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Principle:

© when entering a region without a specific destination state,

 then go to a state which is destination of an initiation transition,

 execute the action of the chosen initiation transitions between exit and
entry actions.

Special case: the region of top.

o If class C has a state-machine, then “create-C' transformer’

is the concatenation of

@ the transformer of the “constructor” of C' (here not introduced explicitly) and

* a transformer corresponding to one initiation transition of the top region.

Contents & Goals

Last Lecture:
o Hierarchical State Machine Syntax
o Entry/Exit Actions

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.
* What does this State Machine mean? What happens if | inject this event?
» Can you please model the following behaviour.
* What does this hierarchical State Machine mean? What may happen if |
inject this event?
o What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ..

Content:

o Initial and Final State
« Composite State Semantics
® The Rest

»

Towards Final States: Completion of States

o Transitions without trigger can cériceptienally be viewed as being sensitive

for the “completion event”.
o Dispatching (here: E) can then alternatively be viewed as
(i) fetch event (here: I) from the ether,
(ii) take an enabled transition (here: to s3),
(iii) remove event from the ether,

(iv) after having finished entry and do action of current state (here: s;) — the
state is then called completed —,

(v) raise a completion event — with strict priority over events from ether!

if there is a transition enabled which is sensitive for the completion event,

: o then take it (here: (s, 53))-

© otherwise become stable.
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Initial Pseudostates and Final States

Final States

s ] annot -®

o If

© a step of object u moves u into a final state (s, fin), and

o all ng regions are in a final state,

n event for the current composite state s

then (conceptionally) a comple
is raised.

verse of child) of s enabled

If there is a transition of a parent state (i.e
which is sensitive for the completion event,

e then take that transition,

o otherwise kill u

~+ adjust (2.) and (3.) in the semantics accordingly

One consequence:
u never “survives" reaching a state (s, fin) with s € child(top).



Composite States

(formalisation follows [Damm et al., 2003])

Recall: Syntax

translates to

({(top. st). (s.st). (s1. 5t) (s} 5t) (52. 5t) (s 5t) (53, 5t) (s5. 51)}.

S kind

{top s s = ({15} {0, 5} {5, 53} 51 0,5 = 0

§ region

—, 1, annot)

Composite States

o In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

o Idea: in Tron, for the Player's Statemachine,
instead of

write

Syntax: Fork/Join

ple sources

© For brevity, we always consider transitions with (possibly) mul
and targets,

v (=)= (25\0) x 25\ 0)

o For instance,

\

translates to

k4
(. kind, region CWV {t1 = ({2, 83}, {s5,36})}, {t1 = (Ir, gd, act)})
% annot

tab (o3 141)

« Naming convention: ©(t) = (source(t), target(t)).
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Composite States

and instead of

write

1-22 - Shierstm
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Composite States: Blessing or Curse?

States:

o what are legal state
configurations?

what is the type of the
i st attribute?

Transitions:

* what are legal transi-
tions? efges”

i '» when is a transition en-

abled?

what effects do transi-

tions have?

A Partial Order on States

what may happen on E?

what may happen on E, F?

can E, G

the object?

The substate- (or child-) relation induces a partial order on states:

o top <s, forall s €S,

o s< ¢, forall ' € child(s),

o transitive, reflexive, antisymmetric,

o s’ < sands” < simplies s’ <s” ors” <s'.

12/30

14/30

State Configuration

« The type of st is from now on a set of states, i.e. st : 2%

o Aset S; C S is called (legal) state configurations if and only if

o top € Sy, and

o for each state s € Sy, for each non-empty region § # R € region(s),
exactly one (non pseudo-state) child of s (from R) is in Sy, i.e

[{s0 € R | kind(so) € {st, fin}} 1 Sy = 1.

S=fsf X Chp plsug)
S=fu, byl K (o dil of Bphrpen)

$= M‘ra!uh ,\
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Least Common Ancestor and Ting
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o The least common ancestor is the function lca : 2%\ {#} — S such that

o The states in S are (trans

e) children of lca(S))

lea(Sy) < s, foralls € S; C S,

o lca(Sy) is minimal, i.e. if § < s for all s € Sy, then § < lca(S))

o Note: lca(S1) exists for all S} C S (last candidate: top). W!Nm&u.‘.ﬂu 1%

State Configuration

» The type of st is from now on a set of states, i.e. st : 2°
e Aset S) C S is called (legal) state configurations if and only if
e top € Sy, and

o for each state s € Sy, for each non-empty region ) # R € region(s),
exactly one (non pseudo-state) child of s (from R) is in Sy, i.e

[{s0 € R | kind(so) € {st, fin}} N Sy = 1.

Examples:

5
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Least Common Ancestor and Ting
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» Two states s1, 52 € S are called orthogonal, denoted s; L s, if and only if

o they are unordered, i.e. s; £ s3 and sy £ s1, m:m. onods .&.&\

o they "live” in different regions of an AND-state,

/

s, region(s) = {1,

JSu} 31 <i#j<n:sy € child® (Si)Asy € child* (S;),
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Least Common Ancestor and Ting Legal Transitions (€|

tent, denoted by | S, A hiearchical state-machine (S, kind, region, —, 1, annot) is called
well-formed if and only if for all transitions ¢ €—,

o A set of states S; C S is called con
if and only if for each 5,5’ € Sy,

e s<s or @Tc source and destination are consistent, ie. | source(t) and | target(1)]

ii) source (and destination) states are pairwise orthogonal, i

o s <s or

o sl o forall sgs’ € source(t) (€ target(t)), s L s,

the top state is neither
source nor destination, i

o top ¢ source(t) U source(t).

© Recall: final states are
not sources of transitions.
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