
–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 22: Meta-Modelling

2015-02-10

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
p
re
li
m

–

2/63

Last Lecture:

• Inheritance in UML: concrete syntax

• Liskov Substitution Principle — desired semantics

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s the Liskov Substitution Principle?

• What is late/early binding?

• What is the subset, what the uplink semantics of inheritance?

• What’s the effect of inheritance on LSCs, State Machines, System States?

• What’s the idea of Meta-Modelling?

• Content:

• The UML Meta Model

• Wrapup & Questions



Meta-Modelling: Idea and Example

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

3/63

Meta-Modelling: Why and What

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
m
m

–

4/63

• Meta-Modelling is one major prerequisite for understanding

• the standard documents [OMG, 2007a, OMG, 2007b], and

• the MDA ideas of the OMG.

• The idea is simple:

• if a modelling language is about modelling things,

• and if UML models are and comprise things,

• then why not model those in a modelling language?

• In other words:

Why not have a model MU such that

• the set of legal instances of MU

is

• the set of well-formed (!) UML models.



Meta-Modelling: Example

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
m
m

–

5/63

• For example, let’s consider a class.

• A class has (on a superficial level)

• a name,

• any number of attributes,

• any number of behavioural features.

Each of the latter two has

• a name and

• a visibility.

Behavioural features in addition have

• a boolean attribute isQuery,

• any number of parameters,

• a return type.

• Can we model this (in UML, for a start)?

UML Meta-Model: Extract from UML 2.0 Standard

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
m
m

–

6/63

Comment Element

NamedElement
name
visibility

Type TypedElement RedefElement

Feature Namespace

Classifier StructFeature BehavFeature

Class
Property

Operation Parameter

�

∗
redefdElem

∗

type

0..1

�
�
0..1

∗

�
0..1 ∗

type



Meta-Modelling: Principle

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

7/63

Modelling vs. Meta-Modelling

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
p
ri
n
ci
p
le

–

8/63

Class
name : Str

Property
name : Str

Type
name : Str

C
v : Z

:Class

name = C

:Property

name = v

:Type

name = Z

S = ({Z},
{C}, {v},
{C 7→ v}),
D  ΣD

S

:C

v = 0

instance-of

σ = {u 7→
{v 7→ 0}}

∈

Meta-
Model
(M2)

Model
(M1)

Instance
(M0)

• So, if we have a meta model MU of UML, then the
set of UML models is the set of instances of MU .

• A UML model M can be represented as an object
diagram (or system state) wrt. the meta-model MU .

• Other view: An object diagram wrt. meta-model
MU can (alternatively) be rendered as the UML
model M.



Well-Formedness as Constraints in the Meta-Model

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
p
ri
n
ci
p
le

–

9/63

• The set of well-formed UML models can be defined as the set of object
diagrams satisfying all constraints of the meta-model.

For example,

“[2] Generalization hierarchies must be directed and acyclical. A classifier
cannot be both a transitively general and transitively specific classifier
of the same classifier.

not self . allParents() -> includes(self)” [OMG, 2007b, 53]

• The other way round:

Given a UML model M, unfold it into an object diagram O1 wrt. MU .
If O1 is a valid object diagram of MU (i.e. satisfies all invariants from
Inv(MU )), then M is a well-formed UML model.

That is, if we have an object diagram validity checker for of the
meta-modelling language, then we have a well-formedness checker for
UML models.

The UML 2.x Standard Revisited

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

10/63



Claim: Extract from UML 2.0 Standard

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
u
m
lm

m
–

11/63

Comment Element

NamedElement
name
visibility

Type TypedElement RedefElement

Feature Namespace

Classifier StructFeature BehavFeature

Class
Property

Operation Parameter

�

∗
redefdElem

∗

type

0..1

�
�
0..1

∗

�
0..1 ∗

type

Classes [OMG, 2007b, 32]

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
u
m
lm

m
–

12/63

Figure 7.12 - Classes diagram of the Kernel package

�

StructuralFeature

Property

isDerived : Boolean
isReadOnly : Boolean
isDerivedUnion : Boolean
/default : String
aggregation : AggregationKind
/IsComposite : Boolean

Classifier

Relationship Classifier

Association

isDerived : Boolean

Type

<<enumeration>>
AggregationKind

none
shared
composite

ValueSpecification

{redefines general}
+ /superClass

+subsettedProperty

{subsets classifier,
subsets namespace,
subsets featuringClassifier}
+ class

+ownedAttribute

Class

{subsets attribute,
subsets ownedMember,
ordered}

{subsets redefinedElement}
+ redefinedProperty

+/opposite

0..1

0..1

Classifier

Operation

{subsets namespace,
subsets redefinitionContext}
+class

{subsets ownedMember, ordered}
+nestedClassifier

0..1
*

{subsets redefinitionContext,
subsets namespace,
subsets featuringClassifier}
+class

{subsets feature, subsets
ownedMember, ordered}
+ownedOperation

0..1 *

0..1
*

*
* *

*

*

*

{subsets member, ordered}
+memberEnd +association

2..* 0..1

{subsets memberEnd,
subsets feature, subsets
ownedMember, ordered}
+ownedEnd

{subsets association,
subsets namespace,

subsets featuringClassifier}
+owningAssociation

0..1*

{subsets owner}
+navigableOwnedEnd

* 0..1

{subsets owner}
+owningProperty (subsets ownedElement}

+defaultValue

0..1 0..1

{readOnly, odered}
+/endType

*

1..*



Operations [OMG, 2007b, 31]

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
u
m
lm

m
–

13/63

Figure 7.11 - Operations diagram of the Kernel package

Operations [OMG, 2007b, 30]

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
u
m
lm

m
–

14/63

Figure 7.10 - Features diagram of the Kernel package



Classifiers [OMG, 2007b, 29]

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
u
m
lm

m
–

15/63

 

Figure 7.9 - Classifiers diagram of the Kernel package

Namespaces [OMG, 2007b, 26]

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
u
m
lm

m
–

16/63

Figure 7.4 - Namespaces diagram of the Kernel package

PackageableElement

visibility : VisibilityKind

Namespace

{readOnly, subsets member}
+importedMember

*

Element

NamedElement

Name : String 
visibility : VisibilityKind 

[0..1]
[0..1]
[0..1]/qualifiedName : String

<<enumeration>>
VisibilityKind

public
private
protected
package

NamedElement

DirectedRelationship

ElementImport

visibility : VisibilityKind
alias : String [0..1]

Package

PackageImport

DirectedRelationship

PackageableElement

visibility : VisibilityKind

{readOnly, union,
subsets owner}
+/namespace

*

{readOnly, union}
+/member

+/ownedMember

{readOnly, union, subsets 
member, subsets ownedElement}

0..1

*
*

{subsets source, subsets owner}
+ importingNamespace

{subsets target}
+ importedElement

*

1 11 +elementImport

{subsets
ownedElement}

{subsets source,
subsets owner}
+importingNamespace {subsets target}

+ importedPackage

+packageImport
{subsets ownedElement}

*

* 1
1



Root Diagram [OMG, 2007b, 25]

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
u
m
lm

m
–

17/63

Figure 7.3 - Root diagram of the Kernel package

Interesting: Declaration/Definition [OMG, 2007b, 424]

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
u
m
lm

m
–

18/63

Figure 13.6 - Common Behavior



UML Architecture [OMG, 2003, 8]

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
w
h
o
le

–

19/63

• Meta-modelling has already
been used for UML 1.x.

• For UML 2.0, the request
for proposals (RFP) asked
for a separation of concerns:

Infrastructure and
Superstructure.

• One reason:
sharing with MOF (see
later) and, e.g., CWM.

Core

UML

MOF

CWM

Profiles

Figure 0-1 Overview of architecture

 

 

 

Class, Object 
Action, Filmstrip 
Package, Snapshot 

Class, State,  
Transition, 
Flow, … 

Superstructure 
(concrete syntax) ClassBox, StateBox, 

TransitionLine, … 
 

Superstructure 
(abstract syntax) 

Infrastructure 
(with semantics) 

Diagram 
Interchange 

Node, Edge… 
 
 

UML Superstructure Packages [OMG, 2007a, 15]

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
w
h
o
le

–

20/63

UML 2.1.2: 

Figure 7.5 - The top-level package structure of the UML 2.1.1 Superstructure

CommonBehaviors

UseCases

Classes

StateMachines Interactions

CompositeStructures

Components

Deployments

AuxiliaryConstructsActivities

Actions



Reading the Standard

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
re
a
d
in
g
–

21/63
UML Superstructure Specification, v2.1.2        i

Table of Contents

1. Scope  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Language Units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Compliance Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Meaning and Types of Compliance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Compliance Level Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Normative References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4. Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5. Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6. Additional Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.1 Changes to Adopted OMG Specifications  . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.2 Architectural Alignment and MDA Support . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.3 On the Run-Time Semantics of UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3.1 The Basic Premises ................................................................................................ 11
6.3.2 The Semantics Architecture .................................................................................... 11
6.3.3 The Basic Causality Model ..................................................................................... 12
6.3.4 Semantics Descriptions in the Specification ........................................................... 13

6.4 The UML Metamodel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
6.4.1 Models and What They Model ................................................................................ 13
6.4.2 Semantic Levels and Naming ................................................................................. 14

6.5 How to Read this Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.5.1 Specification format ................................................................................................ 15
6.5.2 Diagram format ....................................................................................................... 18

6.6 Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Part I - Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7. Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Reading the Standard

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
re
a
d
in
g
–

21/63
UML Superstructure Specification, v2.1.2        i

Table of Contents

1. Scope  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Language Units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Compliance Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Meaning and Types of Compliance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Compliance Level Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Normative References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4. Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5. Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6. Additional Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.1 Changes to Adopted OMG Specifications  . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.2 Architectural Alignment and MDA Support . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.3 On the Run-Time Semantics of UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3.1 The Basic Premises ................................................................................................ 11
6.3.2 The Semantics Architecture .................................................................................... 11
6.3.3 The Basic Causality Model ..................................................................................... 12
6.3.4 Semantics Descriptions in the Specification ........................................................... 13

6.4 The UML Metamodel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
6.4.1 Models and What They Model ................................................................................ 13
6.4.2 Semantic Levels and Naming ................................................................................. 14

6.5 How to Read this Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.5.1 Specification format ................................................................................................ 15
6.5.2 Diagram format ....................................................................................................... 18

6.6 Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Part I - Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7. Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ii                 UML Superstructure Specification, v2.1.2

7.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

7.2 Abstract Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

7.3 Class Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
7.3.1 Abstraction (from Dependencies) ........................................................................... 38
7.3.2 AggregationKind (from Kernel) ............................................................................... 38
7.3.3 Association (from Kernel) ....................................................................................... 39
7.3.4 AssociationClass (from AssociationClasses) .......................................................... 47
7.3.5 BehavioralFeature (from Kernel) ............................................................................ 48
7.3.6 BehavioredClassifier (from Interfaces) ................................................................... 49
7.3.7 Class (from Kernel) ................................................................................................. 49
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes) ............................................ 52
7.3.9 Comment (from Kernel) .......................................................................................... 57
7.3.10 Constraint (from Kernel) ....................................................................................... 58
7.3.11 DataType (from Kernel) ........................................................................................ 60
7.3.12 Dependency (from Dependencies) ....................................................................... 62
7.3.13 DirectedRelationship (from Kernel) ....................................................................... 63
7.3.14 Element (from Kernel) ........................................................................................... 64
7.3.15 ElementImport (from Kernel) ................................................................................ 65
7.3.16 Enumeration (from Kernel) ................................................................................... 67
7.3.17 EnumerationLiteral (from Kernel) .......................................................................... 68
7.3.18 Expression (from Kernel) ...................................................................................... 69
7.3.19 Feature (from Kernel) ........................................................................................... 70
7.3.20 Generalization (from Kernel, PowerTypes) ........................................................... 71
7.3.21 GeneralizationSet (from PowerTypes) .................................................................. 75
7.3.22 InstanceSpecification (from Kernel) ...................................................................... 82
7.3.23 InstanceValue (from Kernel) ................................................................................. 85
7.3.24 Interface (from Interfaces) .................................................................................... 86
7.3.25 InterfaceRealization (from Interfaces) ................................................................... 89
7.3.26 LiteralBoolean (from Kernel) ................................................................................. 89
7.3.27 LiteralInteger (from Kernel) ................................................................................... 90
7.3.28 LiteralNull (from Kernel) ........................................................................................ 91
7.3.29 LiteralSpecification (from Kernel) .......................................................................... 92
7.3.30 LiteralString (from Kernel) ..................................................................................... 92
7.3.31 LiteralUnlimitedNatural (from Kernel) ................................................................... 93
7.3.32 MultiplicityElement (from Kernel) .......................................................................... 94
7.3.33 NamedElement (from Kernel, Dependencies) ...................................................... 97
7.3.34 Namespace (from Kernel) ..................................................................................... 99
7.3.35 OpaqueExpression (from Kernel) ....................................................................... 101
7.3.36 Operation (from Kernel, Interfaces) .................................................................... 103
7.3.37 Package (from Kernel) ........................................................................................ 107
7.3.38 PackageableElement (from Kernel) .................................................................... 109
7.3.39 PackageImport (from Kernel) .............................................................................. 110
7.3.40 PackageMerge (from Kernel) .............................................................................. 111
7.3.41 Parameter (from Kernel, AssociationClasses) .................................................... 120
7.3.42 ParameterDirectionKind (from Kernel) ................................................................ 122
7.3.43 PrimitiveType (from Kernel) ................................................................................ 122
7.3.44 Property (from Kernel, AssociationClasses) ....................................................... 123
7.3.45 Realization (from Dependencies) ....................................................................... 129
7.3.46 RedefinableElement (from Kernel) ..................................................................... 130



Reading the Standard

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
re
a
d
in
g
–

21/63
UML Superstructure Specification, v2.1.2        i

Table of Contents

1. Scope  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Language Units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Compliance Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Meaning and Types of Compliance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Compliance Level Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Normative References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4. Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5. Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6. Additional Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.1 Changes to Adopted OMG Specifications  . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.2 Architectural Alignment and MDA Support . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.3 On the Run-Time Semantics of UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3.1 The Basic Premises ................................................................................................ 11
6.3.2 The Semantics Architecture .................................................................................... 11
6.3.3 The Basic Causality Model ..................................................................................... 12
6.3.4 Semantics Descriptions in the Specification ........................................................... 13

6.4 The UML Metamodel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
6.4.1 Models and What They Model ................................................................................ 13
6.4.2 Semantic Levels and Naming ................................................................................. 14

6.5 How to Read this Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.5.1 Specification format ................................................................................................ 15
6.5.2 Diagram format ....................................................................................................... 18

6.6 Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Part I - Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7. Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ii                 UML Superstructure Specification, v2.1.2

7.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

7.2 Abstract Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

7.3 Class Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
7.3.1 Abstraction (from Dependencies) ........................................................................... 38
7.3.2 AggregationKind (from Kernel) ............................................................................... 38
7.3.3 Association (from Kernel) ....................................................................................... 39
7.3.4 AssociationClass (from AssociationClasses) .......................................................... 47
7.3.5 BehavioralFeature (from Kernel) ............................................................................ 48
7.3.6 BehavioredClassifier (from Interfaces) ................................................................... 49
7.3.7 Class (from Kernel) ................................................................................................. 49
7.3.8 Classifier (from Kernel, Dependencies, PowerTypes) ............................................ 52
7.3.9 Comment (from Kernel) .......................................................................................... 57
7.3.10 Constraint (from Kernel) ....................................................................................... 58
7.3.11 DataType (from Kernel) ........................................................................................ 60
7.3.12 Dependency (from Dependencies) ....................................................................... 62
7.3.13 DirectedRelationship (from Kernel) ....................................................................... 63
7.3.14 Element (from Kernel) ........................................................................................... 64
7.3.15 ElementImport (from Kernel) ................................................................................ 65
7.3.16 Enumeration (from Kernel) ................................................................................... 67
7.3.17 EnumerationLiteral (from Kernel) .......................................................................... 68
7.3.18 Expression (from Kernel) ...................................................................................... 69
7.3.19 Feature (from Kernel) ........................................................................................... 70
7.3.20 Generalization (from Kernel, PowerTypes) ........................................................... 71
7.3.21 GeneralizationSet (from PowerTypes) .................................................................. 75
7.3.22 InstanceSpecification (from Kernel) ...................................................................... 82
7.3.23 InstanceValue (from Kernel) ................................................................................. 85
7.3.24 Interface (from Interfaces) .................................................................................... 86
7.3.25 InterfaceRealization (from Interfaces) ................................................................... 89
7.3.26 LiteralBoolean (from Kernel) ................................................................................. 89
7.3.27 LiteralInteger (from Kernel) ................................................................................... 90
7.3.28 LiteralNull (from Kernel) ........................................................................................ 91
7.3.29 LiteralSpecification (from Kernel) .......................................................................... 92
7.3.30 LiteralString (from Kernel) ..................................................................................... 92
7.3.31 LiteralUnlimitedNatural (from Kernel) ................................................................... 93
7.3.32 MultiplicityElement (from Kernel) .......................................................................... 94
7.3.33 NamedElement (from Kernel, Dependencies) ...................................................... 97
7.3.34 Namespace (from Kernel) ..................................................................................... 99
7.3.35 OpaqueExpression (from Kernel) ....................................................................... 101
7.3.36 Operation (from Kernel, Interfaces) .................................................................... 103
7.3.37 Package (from Kernel) ........................................................................................ 107
7.3.38 PackageableElement (from Kernel) .................................................................... 109
7.3.39 PackageImport (from Kernel) .............................................................................. 110
7.3.40 PackageMerge (from Kernel) .............................................................................. 111
7.3.41 Parameter (from Kernel, AssociationClasses) .................................................... 120
7.3.42 ParameterDirectionKind (from Kernel) ................................................................ 122
7.3.43 PrimitiveType (from Kernel) ................................................................................ 122
7.3.44 Property (from Kernel, AssociationClasses) ....................................................... 123
7.3.45 Realization (from Dependencies) ....................................................................... 129
7.3.46 RedefinableElement (from Kernel) ..................................................................... 130

UML Superstructure Specification, v2.1.2        iii

7.3.47 Relationship (from Kernel) .................................................................................. 132
7.3.48 Slot (from Kernel) ................................................................................................ 132
7.3.49 StructuralFeature (from Kernel) .......................................................................... 133
7.3.50 Substitution (from Dependencies) ...................................................................... 134
7.3.51 Type (from Kernel) .............................................................................................. 135
7.3.52 TypedElement (from Kernel) ............................................................................... 136
7.3.53 Usage (from Dependencies) ............................................................................... 137
7.3.54 ValueSpecification (from Kernel) ........................................................................ 137
7.3.55 VisibilityKind (from Kernel) .................................................................................. 139

7.4 Diagrams  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8. Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.3 Class Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.3.1 Component (from BasicComponents, PackagingComponents) ........................... 146
8.3.2 Connector (from BasicComponents) .................................................................... 154
8.3.3 ConnectorKind (from BasicComponents) ............................................................. 157
8.3.4 ComponentRealization (from BasicComponents) ................................................. 157

8.4 Diagrams  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9. Composite Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.2 Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.3 Class Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.3.1 Class (from StructuredClasses) ............................................................................ 166
9.3.2 Classifier (from Collaborations) ............................................................................ 167
9.3.3 Collaboration (from Collaborations) ...................................................................... 168
9.3.4 CollaborationUse (from Collaborations) ................................................................ 171
9.3.5 ConnectableElement (from InternalStructures) .................................................... 174
9.3.6 Connector (from InternalStructures) ..................................................................... 174
9.3.7 ConnectorEnd (from InternalStructures, Ports) .................................................... 176
9.3.8 EncapsulatedClassifier (from Ports) ..................................................................... 178
9.3.9 InvocationAction (from InvocationActions) ............................................................ 178
9.3.10 Parameter (from Collaborations) ........................................................................ 179
9.3.11 Port (from Ports) ................................................................................................. 179
9.3.12 Property (from InternalStructures) ...................................................................... 183
9.3.13 StructuredClassifier (from InternalStructures) .................................................... 186
9.3.14 Trigger (from InvocationActions) ......................................................................... 190
9.3.15 Variable (from StructuredActivities) .................................................................... 191

9.4 Diagrams  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10. Deployments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Reading the Standard Cont’d

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
re
a
d
in
g
–

22/63

52                 UML Superstructure Specification, v2.1.2

Figure 7.29 - Class notation: attributes and operations grouped according to visibility

7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)

A classifier is a classification of instances, it describes a set of instances that have features in common. 

Generalizations

• “Namespace (from Kernel)” on page 99

• “RedefinableElement (from Kernel)” on page 130

• “Type (from Kernel)” on page 135

Description

A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to 
other classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.

Attributes

• isAbstract: Boolean �

If true, the Classifier does not provide a complete declaration and can typically not be instantiated. An abstract�
classifier is intended to be used by other classifiers (e.g., as the target of general metarelationships or generalization�
relationships). Default value is false. 

Associations

• /attribute: Property [*] �

Refers to all of the Properties that are direct (i.e., not inherited or imported) attributes of the classifier. Subsets�
Classifier::feature and is a derived union.

• / feature : Feature [*] �

Specifies each feature defined in the classifier. Subsets Namespace::member. This is a derived union.

• / general : Classifier[*] �

Specifies the general Classifiers for this Classifier. This is derived.

Window

public
  size: Area = (100, 100)
  defaultSize: Rectangle
protected
  visibility: Boolean = true
private
  xWin: XWindow
public
  display()
  hide()
private
  attachX(xWin: XWindow)

 Element::ow

 Red

 Element::ownedElement



Reading the Standard Cont’d

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
re
a
d
in
g
–

22/63

52                 UML Superstructure Specification, v2.1.2

Figure 7.29 - Class notation: attributes and operations grouped according to visibility

7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)

A classifier is a classification of instances, it describes a set of instances that have features in common. 

Generalizations

• “Namespace (from Kernel)” on page 99

• “RedefinableElement (from Kernel)” on page 130

• “Type (from Kernel)” on page 135

Description

A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to 
other classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.

Attributes

• isAbstract: Boolean �

If true, the Classifier does not provide a complete declaration and can typically not be instantiated. An abstract�
classifier is intended to be used by other classifiers (e.g., as the target of general metarelationships or generalization�
relationships). Default value is false. 

Associations

• /attribute: Property [*] �

Refers to all of the Properties that are direct (i.e., not inherited or imported) attributes of the classifier. Subsets�
Classifier::feature and is a derived union.

• / feature : Feature [*] �

Specifies each feature defined in the classifier. Subsets Namespace::member. This is a derived union.

• / general : Classifier[*] �

Specifies the general Classifiers for this Classifier. This is derived.

Window

public
  size: Area = (100, 100)
  defaultSize: Rectangle
protected
  visibility: Boolean = true
private
  xWin: XWindow
public
  display()
  hide()
private
  attachX(xWin: XWindow)

UML Superstructure Specification, v2.1.2        53

• generalization: Generalization[*] �
Specifies the Generalization relationships for this Classifier. These Generalizations navigate to more general�
classifiers in the generalization hierarchy. Subsets Element::ownedElement

• / inheritedMember: NamedElement[*] �

Specifies all elements inherited by this classifier from the general classifiers. Subsets Namespace::member. This is�
derived.

• redefinedClassifier: Classifier [*] �

References the Classifiers that are redefined by this Classifier. Subsets RedefinableElement::redefinedElement

Package Dependencies 

• substitution : Substitution �

References the substitutions that are owned by this Classifier. Subsets Element::ownedElement  and�
NamedElement::clientDependency.)

Package PowerTypes 

• powertypeExtent : GeneralizationSet�
Designates the GeneralizationSet of which the associated Classifier is a power type.

Constraints

[1]  The general classifiers are the classifiers referenced by the generalization relationships.

general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier cannot be both a transitively general and 
transitively specific classifier of the same classifier.

not self.allParents()->includes(self)

[3] A classifier may only specialize classifiers of a valid type.

self.parents()->forAll(c | self.maySpecializeType(c))

[4] The inheritedMember association is derived by inheriting the inheritable members of the parents.

self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Package PowerTypes 

[5] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the 
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of 
itself nor may its instances also be its subclasses.

Additional Operations

[1]  The query allFeatures() gives all of the features in the namespace of the classifier. In general, through mechanisms such as 
inheritance, this will be a larger set than feature.

Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclIsKindOf(Feature))

[2] The query parents() gives all of the immediate ancestors of a generalized Classifier.

Classifier::parents(): Set(Classifier);

parents = generalization.general�
�

�

Reading the Standard Cont’d

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
re
a
d
in
g
–

22/63

52                 UML Superstructure Specification, v2.1.2

Figure 7.29 - Class notation: attributes and operations grouped according to visibility

7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)

A classifier is a classification of instances, it describes a set of instances that have features in common. 

Generalizations

• “Namespace (from Kernel)” on page 99

• “RedefinableElement (from Kernel)” on page 130

• “Type (from Kernel)” on page 135

Description

A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to 
other classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.

Attributes

• isAbstract: Boolean �

If true, the Classifier does not provide a complete declaration and can typically not be instantiated. An abstract�
classifier is intended to be used by other classifiers (e.g., as the target of general metarelationships or generalization�
relationships). Default value is false. 

Associations

• /attribute: Property [*] �

Refers to all of the Properties that are direct (i.e., not inherited or imported) attributes of the classifier. Subsets�
Classifier::feature and is a derived union.

• / feature : Feature [*] �

Specifies each feature defined in the classifier. Subsets Namespace::member. This is a derived union.

• / general : Classifier[*] �

Specifies the general Classifiers for this Classifier. This is derived.

Window

public
  size: Area = (100, 100)
  defaultSize: Rectangle
protected
  visibility: Boolean = true
private
  xWin: XWindow
public
  display()
  hide()
private
  attachX(xWin: XWindow)

UML Superstructure Specification, v2.1.2        53

• generalization: Generalization[*] �
Specifies the Generalization relationships for this Classifier. These Generalizations navigate to more general�
classifiers in the generalization hierarchy. Subsets Element::ownedElement

• / inheritedMember: NamedElement[*] �

Specifies all elements inherited by this classifier from the general classifiers. Subsets Namespace::member. This is�
derived.

• redefinedClassifier: Classifier [*] �

References the Classifiers that are redefined by this Classifier. Subsets RedefinableElement::redefinedElement

Package Dependencies 

• substitution : Substitution �

References the substitutions that are owned by this Classifier. Subsets Element::ownedElement  and�
NamedElement::clientDependency.)

Package PowerTypes 

• powertypeExtent : GeneralizationSet�
Designates the GeneralizationSet of which the associated Classifier is a power type.

Constraints

[1]  The general classifiers are the classifiers referenced by the generalization relationships.

general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier cannot be both a transitively general and 
transitively specific classifier of the same classifier.

not self.allParents()->includes(self)

[3] A classifier may only specialize classifiers of a valid type.

self.parents()->forAll(c | self.maySpecializeType(c))

[4] The inheritedMember association is derived by inheriting the inheritable members of the parents.

self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Package PowerTypes 

[5] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the 
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of 
itself nor may its instances also be its subclasses.

Additional Operations

[1]  The query allFeatures() gives all of the features in the namespace of the classifier. In general, through mechanisms such as 
inheritance, this will be a larger set than feature.

Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclIsKindOf(Feature))

[2] The query parents() gives all of the immediate ancestors of a generalized Classifier.

Classifier::parents(): Set(Classifier);

parents = generalization.general�
�

�

54                 UML Superstructure Specification, v2.1.2

[3] The query allParents() gives all of the direct and indirect ancestors of a generalized Classifier.

Classifier::allParents(): Set(Classifier);

allParents = self.parents()->union(self.parents()->collect(p | p.allParents())

[4] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants, 
subject to whatever visibility restrictions apply.

Classifier::inheritableMembers(c: Classifier): Set(NamedElement);

pre: c.allParents()->includes(self)

inheritableMembers = member->select(m | c.hasVisibilityOf(m))

[5] The query hasVisibilityOf() determines whether a named element is visible in the classifier. By default all are visible. It is 
only called when the argument is something owned by a parent.

Classifier::hasVisibilityOf(n: NamedElement) : Boolean;

pre: self.allParents()->collect(c | c.member)->includes(n)

if (self.inheritedMember->includes(n)) then�
hasVisibilityOf = (n.visibility <> #private)�

else

hasVisibilityOf = true

[6] The query conformsTo() gives true for a classifier that defines a type that conforms to another. This is used, for example, 
in the specification of signature conformance for operations.

Classifier::conformsTo(other: Classifier): Boolean;

conformsTo = (self=other) or (self.allParents()->includes(other))

[7] The query inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It is intended 
to be redefined in circumstances where inheritance is affected by redefinition.

Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);

inherit = inhs

[8] The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of 
the specified type. By default a classifier may specialize classifiers of the same or a more general type. It is intended to be 
redefined by classifiers that have different specialization constraints.

Classifier::maySpecializeType(c : Classifier) : Boolean;

maySpecializeType = self.oclIsKindOf(c.oclType)

Semantics

A classifier is a classification of instances according to their features.

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is 
also an (indirect) instance of each of the general Classifiers. Therefore, features specified for instances of the general 
classifier are implicitly specified for instances of the specific classifier. Any constraint applying to instances of the 
general classifier also applies to instances of the specific classifier.

The specific semantics of how generalization affects each concrete subtype of Classifier varies. All instances of a 
classifier have values corresponding to the classifier’s attributes. 

A Classifier defines a type. Type conformance between generalizable Classifiers is defined so that a Classifier conforms 
to itself and to all of its ancestors in the generalization hierarchy.



Reading the Standard Cont’d

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
re
a
d
in
g
–

22/63

52                 UML Superstructure Specification, v2.1.2

Figure 7.29 - Class notation: attributes and operations grouped according to visibility

7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)

A classifier is a classification of instances, it describes a set of instances that have features in common. 

Generalizations

• “Namespace (from Kernel)” on page 99

• “RedefinableElement (from Kernel)” on page 130

• “Type (from Kernel)” on page 135

Description

A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to 
other classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.

Attributes

• isAbstract: Boolean �

If true, the Classifier does not provide a complete declaration and can typically not be instantiated. An abstract�
classifier is intended to be used by other classifiers (e.g., as the target of general metarelationships or generalization�
relationships). Default value is false. 

Associations

• /attribute: Property [*] �

Refers to all of the Properties that are direct (i.e., not inherited or imported) attributes of the classifier. Subsets�
Classifier::feature and is a derived union.

• / feature : Feature [*] �

Specifies each feature defined in the classifier. Subsets Namespace::member. This is a derived union.

• / general : Classifier[*] �

Specifies the general Classifiers for this Classifier. This is derived.

Window

public
  size: Area = (100, 100)
  defaultSize: Rectangle
protected
  visibility: Boolean = true
private
  xWin: XWindow
public
  display()
  hide()
private
  attachX(xWin: XWindow)

UML Superstructure Specification, v2.1.2        53

• generalization: Generalization[*] �
Specifies the Generalization relationships for this Classifier. These Generalizations navigate to more general�
classifiers in the generalization hierarchy. Subsets Element::ownedElement

• / inheritedMember: NamedElement[*] �

Specifies all elements inherited by this classifier from the general classifiers. Subsets Namespace::member. This is�
derived.

• redefinedClassifier: Classifier [*] �

References the Classifiers that are redefined by this Classifier. Subsets RedefinableElement::redefinedElement

Package Dependencies 

• substitution : Substitution �

References the substitutions that are owned by this Classifier. Subsets Element::ownedElement  and�
NamedElement::clientDependency.)

Package PowerTypes 

• powertypeExtent : GeneralizationSet�
Designates the GeneralizationSet of which the associated Classifier is a power type.

Constraints

[1]  The general classifiers are the classifiers referenced by the generalization relationships.

general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier cannot be both a transitively general and 
transitively specific classifier of the same classifier.

not self.allParents()->includes(self)

[3] A classifier may only specialize classifiers of a valid type.

self.parents()->forAll(c | self.maySpecializeType(c))

[4] The inheritedMember association is derived by inheriting the inheritable members of the parents.

self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Package PowerTypes 

[5] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the 
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of 
itself nor may its instances also be its subclasses.

Additional Operations

[1]  The query allFeatures() gives all of the features in the namespace of the classifier. In general, through mechanisms such as 
inheritance, this will be a larger set than feature.

Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclIsKindOf(Feature))

[2] The query parents() gives all of the immediate ancestors of a generalized Classifier.

Classifier::parents(): Set(Classifier);

parents = generalization.general�
�

�

54                 UML Superstructure Specification, v2.1.2

[3] The query allParents() gives all of the direct and indirect ancestors of a generalized Classifier.

Classifier::allParents(): Set(Classifier);

allParents = self.parents()->union(self.parents()->collect(p | p.allParents())

[4] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants, 
subject to whatever visibility restrictions apply.

Classifier::inheritableMembers(c: Classifier): Set(NamedElement);

pre: c.allParents()->includes(self)

inheritableMembers = member->select(m | c.hasVisibilityOf(m))

[5] The query hasVisibilityOf() determines whether a named element is visible in the classifier. By default all are visible. It is 
only called when the argument is something owned by a parent.

Classifier::hasVisibilityOf(n: NamedElement) : Boolean;

pre: self.allParents()->collect(c | c.member)->includes(n)

if (self.inheritedMember->includes(n)) then�
hasVisibilityOf = (n.visibility <> #private)�

else

hasVisibilityOf = true

[6] The query conformsTo() gives true for a classifier that defines a type that conforms to another. This is used, for example, 
in the specification of signature conformance for operations.

Classifier::conformsTo(other: Classifier): Boolean;

conformsTo = (self=other) or (self.allParents()->includes(other))

[7] The query inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It is intended 
to be redefined in circumstances where inheritance is affected by redefinition.

Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);

inherit = inhs

[8] The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of 
the specified type. By default a classifier may specialize classifiers of the same or a more general type. It is intended to be 
redefined by classifiers that have different specialization constraints.

Classifier::maySpecializeType(c : Classifier) : Boolean;

maySpecializeType = self.oclIsKindOf(c.oclType)

Semantics

A classifier is a classification of instances according to their features.

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is 
also an (indirect) instance of each of the general Classifiers. Therefore, features specified for instances of the general 
classifier are implicitly specified for instances of the specific classifier. Any constraint applying to instances of the 
general classifier also applies to instances of the specific classifier.

The specific semantics of how generalization affects each concrete subtype of Classifier varies. All instances of a 
classifier have values corresponding to the classifier’s attributes. 

A Classifier defines a type. Type conformance between generalizable Classifiers is defined so that a Classifier conforms 
to itself and to all of its ancestors in the generalization hierarchy.

UML Superstructure Specification, v2.1.2        55

Package PowerTypes

The notion of power type was inspired by the notion of power set. A power set is defined as a set whose instances are 
subsets. In essence, then, a power type is a class whose instances are subclasses. The powertypeExtent association relates 
a Classifier with a set of generalizations that a) have a common specific Classifier, and b) represent a collection of subsets 
for that class. 

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

Classifier is an abstract model element, and so properly speaking has no notation. It is nevertheless convenient to define 
in one place a default notation available for any concrete subclass of Classifier for which this notation is suitable. The 
default notation for a classifier is a solid-outline rectangle containing the classifier’s name, and optionally with 
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of 
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

The name of an abstract Classifier is shown in italics.

An attribute can be shown as a text string. The format of this string is specified in the Notation sub clause of “Property 
(from Kernel, AssociationClasses)” on page 123.

Presentation Options

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is 
suppressed, no inference can be drawn about the presence or absence of elements in it. Compartment names can be used 
to remove ambiguity, if necessary. 

An abstract Classifier can be shown using the keyword {abstract} after or below the name of the Classifier.

The type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if there are values 
in the model. 

The individual properties of an attribute can be shown in columns rather than as a continuous string.

Style Guidelines

• Attribute names typically begin with a lowercase letter. Multi-word names are often formed by concatenating the words 
and using lowercase for all letters except for upcasing the first letter of each word but the first.

• Center the name of the classifier in boldface.

• Center keyword (including stereotype names) in plain face within guillemets above the classifier name.

• For those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e, begin them 
with an uppercase character). 

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Show full attributes and operations when needed and suppress them in other contexts or references.

Reading the Standard Cont’d

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
re
a
d
in
g
–

22/63

52                 UML Superstructure Specification, v2.1.2

Figure 7.29 - Class notation: attributes and operations grouped according to visibility

7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)

A classifier is a classification of instances, it describes a set of instances that have features in common. 

Generalizations

• “Namespace (from Kernel)” on page 99

• “RedefinableElement (from Kernel)” on page 130

• “Type (from Kernel)” on page 135

Description

A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to 
other classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.

Attributes

• isAbstract: Boolean �

If true, the Classifier does not provide a complete declaration and can typically not be instantiated. An abstract�
classifier is intended to be used by other classifiers (e.g., as the target of general metarelationships or generalization�
relationships). Default value is false. 

Associations

• /attribute: Property [*] �

Refers to all of the Properties that are direct (i.e., not inherited or imported) attributes of the classifier. Subsets�
Classifier::feature and is a derived union.

• / feature : Feature [*] �

Specifies each feature defined in the classifier. Subsets Namespace::member. This is a derived union.

• / general : Classifier[*] �

Specifies the general Classifiers for this Classifier. This is derived.

Window

public
  size: Area = (100, 100)
  defaultSize: Rectangle
protected
  visibility: Boolean = true
private
  xWin: XWindow
public
  display()
  hide()
private
  attachX(xWin: XWindow)

UML Superstructure Specification, v2.1.2        53

• generalization: Generalization[*] �
Specifies the Generalization relationships for this Classifier. These Generalizations navigate to more general�
classifiers in the generalization hierarchy. Subsets Element::ownedElement

• / inheritedMember: NamedElement[*] �

Specifies all elements inherited by this classifier from the general classifiers. Subsets Namespace::member. This is�
derived.

• redefinedClassifier: Classifier [*] �

References the Classifiers that are redefined by this Classifier. Subsets RedefinableElement::redefinedElement

Package Dependencies 

• substitution : Substitution �

References the substitutions that are owned by this Classifier. Subsets Element::ownedElement  and�
NamedElement::clientDependency.)

Package PowerTypes 

• powertypeExtent : GeneralizationSet�
Designates the GeneralizationSet of which the associated Classifier is a power type.

Constraints

[1]  The general classifiers are the classifiers referenced by the generalization relationships.

general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier cannot be both a transitively general and 
transitively specific classifier of the same classifier.

not self.allParents()->includes(self)

[3] A classifier may only specialize classifiers of a valid type.

self.parents()->forAll(c | self.maySpecializeType(c))

[4] The inheritedMember association is derived by inheriting the inheritable members of the parents.

self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Package PowerTypes 

[5] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the 
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of 
itself nor may its instances also be its subclasses.

Additional Operations

[1]  The query allFeatures() gives all of the features in the namespace of the classifier. In general, through mechanisms such as 
inheritance, this will be a larger set than feature.

Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclIsKindOf(Feature))

[2] The query parents() gives all of the immediate ancestors of a generalized Classifier.

Classifier::parents(): Set(Classifier);

parents = generalization.general�
�

�

54                 UML Superstructure Specification, v2.1.2

[3] The query allParents() gives all of the direct and indirect ancestors of a generalized Classifier.

Classifier::allParents(): Set(Classifier);

allParents = self.parents()->union(self.parents()->collect(p | p.allParents())

[4] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants, 
subject to whatever visibility restrictions apply.

Classifier::inheritableMembers(c: Classifier): Set(NamedElement);

pre: c.allParents()->includes(self)

inheritableMembers = member->select(m | c.hasVisibilityOf(m))

[5] The query hasVisibilityOf() determines whether a named element is visible in the classifier. By default all are visible. It is 
only called when the argument is something owned by a parent.

Classifier::hasVisibilityOf(n: NamedElement) : Boolean;

pre: self.allParents()->collect(c | c.member)->includes(n)

if (self.inheritedMember->includes(n)) then�
hasVisibilityOf = (n.visibility <> #private)�

else

hasVisibilityOf = true

[6] The query conformsTo() gives true for a classifier that defines a type that conforms to another. This is used, for example, 
in the specification of signature conformance for operations.

Classifier::conformsTo(other: Classifier): Boolean;

conformsTo = (self=other) or (self.allParents()->includes(other))

[7] The query inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It is intended 
to be redefined in circumstances where inheritance is affected by redefinition.

Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);

inherit = inhs

[8] The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of 
the specified type. By default a classifier may specialize classifiers of the same or a more general type. It is intended to be 
redefined by classifiers that have different specialization constraints.

Classifier::maySpecializeType(c : Classifier) : Boolean;

maySpecializeType = self.oclIsKindOf(c.oclType)

Semantics

A classifier is a classification of instances according to their features.

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is 
also an (indirect) instance of each of the general Classifiers. Therefore, features specified for instances of the general 
classifier are implicitly specified for instances of the specific classifier. Any constraint applying to instances of the 
general classifier also applies to instances of the specific classifier.

The specific semantics of how generalization affects each concrete subtype of Classifier varies. All instances of a 
classifier have values corresponding to the classifier’s attributes. 

A Classifier defines a type. Type conformance between generalizable Classifiers is defined so that a Classifier conforms 
to itself and to all of its ancestors in the generalization hierarchy.

UML Superstructure Specification, v2.1.2        55

Package PowerTypes

The notion of power type was inspired by the notion of power set. A power set is defined as a set whose instances are 
subsets. In essence, then, a power type is a class whose instances are subclasses. The powertypeExtent association relates 
a Classifier with a set of generalizations that a) have a common specific Classifier, and b) represent a collection of subsets 
for that class. 

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

Classifier is an abstract model element, and so properly speaking has no notation. It is nevertheless convenient to define 
in one place a default notation available for any concrete subclass of Classifier for which this notation is suitable. The 
default notation for a classifier is a solid-outline rectangle containing the classifier’s name, and optionally with 
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of 
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

The name of an abstract Classifier is shown in italics.

An attribute can be shown as a text string. The format of this string is specified in the Notation sub clause of “Property 
(from Kernel, AssociationClasses)” on page 123.

Presentation Options

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is 
suppressed, no inference can be drawn about the presence or absence of elements in it. Compartment names can be used 
to remove ambiguity, if necessary. 

An abstract Classifier can be shown using the keyword {abstract} after or below the name of the Classifier.

The type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if there are values 
in the model. 

The individual properties of an attribute can be shown in columns rather than as a continuous string.

Style Guidelines

• Attribute names typically begin with a lowercase letter. Multi-word names are often formed by concatenating the words 
and using lowercase for all letters except for upcasing the first letter of each word but the first.

• Center the name of the classifier in boldface.

• Center keyword (including stereotype names) in plain face within guillemets above the classifier name.

• For those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e, begin them 
with an uppercase character). 

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Show full attributes and operations when needed and suppress them in other contexts or references.

56                 UML Superstructure Specification, v2.1.2

Examples

Figure 7.30 - Examples of attributes

The attributes in Figure 7.30 are explained below.

• ClassA::name is an attribute with type String.

• ClassA::shape is an attribute with type Rectangle.

• ClassA::size is a public attribute of type Integer with multiplicity 0..1.

• ClassA::area is a derived attribute with type Integer. It is marked as read-only.

• ClassA::height is an attribute of type Integer with a default initial value of 5.

• ClassA::width is an attribute of type Integer.

• ClassB::id is an attribute that redefines ClassA::name.

• ClassB::shape is an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

• ClassB::height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances that overrides the 
ClassA default of 5.

• ClassB::width is a derived attribute that redefines ClassA::width, which is not derived.

An attribute may also be shown using association notation, with no adornments at the tail of the arrow as shown in Figure 
7.31.

Figure 7.31 - Association-like notation for attribute

ClassB

id {redefines name}
shape: Square
height = 7
/ width

ClassA

name: String
shape: Rectangle
+ size: Integer [0..1]
/ area: Integer {readOnly}
height: Integer= 5
width: Integer

Window Area
size

1
Window Area

size

1



Reading the Standard Cont’d

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
re
a
d
in
g
–

22/63

52                 UML Superstructure Specification, v2.1.2

Figure 7.29 - Class notation: attributes and operations grouped according to visibility

7.3.8 Classifier (from Kernel, Dependencies, PowerTypes)

A classifier is a classification of instances, it describes a set of instances that have features in common. 

Generalizations

• “Namespace (from Kernel)” on page 99

• “RedefinableElement (from Kernel)” on page 130

• “Type (from Kernel)” on page 135

Description

A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to 
other classifiers. A classifier can specify a generalization hierarchy by referencing its general classifiers.

A classifier is a redefinable element, meaning that it is possible to redefine nested classifiers.

Attributes

• isAbstract: Boolean �

If true, the Classifier does not provide a complete declaration and can typically not be instantiated. An abstract�
classifier is intended to be used by other classifiers (e.g., as the target of general metarelationships or generalization�
relationships). Default value is false. 

Associations

• /attribute: Property [*] �

Refers to all of the Properties that are direct (i.e., not inherited or imported) attributes of the classifier. Subsets�
Classifier::feature and is a derived union.

• / feature : Feature [*] �

Specifies each feature defined in the classifier. Subsets Namespace::member. This is a derived union.

• / general : Classifier[*] �

Specifies the general Classifiers for this Classifier. This is derived.

Window

public
  size: Area = (100, 100)
  defaultSize: Rectangle
protected
  visibility: Boolean = true
private
  xWin: XWindow
public
  display()
  hide()
private
  attachX(xWin: XWindow)

UML Superstructure Specification, v2.1.2        53

• generalization: Generalization[*] �
Specifies the Generalization relationships for this Classifier. These Generalizations navigate to more general�
classifiers in the generalization hierarchy. Subsets Element::ownedElement

• / inheritedMember: NamedElement[*] �

Specifies all elements inherited by this classifier from the general classifiers. Subsets Namespace::member. This is�
derived.

• redefinedClassifier: Classifier [*] �

References the Classifiers that are redefined by this Classifier. Subsets RedefinableElement::redefinedElement

Package Dependencies 

• substitution : Substitution �

References the substitutions that are owned by this Classifier. Subsets Element::ownedElement  and�
NamedElement::clientDependency.)

Package PowerTypes 

• powertypeExtent : GeneralizationSet�
Designates the GeneralizationSet of which the associated Classifier is a power type.

Constraints

[1]  The general classifiers are the classifiers referenced by the generalization relationships.

general = self.parents()

[2] Generalization hierarchies must be directed and acyclical. A classifier cannot be both a transitively general and 
transitively specific classifier of the same classifier.

not self.allParents()->includes(self)

[3] A classifier may only specialize classifiers of a valid type.

self.parents()->forAll(c | self.maySpecializeType(c))

[4] The inheritedMember association is derived by inheriting the inheritable members of the parents.

self.inheritedMember->includesAll(self.inherit(self.parents()->collect(p | p.inheritableMembers(self)))

Package PowerTypes 

[5] The Classifier that maps to a GeneralizationSet may neither be a specific nor a general Classifier in any of the 
Generalization relationships defined for that GeneralizationSet. In other words, a power type may not be an instance of 
itself nor may its instances also be its subclasses.

Additional Operations

[1]  The query allFeatures() gives all of the features in the namespace of the classifier. In general, through mechanisms such as 
inheritance, this will be a larger set than feature.

Classifier::allFeatures(): Set(Feature);
allFeatures = member->select(oclIsKindOf(Feature))

[2] The query parents() gives all of the immediate ancestors of a generalized Classifier.

Classifier::parents(): Set(Classifier);

parents = generalization.general�
�

�

54                 UML Superstructure Specification, v2.1.2

[3] The query allParents() gives all of the direct and indirect ancestors of a generalized Classifier.

Classifier::allParents(): Set(Classifier);

allParents = self.parents()->union(self.parents()->collect(p | p.allParents())

[4] The query inheritableMembers() gives all of the members of a classifier that may be inherited in one of its descendants, 
subject to whatever visibility restrictions apply.

Classifier::inheritableMembers(c: Classifier): Set(NamedElement);

pre: c.allParents()->includes(self)

inheritableMembers = member->select(m | c.hasVisibilityOf(m))

[5] The query hasVisibilityOf() determines whether a named element is visible in the classifier. By default all are visible. It is 
only called when the argument is something owned by a parent.

Classifier::hasVisibilityOf(n: NamedElement) : Boolean;

pre: self.allParents()->collect(c | c.member)->includes(n)

if (self.inheritedMember->includes(n)) then�
hasVisibilityOf = (n.visibility <> #private)�

else

hasVisibilityOf = true

[6] The query conformsTo() gives true for a classifier that defines a type that conforms to another. This is used, for example, 
in the specification of signature conformance for operations.

Classifier::conformsTo(other: Classifier): Boolean;

conformsTo = (self=other) or (self.allParents()->includes(other))

[7] The query inherit() defines how to inherit a set of elements. Here the operation is defined to inherit them all. It is intended 
to be redefined in circumstances where inheritance is affected by redefinition.

Classifier::inherit(inhs: Set(NamedElement)): Set(NamedElement);

inherit = inhs

[8] The query maySpecializeType() determines whether this classifier may have a generalization relationship to classifiers of 
the specified type. By default a classifier may specialize classifiers of the same or a more general type. It is intended to be 
redefined by classifiers that have different specialization constraints.

Classifier::maySpecializeType(c : Classifier) : Boolean;

maySpecializeType = self.oclIsKindOf(c.oclType)

Semantics

A classifier is a classification of instances according to their features.

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is 
also an (indirect) instance of each of the general Classifiers. Therefore, features specified for instances of the general 
classifier are implicitly specified for instances of the specific classifier. Any constraint applying to instances of the 
general classifier also applies to instances of the specific classifier.

The specific semantics of how generalization affects each concrete subtype of Classifier varies. All instances of a 
classifier have values corresponding to the classifier’s attributes. 

A Classifier defines a type. Type conformance between generalizable Classifiers is defined so that a Classifier conforms 
to itself and to all of its ancestors in the generalization hierarchy.

UML Superstructure Specification, v2.1.2        55

Package PowerTypes

The notion of power type was inspired by the notion of power set. A power set is defined as a set whose instances are 
subsets. In essence, then, a power type is a class whose instances are subclasses. The powertypeExtent association relates 
a Classifier with a set of generalizations that a) have a common specific Classifier, and b) represent a collection of subsets 
for that class. 

Semantic Variation Points

The precise lifecycle semantics of aggregation is a semantic variation point.

Notation

Classifier is an abstract model element, and so properly speaking has no notation. It is nevertheless convenient to define 
in one place a default notation available for any concrete subclass of Classifier for which this notation is suitable. The 
default notation for a classifier is a solid-outline rectangle containing the classifier’s name, and optionally with 
compartments separated by horizontal lines containing features or other members of the classifier. The specific type of 
classifier can be shown in guillemets above the name. Some specializations of Classifier have their own distinct notations.

The name of an abstract Classifier is shown in italics.

An attribute can be shown as a text string. The format of this string is specified in the Notation sub clause of “Property 
(from Kernel, AssociationClasses)” on page 123.

Presentation Options

Any compartment may be suppressed. A separator line is not drawn for a suppressed compartment. If a compartment is 
suppressed, no inference can be drawn about the presence or absence of elements in it. Compartment names can be used 
to remove ambiguity, if necessary. 

An abstract Classifier can be shown using the keyword {abstract} after or below the name of the Classifier.

The type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if there are values 
in the model. 

The individual properties of an attribute can be shown in columns rather than as a continuous string.

Style Guidelines

• Attribute names typically begin with a lowercase letter. Multi-word names are often formed by concatenating the words 
and using lowercase for all letters except for upcasing the first letter of each word but the first.

• Center the name of the classifier in boldface.

• Center keyword (including stereotype names) in plain face within guillemets above the classifier name.

• For those languages that distinguish between uppercase and lowercase characters, capitalize names (i.e, begin them 
with an uppercase character). 

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Show full attributes and operations when needed and suppress them in other contexts or references.

56                 UML Superstructure Specification, v2.1.2

Examples

Figure 7.30 - Examples of attributes

The attributes in Figure 7.30 are explained below.

• ClassA::name is an attribute with type String.

• ClassA::shape is an attribute with type Rectangle.

• ClassA::size is a public attribute of type Integer with multiplicity 0..1.

• ClassA::area is a derived attribute with type Integer. It is marked as read-only.

• ClassA::height is an attribute of type Integer with a default initial value of 5.

• ClassA::width is an attribute of type Integer.

• ClassB::id is an attribute that redefines ClassA::name.

• ClassB::shape is an attribute that redefines ClassA::shape. It has type Square, a specialization of Rectangle.

• ClassB::height is an attribute that redefines ClassA::height. It has a default of 7 for ClassB instances that overrides the 
ClassA default of 5.

• ClassB::width is a derived attribute that redefines ClassA::width, which is not derived.

An attribute may also be shown using association notation, with no adornments at the tail of the arrow as shown in Figure 
7.31.

Figure 7.31 - Association-like notation for attribute

ClassB

id {redefines name}
shape: Square
height = 7
/ width

ClassA

name: String
shape: Rectangle
+ size: Integer [0..1]
/ area: Integer {readOnly}
height: Integer= 5
width: Integer

Window Area
size

1
Window Area

size

1

UML Superstructure Specification, v2.1.2        57

Package PowerTypes 

For example, a Bank Account Type classifier could have a powertype association with a GeneralizationSet. This 
GeneralizationSet could then associate with two Generalizations where the class (i.e., general Classifier) Bank Account 
has two specific subclasses (i.e., Classifiers): Checking Account and Savings Account. Checking Account and Savings 
Account, then, are instances of the power type: Bank Account Type. In other words, Checking Account and Savings 
Account are both: instances of Bank Account Type, as well as subclasses of Bank Account. (For more explanation and 
examples, see Examples in the GeneralizationSet sub clause, below.)

7.3.9 Comment (from Kernel)

A comment is a textual annotation that can be attached to a set of elements.

Generalizations

• “Element (from Kernel)” on page 64.

Description

A comment gives the ability to attach various remarks to elements. A comment carries no semantic force, but may contain 
information that is useful to a modeler.

A comment can be owned by any element.

Attributes

• multiplicitybody: String [0..1]�
Specifies a string that is the comment.

Associations

• annotatedElement: Element[*] �

References the Element(s) being commented.

Constraints

No additional constraints

Semantics

A Comment adds no semantics to the annotated elements, but may represent information useful to the reader of the 
model.

Notation

A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note symbol”). The 
rectangle contains the body of the Comment. The connection to each annotated element is shown by a separate dashed 
line.

Presentation Options

The dashed line connecting the note to the annotated element(s) may be suppressed if it is clear from the context, or not 
important in this diagram.

Meta Object Facility (MOF)

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

23/63



Open Questions...

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
m
o
f
–

24/63

• Now you’ve been “tricked” again. Twice.

• We didn’t tell what the modelling language for meta-modelling is.

• We didn’t tell what the is-instance-of relation of this language is.

• Idea: have a minimal object-oriented core comprising the notions of
class, association, inheritance, etc. with “self-explaining” semantics.

• This is Meta Object Facility (MOF),
which (more or less) coincides with UML Infrastructure [OMG, 2007a].

• So: things on meta level

• M0 are object diagrams/system states

• M1 are words of the language UML

• M2 are words of the language MOF

• M3 are words of the language . . .

MOF Semantics

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
m
o
f
–

25/63

• One approach:

• Treat it with our signature-based theory

• This is (in effect) the right direction, but may require new (or extended)
signatures for each level.
(For instance, MOF doesn’t have a notion of Signal, our signature has.)

• Other approach:

• Define a generic, graph based “is-instance-of” relation.

• Object diagrams (that are graphs) then are the system states —
not only graphical representations of system states.

• If this works out, good: We can easily experiment with different language
designs, e.g. different flavours of UML that immediately have a
semantics.

• Most interesting: also do generic definition of behaviour within a closed
modelling setting, but this is clearly still research, e.g.
[Buschermöhle and Oelerink, 2008].



Meta-Modelling: (Anticipated) Benefits

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

26/63

Benefits: Overview

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
b
en

efi
ts

–

27/63

• We’ll (superficially) look at three aspects:

• Benefits for Modelling Tools.

• Benefits for Language Design.

• Benefits for Code Generation and MDA.



Benefits for Modelling Tools

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
b
en

efi
ts

–

28/63

• The meta-model MU of UML immediately provides a data-structure
representation for the abstract syntax (∼ for our signatures).

If we have code generation for UML models, e.g. into Java,
then we can immediately represent UML models in memory for Java.

(Because each MOF model is in particular a UML model.)

• There exist tools and libraries called MOF-repositories, which can
generically represent instances of MOF instances (in particular UML
models).

And which can often generate specific code to manipulate instances of
MOF instances in terms of the MOF instance.

Benefits for Modelling Tools Cont’d

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
b
en

efi
ts

–

29/63

• And not only in memory, if we can represent MOF instances in files, we
obtain a canonical representation of UML models in files, e.g. in XML.

→ XML Metadata Interchange (XMI)

• Note: A priori, there is no graphical information in XMI (it is only abstract
syntax like our signatures) → OMG Diagram Interchange.

• Note: There are slight ambiguities in the XMI standard.

And different tools by different vendors often seem to lie at opposite ends on the
scale of interpretation. Which is surely a coincidence.

In some cases, it’s possible to fix things with, e.g., XSLT scripts, but full vendor
independence is today not given.

Plus XMI compatibility doesn’t necessarily refer to Diagram Interchange.

• To re-iterate: this is generic for all MOF-based modelling languages such
as UML, CWM, etc.
And also for Domain Specific Languages which don’t even exit yet.



Benefits: Overview

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
b
en

efi
ts

–

30/63

• We’ll (superficially) look at three aspects:

• Benefits for Modelling Tools. ✔

• Benefits for Language Design.

• Benefits for Code Generation and MDA.

Benefits for Language Design

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
b
en

efi
ts

–

31/61

• Recall: we said that code-generators are possible “readers” of stereotypes.

• For example, (heavily simplifying) we could

• introduce the stereotypes Button, Toolbar, ...

• for convenience, instruct the modelling tool to use special pictures for
stereotypes — in the meta-data (the abstract syntax), the stereotypes are
clearly present.

• instruct the code-generator to automatically add inheritance from Gtk::Button,
Gtk::Toolbar, etc. corresponding to the stereotype.

Et voilà: we can model Gtk-GUIs and generate code for them.

• Another view:

• UML with these stereotypes is a new modelling language: Gtk-UML.

• Which lives on the same meta-level as UML (M2).

• It’s a Domain Specific Modelling Language (DSL).

One mechanism to define DSLs (based on UML, and “within” UML): Profiles.



Benefits for Language Design Cont’d

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
b
en

efi
ts

–

32/63

• For each DSL defined by a Profile, we immediately have

• in memory representations,

• modelling tools,

• file representations.

• Note: here, the semantics of the stereotypes (and thus the language of
Gtk-UML) lies in the code-generator.

That’s the first “reader” that understands these special stereotypes.
(And that’s what’s meant in the standard when they’re talking about giving
stereotypes semantics).

• One can also impose additional well-formedness rules, for instance that
certain components shall all implement a certain interface (and thus have
certain methods available). (Cf. [Stahl and Völter, 2005].)

Benefits for Language Design Cont’d

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
b
en

efi
ts

–

33/63

• One step further:

• Nobody hinders us to obtain a model of UML (written in MOF),

• throw out parts unnecessary for our purposes,

• add (= integrate into the existing hierarchy) more adequat new
constructs, for instance, contracts or something more close to hardware
as interrupt or sensor or driver,

• and maybe also stereotypes.

→ a new language standing next to UML, CWM, etc.

• Drawback: the resulting language is not necessarily UML any more,
so we can’t use proven UML modelling tools.

• But we can use all tools for MOF (or MOF-like things).

For instance, Eclipse EMF/GMF/GEF.



Benefits: Overview

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
b
en

efi
ts

–

34/63

• We’ll (superficially) look at three aspects:

• Benefits for Modelling Tools. ✔

• Benefits for Language Design. ✔

• Benefits for Code Generation and MDA.

Benefits for Model (to Model) Transformation

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
b
en

efi
ts

–

35/63

• There are manifold applications for model-to-model transformations:

• For instance, tool support for re-factorings, like moving common
attributes upwards the inheritance hierarchy.

This can now be defined as graph-rewriting rules on the level of MOF.
The graph to be rewritten is the UML model

• Similarly, one could transform a Gtk-UML model into a UML model,
where the inheritance from classes like Gtk::Button is made explicit:

The transformation would add this class Gtk::Button and the inheritance
relation and remove the stereotype.

• Similarly, one could have a GUI-UML model transformed into a
Gtk-UML model, or a Qt-UML model.

The former a PIM (Platform Independent Model), the latter a PSM
(Platform Specific Model) — cf. MDA.



Special Case: Code Generation

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
b
en

efi
ts

–

36/63

• Recall that we said that, e.g. Java code, can also be seen as a model.

So code-generation is a special case of model-to-model transformation;
only the destination looks quite different.

• Note: Code generation needn’t be as expensive as buying a modelling tool
with full fledged code generation.

• If we have the UML model (or the DSL model) given as an XML file,
code generation can be as simple as an XSLT script.

“Can be” in the sense of

“There may be situation where a graphical and abstract

representation of something is desired which has a clear and

direct mapping to some textual representation.”

In general, code generation can (in colloquial terms) become arbitrarily
difficult.

Example: Model and XMI

–
2
2
–
2
0
1
5
-0
2
-1
0
–
S
b
en

efi
ts

–

37/63

〈〈pt100〉〉

SensorA
〈〈65C02〉〉

ControllerA
〈〈NET2270〉〉

UsbA
gather

1

update

1

<?xml version = ’1.0’ encoding = ’UTF-8’ ?>

<XMI xmi.version = ’1.2’ xmlns:UML = ’org.omg.xmi.namespace.UML’ timestamp = ’Mon Feb 02 18:23:12 CET 2009’>

<XMI.content>

<UML:Model xmi.id = ’...’>

<UML:Namespace.ownedElement>

<UML:Class xmi.id = ’...’ name = ’SensorA’>

<UML:ModelElement.stereotype>

<UML:Stereotype name = ’pt100’/>

</UML:ModelElement.stereotype>

</UML:Class>

<UML:Class xmi.id = ’...’ name = ’ControllerA’>

<UML:ModelElement.stereotype>

<UML:Stereotype name = ’65C02’/>

</UML:ModelElement.stereotype>

</UML:Class>

<UML:Class xmi.id = ’...’ name = ’UsbA’>

<UML:ModelElement.stereotype>

<UML:Stereotype name = ’NET2270’/>

</UML:ModelElement.stereotype>

</UML:Class>

<UML:Association xmi.id = ’...’ name = ’in’ >...</UML:Association>

<UML:Association xmi.id = ’...’ name = ’out’ >...</UML:Association>

</UML:Namespace.ownedElement>

</UML:Model>

</XMI.content>

</XMI>



Wrapup & Questions

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

38/63

Content

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

39/63

• Lecture 1: Motivation and Overview

• Lecture 2: Semantical Model

• Lecture 3: Object Constraint Language (OCL)
• Lecture 4: OCL Semantics

• Lecture 5: Object Diagrams
• Lecture 6: Class Diagrams I
• Lecture 7: Type Systems and Visibility
• Lecture 8: Class Diagrams II
• Lecture 9: Class Diagrams III

• Lecture 10: Constructive Behaviour, State Machines Overview
• Lecture 11: Core State Machines I
• Lecture 12: Core State Machines II
• Lecture 13: Core State Machines III
• Lecture 14: Core State Machines IV
• Lecture 15: Core State Machines V, Rhapsody
• Lecture 16: Hierarchical State Machines I
• Lecture 17: Hierarchical State Machines II

• Lecture 18: Live Sequence Charts I
• Lecture 19: Live Sequence Charts II

• Lecture 20: Inheritance I
• Lecture 21: Meta-Modelling, Inheritance II

• Lecture 22: Wrapup & Questions



Course Path: Over Map

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

40/63

• Motivation

• Semantical Model

• OCL

• Object Diagrams

• Class Diagrams

• State Machines

• Live Sequence
Charts

• Real-Time

• Components

• Inheritance

• Meta-Modeling

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣD
S
, AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi,Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✔

✔

✔

✔

✔

✔✔

✔

✔

✔

✔

Wrapup: Motivation

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

41/63

• Lecture 1: Motivation and Overview

• Lecture 2: Semantical Model

• Lecture 3: Object Constraint Language (OCL)
• Lecture 4: OCL Semantics

• Lecture 5: Object Diagrams
• Lecture 6: Class Diagrams I
• Lecture 7: Type Systems and Visibility
• Lecture 8: Class Diagrams II
• Lecture 9: Class Diagrams III

• Lecture 10: Constructive Behaviour, State Machines Overview
• Lecture 11: Core State Machines I
• Lecture 12: Core State Machines II
• Lecture 13: Core State Machines III
• Lecture 14: Core State Machines IV
• Lecture 15: Core State Machines V, Rhapsody
• Lecture 16: Hierarchical State Machines I
• Lecture 17: Hierarchical State Machines II

• Lecture 18: Live Sequence Charts I
• Lecture 19: Live Sequence Charts II

• Lecture 20: Inheritance I
• Lecture 21: Meta-Modelling, Inheritance II

• Lecture 22: Wrapup & Questions



Wrapup: Motivation

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

42/63

Lecture 1:

• Educational Objectives: you should

• be able to explain the term model.

• know the idea (and hopes and promises) of model-driven SW development.

• be able to explain how UML fits into this general picture.

• know what we’ll do we’ve done in the course, and why.

• thus be able to decide whether you want to stay with us...

• How can UML help with software development?

• Where is which sublanguage of UML useful?

• For what purpose? With what drawbacks?

Wrapup: Examining Motivation

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

43/63

• what is a model? for example?

• “a model is an image or a pre-image” — of what? please explain!

• when is a model a good model?

• what is model-based software engineering?

• MDA? MDSE?

• what do people hope to gain from MBSE? Why? Hope Justified?

• what are the fundamental pre-requisites for that?

• what are purposes of modelling guidelines?

• could you illustrate this with examples?

• how can we establish/enforce them? can tools or procedures help?

• what’s the qualitative difference between the modelling guideline “all association
ends have a multiplicity” and “all state-machines are deterministic”?

• . . .



Wrapup: Examining Motivation

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

44/63

• what is UML (definitely)? why?

• what is it (definitely) not? why?

• how does UML relate to programming languages?

• what are the intentions of UML?

• what is the history of UML? Why could it be useful to know that?

• where can (what part of) UML be used in MBSE?

• for what purpose? to improve what?

• we discussed a notion of “UML mode” by M. Fowler.

• what is that? why is it useful to think about it?

Wrapup: Examining “The Big Picture”

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

45/63

• what kinds of diagrams does UML offer?

• what is the purpose of the X diagram?

• what do the diagrams X and Y have in common?

• what is a UML model (our definition)? what does it mean?

• what is the difference between well-formedness ruless
and modelling guidelines?

• what is meta-modelling?

• could you explain it on the example of UML?

• what is a class diagram in the context of meta-modelling?

• what benefits do people see in meta-modelling?

• the standard is split into the two documents “Infrastructure” and
“Superstructure”. what is the rationale behind that?

• in what modelling language is UML modelled?



Wrapup: Modelling Structure

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

46/63

• Lecture 1: Motivation and Overview

• Lecture 2: Semantical Model

• Lecture 3: Object Constraint Language (OCL)
• Lecture 4: OCL Semantics

• Lecture 5: Object Diagrams
• Lecture 6: Class Diagrams I
• Lecture 7: Type Systems and Visibility
• Lecture 8: Class Diagrams II
• Lecture 9: Class Diagrams III

• Lecture 10: Constructive Behaviour, State Machines Overview
• Lecture 11: Core State Machines I
• Lecture 12: Core State Machines II
• Lecture 13: Core State Machines III
• Lecture 14: Core State Machines IV
• Lecture 15: Core State Machines V, Rhapsody
• Lecture 16: Hierarchical State Machines I
• Lecture 17: Hierarchical State Machines II

• Lecture 18: Live Sequence Charts I
• Lecture 19: Live Sequence Charts II

• Lecture 20: Inheritance I
• Lecture 21: Meta-Modelling, Inheritance II

• Lecture 22: Wrapup & Questions

Wrapup: Modelling Structure

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

47/63

Lecture 2:

• Educational Objectives: Capabilities for these tasks/questions:

• Why is UML of the form it is?

• Shall one feel bad if not using all diagrams during software development?

• What is a signature, an object, a system state, etc.?
What’s the purpose in the course?

• How do Basic Object System Signatures relate to UML class diagrams?

Lecture 3 & 4:

• Educational Objectives: Capabilities for these tasks/questions:

• Please explain/read out this OCL constraint. Is it well-typed?

• Please formalise this constraint in OCL.

• Does this OCL constraint hold in this (complete) system state?

• Can you think of a system state satisfying this constraint?

• Please un-abbreviate all abbreviations in this OCL expression.

• In what sense is OCL a three-valued logic? For what purpose?

• How are D(C) and τC related?



Wrapup: Modelling Structure

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

48/63

Lecture 5:

• Educational Objectives: Capabilities for following tasks/questions.

• What is an object diagram? What are object diagrams good for?

• When is an object diagram called partial? What are partial ones good for?

• How are system states and object diagrams related?

• What does it mean that an OCL expression is satisfiable?

• When is a set of OCL constraints said to be consistent?

• Can you think of an object diagram which violates this OCL constraint?

• Is this UML model M consistent wrt. Inv(M)?

Lecture 6:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a class diagram?

• For what purposes are class diagrams useful?

• Could you please map this class diagram to a signature?

• Could you please map this signature to a class diagram?

Wrapup: Modelling Structure

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

49/63

Lecture 7:

• Educational Objectives: Capabilities for following tasks/questions.

• Is this OCL expression well-typed or not? Why?

• How/in what form did we define well-definedness?

• What is visibility good for? Where is it used?

Lecture 8 & 9:

• Educational Objectives: Capabilities for following tasks/questions.

• Please explain/illustrate this class diagram with associations.

• Which annotations of an association arrow are (semantically) relevant?
In what sense? For what?

• What’s a role name? What’s it good for?

• What’s “multiplicity”? How did we treat them semantically?

• What is “reading direction”, “navigability”, “ownership”, . . . ?

• What’s the difference between “aggregation” and “composition”?



Wrapup: Modelling Structure

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

50/63

Lecture 9:

• Educational Objectives: Capabilities for following tasks/questions.

• What are purposes of modelling guidelines? (Example?)

• When is a class diagram a good class diagram?

• Discuss the style of this class diagram.

Lecture 20 & 21:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s the effect of inheritance on System States?

• What does the Liskov Substitution Principle mean regarding structure?

• What is the subset, what the uplink semantics of inheritance?

• What’s the idea of Meta-Modelling?

Wrapup: Modelling Behaviour, Constructive

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

51/63

• Lecture 1: Motivation and Overview

• Lecture 2: Semantical Model

• Lecture 3: Object Constraint Language (OCL)
• Lecture 4: OCL Semantics

• Lecture 5: Object Diagrams
• Lecture 6: Class Diagrams I
• Lecture 7: Type Systems and Visibility
• Lecture 8: Class Diagrams II
• Lecture 9: Class Diagrams III

• Lecture 10: Constructive Behaviour, State Machines Overview
• Lecture 11: Core State Machines I
• Lecture 12: Core State Machines II
• Lecture 13: Core State Machines III
• Lecture 14: Core State Machines IV
• Lecture 15: Core State Machines V, Rhapsody
• Lecture 16: Hierarchical State Machines I
• Lecture 17: Hierarchical State Machines II

• Lecture 18: Live Sequence Charts I
• Lecture 19: Live Sequence Charts II

• Lecture 20: Inheritance I
• Lecture 21: Meta-Modelling, Inheritance II

• Lecture 22: Wrapup & Questions



Wrapup: Modelling Behaviour, Constructive

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

52/63

Main and General:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean?

• What happens if I inject this event?

• Can you please model the following behaviour.

(And convince readers that your model is correct.)

Wrapup: Modelling Behaviour, Constructive

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

53/63

Lecture 10:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s the difference between reflective and constructive descriptions of
behaviour?

• What’s the Basic Causality Model?

• What does the standard say about the dispatching method?

• What is (intuitively) a run-to-completion step?

Lecture 11:

• Educational Objectives: Capabilities for following tasks/questions.

• Can you please model the following behaviour.

• What is: trigger, guard, action?

• Please unabbreviate this abbreviated transition annotation.

• What is an ether? Example? Why did we introduce it?

• What’s the difference: signal, signal event, event, trigger, reception,
consumption?

• What’s a system configuration?



Wrapup: Modelling Behaviour, Constructive

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

54/63

Lecture 12 & 13:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a transformer? Example? Why did we introduce it?

• What is a re-use semantics? What of the framework would we change to go to
a non-re-use semantics?

• What labelled transition system is induced by a UML model?

• What is: discard, dispatch, commence?

• What’s the meaning of stereotype “signal,env”?

• Does environment interaction necessarily occur?

• What happens on “division by 0”?

Lecture 14 & 15:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a step (definition)? Run-to-completion step (definition)? Microstep
(intuition)?

• Do objects always finally become stable?

• In what sense is our RTC semantics not compositional?

Wrapup: Modelling Behaviour, Constructive

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

55/63

Lecture 16:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s a kind of a state? What’s a pseudo-state?

• What’s a region? What’s it good for?

• What is: entry, exit, do, internal transition?

• What’s a completion event? What has it to do with the ether?

Lecture 17:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s a state configuration?

• When are two states orthogonal? When consistent?

• What’s the depth of a state? Why care?

• What is the set of enabled transitions in this system configuration and this state
machine?



Wrapup: Modelling Behaviour, Constructive

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

56/63

Lecture 18:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s a history state? Deep vs. shallow?

• What is: junction, choice, terminate?

• What is the idea of “deferred events”?

• What is a passive object? Why are passive reactive objects special? What did
we do in that case?

• What’s a behavioural feature? How can it be implemented?

Wrapup: Modelling Behaviour, Reflective

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

57/63

• Lecture 1: Motivation and Overview

• Lecture 2: Semantical Model

• Lecture 3: Object Constraint Language (OCL)
• Lecture 4: OCL Semantics

• Lecture 5: Object Diagrams
• Lecture 6: Class Diagrams I
• Lecture 7: Type Systems and Visibility
• Lecture 8: Class Diagrams II
• Lecture 9: Class Diagrams III

• Lecture 10: Constructive Behaviour, State Machines Overview
• Lecture 11: Core State Machines I
• Lecture 12: Core State Machines II
• Lecture 13: Core State Machines III
• Lecture 14: Core State Machines IV
• Lecture 15: Core State Machines V, Rhapsody
• Lecture 16: Hierarchical State Machines I
• Lecture 17: Hierarchical State Machines II

• Lecture 18: Live Sequence Charts I
• Lecture 19: Live Sequence Charts II

• Lecture 20: Inheritance I
• Lecture 21: Meta-Modelling, Inheritance II

• Lecture 22: Wrapup & Questions



Wrapup: Modelling Behaviour, Reflective

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

58/63

Lecture 18, & 19:

• Educational Objectives: Capabilities for following tasks/questions.

• Is each LSC description of behaviour necessarily reflective?

• There exists another distinction between “inter-object” and “intra-object”
behaviour. Discuss in the context of UML.

• What does this LSC mean?

• Are this UML model’s state machines consistent with the interactions?

• Please provide a UML model which is consistent with this LSC.

• What is: activation (mode, condition), hot/cold condition, pre-chart, cut,
hot/cold location, local invariant, legal exit, hot/cold chart etc.?

Wrapup: Inheritance

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

59/63

• Lecture 1: Motivation and Overview

• Lecture 2: Semantical Model

• Lecture 3: Object Constraint Language (OCL)
• Lecture 4: OCL Semantics

• Lecture 5: Object Diagrams
• Lecture 6: Class Diagrams I
• Lecture 7: Type Systems and Visibility
• Lecture 8: Class Diagrams II
• Lecture 9: Class Diagrams III

• Lecture 10: Constructive Behaviour, State Machines Overview
• Lecture 11: Core State Machines I
• Lecture 12: Core State Machines II
• Lecture 13: Core State Machines III
• Lecture 14: Core State Machines IV
• Lecture 15: Core State Machines V, Rhapsody
• Lecture 16: Hierarchical State Machines I
• Lecture 17: Hierarchical State Machines II

• Lecture 18: Live Sequence Charts I
• Lecture 19: Live Sequence Charts II

• Lecture 20: Inheritance I
• Lecture 21: Meta-Modelling, Inheritance II

• Lecture 22: Wrapup & Questions



Wrapup: Inheritance

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

60/63

Lecture 20 & 21:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s the effect of inheritance on LSCs, State Machines, System States?

• What’s the Liskov Substitution Principle?

• What is commonly understood under (behavioural) sub-typing?

• What is the subset, what the uplink semantics of inheritance?

• What is late/early binding?

• What’s the idea of Meta-Modelling?

Hmm...

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

61/63

• Open book or closed book...?



References

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

62/63

–
2
2
–
2
0
1
5
-0
2
-1
0
–
m
a
in

–

63/63

[Buschermöhle and Oelerink, 2008] Buschermöhle, R. and Oelerink, J. (2008). Rich meta
object facility. In Proc. 1st IEEE Int’l workshop UML and Formal Methods.

[OMG, 2003] OMG (2003). Uml 2.0 proposal of the 2U group, version 0.2,
http://www.2uworks.org/uml2submission.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2.
Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure, version 2.1.2.
Technical Report formal/07-11-02.

[Stahl and Völter, 2005] Stahl, T. and Völter, M. (2005). Modellgetriebene
Softwareentwicklung. dpunkt.verlag, Heidelberg.


