation relation such that C ⊳
+ C for no C ∈ C (“acyclic”).

C ⊳ D reads as

• C is a generalisation of D,

• D is a specialisation of C,

• D inherits from C,

• D is a sub-class of C,

• C is a super-class of D,

• . . .



Reflexive, Transitive Closure of Generalisation
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Definition. Given classes C0, C1, D ∈ C , we say D inherits from
C0 via C1 if and only if there are C1

0 , . . . C
n
0 , C

1
1 , . . . C

m
1 ∈ C such

that

C0 ⊳ C1
0 ⊳ . . . Cn

0 ⊳ C1 ⊳ C1
1 ⊳ . . . Cm

1 ⊳ D.

We use ‘�’ to denote the reflexive, transitive closure of ‘⊳’.

In the following, we assume

• that all attribute (method) names are of the form

C::v, C ∈ C ∪ E (C::f, C ∈ C ),

• that we have C::v ∈ atr(C) resp. C::f ∈ mth(C) if and only if v (f)
appears in an attribute (method) compartment of C in a class diagram.

Extend Typing Rules
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Well-Typedness with Inheritance
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Recall: With extension for visibility we obtained

v(w) : τC → τ(v) 〈v : τ, ξ, expr0, PC 〉 ∈ atr(C), w : τC

v(expr1(w)) : τC2
→ τ(v) 〈v : τ, ξ, expr0, PC 〉 ∈ atr(C2),

expr1(w) : τC2
, w : τC1

, and C1 = C2 or ξ = +

Now:

v(w) : τC → τ(v) 〈v : τ, ξ, expr0, PC 〉 ∈ atr(C),
w : τC1

, τC � τC1

v(expr1(w)) : τC2
→ τ(v) 〈v : τ, ξ, expr0, PC 〉 ∈ atr(C2),

expr1(w) : τC2
, w : τC1

,
and (C1 = C2 or ξ = + or (C2 � C1 and ξ = #))

Inheritance: System States
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System States
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Wanted: a formal representation of “if C � D then D ‘is a’ C”, i.e.,

(i) D has the same attributes as C, and

(ii) C objects (identities)
can be used in any context where D objects can be used.

We’ll discuss two approaches to semantics:

• Domain-inclusion Semantics (more theoretical)

• Uplink Semantics (more technical)

Domain Inclusion Semantics
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Domain Inclusion Semantics: Idea
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Sensor
Label: String

SmokeSensor
s: Int

TempSensor
t: Float

context s1, s2 : Sensor inv : v < 0

u1 : SmokeSensor

Label = ”51.3.1”
s = 3

u2 : TempSensor

Label = ”51.3.17”
t = 19.7

Domain Inclusion Structure
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Let S = (T,C, V, atr ,E , F,mth ,⊳) be a signature.

Now a structure D

• [as before] maps types, classes, associations to domains,

• [for completeness] methods to transformers,

• [as before] indentities of instances of classes not (transitively) related by
generalisation are disjoint,

• [changed] the indentities of a super-class comprise all identities of
sub-classes, i.e.

∀C ∈ C : D(C) )
⋃

C⊳D

D(D).

Note: the old setting coincides with the special case ⊳ = ∅.



Domain Inclusion System States
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Now: a system state of S wrt. D is a type-consistent mapping

σ : D(C ) 7→ (V 7→ (D(T ) ∪ D(C0,1) ∪ D(C∗)))

that is, for all u ∈ dom(σ) ∩ D(C),

• [as before] σ(u)(v) ∈ D(τ) if v : τ , τ ∈ T or τ ∈ {C∗, C0,1}.

• [changed] dom(σ(u)) =
⋃

C0�C atr(C0),

Example:
C
x : Int

D
x : Int
y : Int

n

0, 1

Note: the old setting still coincides with the special case ⊳ = ∅.

Satisfying OCL Constraints (Domain Inclusion)
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• Let M = (C D ,OD ,SM ,I ) be a UML model, and D a structure.

• We (continue to) say M |= expr for context C inv : expr0
︸ ︷︷ ︸

=expr

∈ Inv(M) iff

∀π = (σi, εi)i∈N ∈ JMK ∀ i ∈ N ∀u ∈ dom(σi) ∩ D(C) :

IJexpr0K(σi, {self 7→ u}) = 1.

• M is (still) consistent if and only if it satisfies all constraints in Inv(M).

• Example:
C

x : Int

D

n

0, 1



Transformers (Domain Inclusion)
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• Transformers also remain the same, e.g. [VL 12, p. 18]

update(expr1, v, expr2) : (σ, ε) 7→ (σ′, ε)

with
σ′ = σ[u 7→ σ(u)[v 7→ IJexpr2K(σ)]]

where u = IJexpr1K(σ).

Inheritance and State Machines: Triggers
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• Wanted: triggers shall also be sensitive for inherited events,
sub-class shall execute super-class’ state-machine (unless overridden).

(σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′) if

• ∃u ∈ dom(σ) ∩ D(C) ∃uE ∈ D(E ) : uE ∈ ready(ε, u)

• u is stable and in state machine state s, i.e. σ(u)(stable) = 1 and σ(u)(st) = s,

• a transition is enabled, i.e.

∃ (s, F, expr , act , s′) ∈→ (SMC) : F = E ∧ IJexprK(σ̃) = 1

where σ̃ = σ[u.paramsE 7→ ue].

and

• (σ′, ε′) results from applying tact to (σ, ε) and removing uE from the ether, i.e.

(σ′′, ε′) = tact (σ̃, ε⊖ uE),

σ′ = (σ′′[u.st 7→ s′, u.stable 7→ b, u.paramsE 7→ ∅])|D(C )\{uE}

where b depends:

• If u becomes stable in s′, then b = 1. It does become stable if and only if
there is no transition without trigger enabled for u in (σ′, ε′).

• Otherwise b = 0.



Domain Inclusion and Interactions
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e

C D

E

C

C’

E

F

• Similar to satisfaction of OCL expressions above:

• An instance line stands for all instances of C (exact or inheriting).

• Satisfaction of event observation has to take inheritance
into account, too, so we have to fix, e.g.

σ, cons,Snd |=β E!
x,y

if and only if

β(x) sends an F -event to βy where E � F .

• C-instance line also binds to C ′-objects.

Uplink Semantics
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Uplink Semantics: Idea
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Sensor
Label: String

SmokeSensor
s: Int

TempSensor
t: Float

context s1, s2 : Sensor inv : v < 0

u1 : SmokeSensor

Label = ”51.3.1”
s = 3

u2 : TempSensor

Label = ”51.3.17”
t = 19.7

Uplink Semantics
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• Idea:

• Continue with the existing definition of structure, i.e. disjoint domains
for identities.

• Have an implicit association from the child to each parent part
(similar to the implicit attribute for stability).

C
x : Int D

• Apply (a different) pre-processing to make appropriate use of that
association, e.g. rewrite (C++)

x = 0;

in D to
uplinkC -> x = 0;



Pre-Processing for the Uplink Semantics
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• For each pair C ⊳ D, extend D by a (fresh) association

uplinkC : C with µ = [1, 1], ξ = +

(Exercise: public necessary?)

• Given expression v (or f) in the context of class D,

• let C be the smallest class wrt. “�” such that

• C � D, and

• C::v ∈ atr(D)

• then there exists (by definition) C ⊳ C1 ⊳ . . . ⊳ Cn ⊳ D,

• normalise v to (= replace by)

uplinkCn
-> · · · -> uplinkC1

.C::v

• If no (unique) smallest class exists,
the model is considered not well-formed; the expression is ambiguous.

Uplink Structure, System State, Typing

–
2
1
–
2
0
1
5
-0
2
-0
5
–
S
u
p
li
n
k
–

24/48

• Definition of structure remains unchanged.

• Definition of system state remains unchanged.

• Typing and transformers remain unchanged —
the preprocessing has put everything in shape.



Satisfying OCL Constraints (Uplink)
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• Let M = (C D ,OD ,SM ,I ) be a UML model, and D a structure.

• We (continue to) say

M |= expr

for
context C inv : expr0
︸ ︷︷ ︸

=expr

∈ Inv(M)

if and only if

∀π = (σi)i∈N ∈ JMK

∀ i ∈ N

∀u ∈ dom(σi) ∩ D(C) :

IJexpr0K(σi, {self 7→ u}) = 1.

• M is (still) consistent if and only if it satisfies all constraints in Inv(M).

Transformers (Uplink)
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• What has to change is the create transformer:

create(C, expr , v)

• Assume, C’s inheritance relations are as follows.

C1,1 ⊳ . . . ⊳ C1,n1
⊳ C,

. . .

Cm,1 ⊳ . . . ⊳ Cm,nm
⊳ C.

• Then, we have to

• create one fresh object for each part, e.g.

u1,1, . . . , u1,n1
, . . . , um,1, . . . , um,nm

,

• set up the uplinks recursively, e.g.

σ(u1,2)(uplinkC1,1
) = u1,1.

• And, if we had constructors, be careful with their order.



Domain Inclusion vs. Uplink Semantics
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Cast-Transformers
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• C c;

• D d;

• Identity upcast (C++):

• C∗ cp = &d; // assign address of ‘d’ to pointer ‘cp’

• Identity downcast (C++):

• D∗ dp = (D∗)cp; // assign address of ‘d’ to pointer ‘dp’

• Value upcast (C++):

• ∗c = ∗d; // copy attribute values of ‘d’ into ‘c’, or,
// more precise, the values of the C-part of ‘d’



Casts in Domain Inclusion and Uplink Semantics
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Domain Inclusion Uplink

C∗ cp

= &d;
easy: immediately compati-
ble (in underlying system state)
because &d yields an identity
from D(D) ⊂ D(C).

easy: By pre-processing,
C∗ cp = d.uplink

C
;

D∗ dp =
(D∗)cp; easy: the value of cp is in

D(D) ∩ D(C) because the
pointed-to object is a D.

Otherwise, error condition.

difficult: we need the iden-
tity of the D whose C-slice
is denoted by cp.
(See next slide.)

c = d;
bit difficult: set (for all C �
D)
(C)( · , · ) : τD ×Σ → Σ|atr(C)

(u, σ) 7→ σ(u)|atr(C)

Note: σ′ = σ[uC 7→ σ(uD)] is
not type-compatible!

easy: By pre-processing,
c = ∗(d.uplink

C
);

Identity Downcast with Uplink Semantics
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• Recall (C++): D d; C∗ cp = &d; D∗ dp = (D∗)cp;

• Problem: we need the identity of the D whose C-slice is denoted by cp.

• One technical solution:

• Give up disjointness of domains for one additional type comprising all
identities, i.e. have

all ∈ T , D(all) =
⋃

C∈C

D(C)

• In each �-minimal class have associations “mostspec” pointing to most

specialised slices, plus information of which type that slice is.

• Then downcast means, depending on the mostspec type (only finitely many
possibilities), going down and then up as necessary, e.g.

switch(mostspec type){

case C :

dp = cp -> mostspec -> uplink
Dn

-> . . . -> uplink
D1

-> uplink
D
;

. . .



Domain Inclusion vs. Uplink: Differences
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• Note: The uplink semantics views inheritance as an abbreviation:

• We only need to touch transformers (create) — and if we had constructors, we
didn’t even needed that (we could encode the recursive construction of the
upper slices by a transformation of the existing constructors.)

• So:

• Inheritance doesn’t add expressive power.

• And it also doesn’t improve conciseness soo dramatically.

As long as we’re “early binding”, that is...

Domain Inclusion vs. Uplink: Motivations

–
2
1
–
2
0
1
5
-0
2
-0
5
–
S
d
iff

–

32/48

• Exercise:

What’s the point of

• having the tedious adjustments of the theory

if it can be approached technically?

• having the tedious technical pre-processing

if it can be approached cleanly in the theory?



More Interesting: Behaviour
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Example: Behaviour of Kinds of Students
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Desired Semantics of Specialisation: Subtyping
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There is a classical description of what one expects from sub-types,
which in the OO domain is closely related to inheritance:

The principle of type substitutability [Liskov, 1988, Liskov and Wing, 1994].
(Liskov Substitution Principle (LSP).)

“If for each object o1 of type S there is an object o2 of type T such that
for all programs P defined in terms of T ,
the behavior of P is unchanged when o1 is substituted for o2

then S is a subtype of T .”

In other words: [Fischer and Wehrheim, 2000]

“An instance of the sub-type shall be usable whenever an
instance of the supertype was expected,
without a client being able to tell the difference.”

So, what’s “usable”? Who’s a “client”? And what’s a “difference”?

“...shall be usable...” for UML
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Easy: Static Typing for Attributes
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Given:

C1

x : Int
f(Int) : Int

D1

C

itsC
1

itsD1

C2

x : Int
f(Int) : Int

D2

x : Bool
f(Float) : Int

〈〈signal〉〉 E

〈〈signal〉〉 F

Wanted:

• x > 0 also well-typed for D1

• assignment itsC1 := itsD1 being well-typed

• itsC1 .x = 0, itsC1 .f(0), itsC1 ! F
being well-typed (and doing the right thing).

Approach:

• Simply define it as being well-typed,
adjust system state definition to do the right thing.

Static Typing for Methods
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C1

x : Int
f(Int) : Int

D1

C2

x : Int
f(Int) : Int

D2

x : Bool
f(Float) : Int

〈〈signal〉〉 E

〈〈signal〉〉 F

Notions (from category theory):

• invariance,

• covariance,

• contravariance.

We could call, e.g. a method, sub-type preserving, if and only if it

• accepts more general types as input (contravariant),

• provides a more specialised type as output (covariant).

This is a notion used by many programming languages — and easily type-checked.



Excursus: Late Binding of Behavioural Features
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Late Binding
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What transformer applies in what situation? (Early (compile time) binding.)

f not overridden in D

C

f() : Int

D

C0

someC

someD

f overridden in D

C

f() : Int

D

f() : Int

value
of
someC/
someD

someC -> f() C::f() C::f() u1

someD -> f() C::f() D::f() u2

someC -> f() C::f() D::f() u2

What one could want is something different: (Late binding.)

someC -> f() C::f() C::f() u1

someD -> f() D::f() D::f() u2

someC -> f() C::f() C::f() u2



Late Binding in the Standard and in Prog. Lang.
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• In the standard, Section 11.3.10, “CallOperationAction”:

“Semantic Variation Points

The mechanism for determining the method to be invoked as a
result of a call operation is unspecified.” [OMG, 2007b, 247]

• In C++,

• methods are by default “(early) compile time binding”,

• can be declared to be “late binding” by keyword “virtual”,

• the declaration applies to all inheriting classes.

• In Java,

• methods are “late binding”;

• there are patterns to imitate the effect of “early binding”

Exercise: What could be the rationale of the designers of C++?

Note: late binding typically applies only to methods, not to attributes.
(But: getter/setter methods have been invented recently.)

Back to the Main Track: “...tell the difference...” for UML

–
2
1
–
2
0
1
5
-0
2
-0
5
–
m
a
in

–

42/48



With Only Early Binding...
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• ...we’re done (if we realise it correctly in the framework).

• Then

• if we’re calling method f of an object u,

• which is an instance of D with C � D

• via a C-link,

• then we (by definition) only see and change the C-part.

• We cannot tell whether u is a C or an D instance.

So we immediately also have behavioural/dynamic subtyping.

Difficult: Dynamic Subtyping
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C

f(Int) : Int

D

f(Int) : Int• C::f and D::f are type compatible,
but D is not necessarily a sub-type of C.

• Examples: (C++)

int C::f(int) {
return 0;

};
vs.

int D::f(int) {
return 1;

};

int C::f(int) {
return (rand() %

2);

};

vs.
int D::f(int x) {

return (x % 2);

};



Sub-Typing Principles Cont’d
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• In the standard, Section 7.3.36, “Operation”:

“Semantic Variation Points

[...] When operations are redefined in a specialization, rules regarding
invariance, covariance, or contravariance of types and preconditions
determine whether the specialized classifier is substitutable for its more
general parent. Such rules constitute semantic variation points with respect to
redefinition of operations.” [OMG, 2007a, 106]

• So, better: call a method sub-type preserving, if and only if it

(i) accepts more input values (contravariant),

(ii) on the old values, has fewer behaviour (covariant).

Note: This (ii) is no longer a matter of simple type-checking!

• And not necessarily the end of the story:

• One could, e.g. want to consider execution time.

• Or, like [Fischer and Wehrheim, 2000], relax to “fewer observable behaviour”,
thus admitting the sub-type to do more work on inputs.

Note: “testing” differences depends on the granularity of the semantics.

• Related: “has a weaker pre-condition,” (contravariant),
“has a stronger post-condition.” (covariant).

Ensuring Sub-Typing for State Machines
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C

D

• In the CASE tool we consider, multiple classes
in an inheritance hierarchy can have state machines.

• But the state machine of a sub-class cannot be drawn from scratch.

• Instead, the state machine of a sub-class can only be obtained by
applying actions from a restricted set to a copy of the original one.

Roughly (cf. User Guide, p. 760, for details),

• add things into (hierarchical) states,

• add more states,

• attach a transition to a different target (limited).

• They ensure, that the sub-class is a behavioural sub-type of the super
class. (But method implementations can still destroy that property.)

• Technically, the idea is that (by late binding) only the state machine of the most
specialised classes are running.

By knowledge of the framework, the (code for) state machines of super-classes is still
accessible — but using it is hardly a good idea...
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