
–
X

–
2
0
1
5
-0
1
-2
7
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture X: Active vs. Passive Objects

2015-01-27

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Active and Passive Objects [Harel and Gery, 1997]

–
X

–
2
0
1
5
-0
1
-2
7
–
m
a
in

–

2/8



What about non-Active Objects?

–
X

–
2
0
1
5
-0
1
-2
7
–
S
a
ct
p
a
ss

–

3/8

Recall:

• We’re still working under the assumption that all classes in the class
diagram (and thus all objects) are active.

• That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.

But the world doesn’t consist of only active objects.

For instance, in the crossing controller from the exercises we could wish to
have the whole system live in one thread of control.

So we have to address questions like:

• Can we send events to a non-active object?

• And if so, when are these events processed?

• etc.

Active and Passive Objects: Nomenclature

–
X

–
2
0
1
5
-0
1
-2
7
–
S
a
ct
p
a
ss

–

4/8

[Harel and Gery, 1997] propose the following (orthogonal!) notions:

• A class (and thus the instances of this class) is either active or passive as
declared in the class diagram.

• An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

• A passive object doesn’t.

• A class is either reactive or non-reactive.

• A reactive class has a (non-trivial) state machine.

• A non-reactive one hasn’t.

Which combinations do we understand?

active passive

reactive ✔ (∗)

non-reactive (✔) (✔)



Passive and Reactive

–
X

–
2
0
1
5
-0
1
-2
7
–
S
a
ct
p
a
ss

–

5/8

• So why don’t we understand passive/reactive?

• Assume passive objects u1 and u2, and active object u,
and that there are events in the ether for all three.

Which of them (can) start a run-to-completion step...?
Do run-to-completion steps still interleave...?

Reasonable Approaches:

• Avoid — for instance, by

• require that reactive implies active for model well-formedness.

• requiring for model well-formedness that events are never sent to
instances of non-reactive classes.

• Explain — here: (following [Harel and Gery, 1997])

• Delegate all dispatching of events to the active objects.

Passive Reactive Classes

–
X

–
2
0
1
5
-0
1
-2
7
–
S
a
ct
p
a
ss

–

6/8

• Firstly, establish that each object u knows, via (implicit) link itsAct ,
the active object uact which is responsible for dispatching events to u.

• If u is an instance of an active class, then ua = u.

C1 C2 D
n

0..1 itsAct

1

itsAct

1

itsAct

1

〈〈signal〉〉

EC1

〈〈signal〉〉

EC2

〈〈signal〉〉

ED

dest

1

dest

1

dest

1



Passive Reactive Classes

–
X

–
2
0
1
5
-0
1
-2
7
–
S
a
ct
p
a
ss

–

6/8

• Firstly, establish that each object u knows, via (implicit) link itsAct ,
the active object uact which is responsible for dispatching events to u.

• If u is an instance of an active class, then ua = u.

u1 : C1 ud : C2 ua : D
n

itsAct
itsAct

itsAct

Sending an event:

• Establish that of each signal we have
a version EC with an association
dest : C0,1, C ∈ C .

• Then n!E in u1 : C1 becomes:

• Create an instance ue of EC2
and set

ue’s dest to ud := σ(u1)(n).

• Send to ua := σ(σ(u1)(n))(itsAct),
i.e., ε′ = ε⊕ (ua, ue).

Dispatching an event:

• Observation: the ether only has
events for active objects.

• Say ue is ready in the ether for ua.

• Then ua asks σ(ue)(dest) = ud to
process ue — and waits until com-
pletion of corresponding RTC.

• ud may in particular discard event.

–
X

–
2
0
1
5
-0
1
-2
7
–
m
a
in

–

8/8

[Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object
modeling with statecharts. IEEE Computer, 30(7):31–42.


