
–
1
8
–
2
0
1
5
-0
1
-2
2
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 18: Hierarchical State Machines II

2015-01-22

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
p
re
li
m

–

2/30

Last Lecture:

• Hierarchical State Machine Syntax

• Entry/Exit Actions

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What does this hierarchical State Machine mean? What may happen if I
inject this event?

• What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, . . .

• Content:

• Initial and Final State

• Composite State Semantics

• The Rest

Initial Pseudostates and Final States

–
1
8
–
2
0
1
5
-0
1
-2
2
–
m
a
in

–

3/30

Initial Pseudostate

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
in
it
fi
n
–

4/30

•

s0

s

s1
s2

s3

/act1

annot

•
/act2

Principle:

• when entering a region without a specific destination state,

• then go to a state which is destination of an initiation transition,

• execute the action of the chosen initiation transitions between exit and
entry actions.

Special case: the region of top.

• If class C has a state-machine, then “create-C transformer” is the concatenation of

• the transformer of the “constructor” of C (here not introduced explicitly) and

• a transformer corresponding to one initiation transition of the top region.

Towards Final States: Completion of States

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
in
it
fi
n
–

5/30

s1 s2 s3
E/act1 /act2

• Transitions without trigger can conceptionally be viewed as being sensitive
for the “completion event”.

• Dispatching (here: E) can then alternatively be viewed as

(i) fetch event (here: E) from the ether,

(ii) take an enabled transition (here: to s2),

(iii) remove event from the ether,

(iv) after having finished entry and do action of current state (here: s2) — the
state is then called completed —,

(v) raise a completion event — with strict priority over events from ether!

(vi) if there is a transition enabled which is sensitive for the completion event,

• then take it (here: (s2, s3)).

• otherwise become stable.

Final States

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
in
it
fi
n
–

6/30

s annot

• If

• a step of object u moves u into a final state (s, fin), and

• all sibling regions are in a final state,

then (conceptionally) a completion event for the current composite state s
is raised.

• If there is a transition of a parent state (i.e., inverse of child) of s enabled
which is sensitive for the completion event,

• then take that transition,

• otherwise kill u

 adjust (2.) and (3.) in the semantics accordingly

• One consequence:
u never “survives” reaching a state (s, fin) with s ∈ child(top).

Composite States

(formalisation follows [Damm et al., 2003])

–
1
8
–
2
0
1
5
-0
1
-2
2
–
m
a
in

–

7/30

Composite States

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

8/30

• In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

• Idea: in Tron, for the Player’s Statemachine,
instead of

n

•
w e

s

resigned

X/
X/

X/

X/

write

•

n

•
w e

s

resigned

X/

Composite States

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

9/30

and instead of

n

fastN

•

wfW e

fE

s

fS

F/

F/

write

•

n

•
w e

s

•
slow

fast

F/F/

Recall: Syntax

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

10/30

s

s1 s2 s3

s′
1

s′
2

s′
3

translates to

({(top, st), (s, st), (s1, st)(s
′

1, st)(s2, st)(s
′

2, st)(s3, st)(s
′

3, st)}
︸ ︷︷ ︸

S,kind

,

{top 7→ {s}, s 7→ {{s1, s
′

1}, {s2, s
′

2}, {s3, s
′

3}}, s1 7→ ∅, s′1 7→ ∅, . . . }
︸ ︷︷ ︸

region

,

→, ψ, annot)

Syntax: Fork/Join

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

11/30

• For brevity, we always consider transitions with (possibly) multiple sources
and targets, i.e.

ψ : (→) → (2S \ ∅)× (2S \ ∅)

• For instance,

s1

s2

s3

s4

s5

s6

tr [gd]/act

translates to

(S, kind , region, {t1}
︸︷︷︸

→

, {t1 7→ ({s2, s3}, {s5, s6})}
︸ ︷︷ ︸

ψ

, {t1 7→ (tr , gd , act)}
︸ ︷︷ ︸

annot

)

• Naming convention: ψ(t) = (source(t), target(t)).

Composite States: Blessing or Curse?

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

12/30

•

•
s1

s2
•
s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/ • what may happen on E?

• what may happen on E, F?

• can E, G kill the object?

• ...

States:

• what are legal state

configurations?

• what is the type of the
implicit st attribute?

Transitions:

• what are legal transi-
tions?

• when is a transition en-
abled?

• what effects do transi-
tions have?

State Configuration

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

13/30

• The type of st is from now on a set of states, i.e. st : 2S

• A set S1 ⊆ S is called (legal) state configurations if and only if

• top ∈ S1, and

• for each state s ∈ S1, for each non-empty region ∅ 6= R ∈ region(s),
exactly one (non pseudo-state) child of s (from R) is in S1, i.e.

|{s0 ∈ R | kind(s0) ∈ {st, fin}} ∩ S1| = 1.

• Examples:

s

s1
s2

s3

State Configuration

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

13/30

• The type of st is from now on a set of states, i.e. st : 2S

• A set S1 ⊆ S is called (legal) state configurations if and only if

• top ∈ S1, and

• for each state s ∈ S1, for each non-empty region ∅ 6= R ∈ region(s),
exactly one (non pseudo-state) child of s (from R) is in S1, i.e.

|{s0 ∈ R | kind(s0) ∈ {st, fin}} ∩ S1| = 1.

• Examples:

s

s1 s2 s3

s′
1

s′
2

s′
3

A Partial Order on States

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

14/30

The substate- (or child-) relation induces a partial order on states:

• top ≤ s, for all s ∈ S,

• s ≤ s′, for all s′ ∈ child(s),

• transitive, reflexive, antisymmetric,

• s′ ≤ s and s′′ ≤ s implies s′ ≤ s′′ or s′′ ≤ s′.

s

s1
s2

s3

s′

s′
1

s′
2

s′
3

s′′
1

s′′
2

s′′
3

Least Common Ancestor and Ting

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

15/30

• The least common ancestor is the function lca : 2S \ {∅} → S such that

• The states in S1 are (transitive) children of lca(S1), i.e.

lca(S1) ≤ s, for alls ∈ S1 ⊆ S,

• lca(S1) is minimal, i.e. if ŝ ≤ s for all s ∈ S1, then ŝ ≤ lca(S1)

• Note: lca(S1) exists for all S1 ⊆ S (last candidate: top).

s

s1
s2

s3

s′

s′
1

s′
2

s′
3

s′′
1

s′′
2

s′′
3

Least Common Ancestor and Ting

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

16/30

• Two states s1, s2 ∈ S are called orthogonal, denoted s1 ⊥ s2, if and only if

• they are unordered, i.e. s1 6≤ s2 and s2 6≤ s1, and

• they “live” in different regions of an AND-state, i.e.

∃ s, region(s) = {S1, . . . , Sn} ∃ 1 ≤ i 6= j ≤ n : s1 ∈ child
∗(Si)∧s2 ∈ child

∗(Sj),

s

s1
s2

s3

s′

s′
1

s′
2

s′
3

s′′
1

s′′
2

s′′
3

Least Common Ancestor and Ting

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

17/30

• A set of states S1 ⊆ S is called consistent, denoted by ↓ S1,
if and only if for each s, s′ ∈ S1,

• s ≤ s′, or

• s′ ≤ s, or

• s ⊥ s′.

s

s1
s2

s3

s′

s′
1

s′
2

s′
3

s′′
1

s′′
2

s′′
3

Legal Transitions

–
1
8
–
2
0
1
5
-0
1
-2
2
–
S
h
ie
rs
tm

–

18/30

A hiearchical state-machine (S, kind , region,→, ψ, annot) is called
well-formed if and only if for all transitions t ∈→,

(i) source and destination are consistent, i.e. ↓ source(t) and ↓ target(t),

(ii) source (and destination) states are pairwise orthogonal, i.e.

• forall s, s′ ∈ source(t) (∈ target(t)), s ⊥ s′,

(iii) the top state is neither
source nor destination, i.e.

• top /∈ source(t) ∪ source(t).

• Recall: final states are
not sources of transitions.

Example:

•

•
s1

s2
•
s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

References

–
1
8
–
2
0
1
5
-0
1
-2
2
–
m
a
in

–

29/30

–
1
8
–
2
0
1
5
-0
1
-2
2
–
m
a
in

–

30/30

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs.
rhapsody statecharts: not all models are created equal. Software and Systems
Modeling, 6(4):415–435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A
formal semantics for a UML kernel language 1.2. IST/33522/WP
1.1/D1.1.2-Part1, Version 1.2.

[Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L.,
Haverkort, B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume
4346 of LNCS, pages 244–260. Springer.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics
of statecharts. In Ehrig, H., Damm, W., Große-Rhode, M., Reif, W., Schnieder, E.,
and Westkämper, E., editors, Integration of Software Specification Techniques for
Applications in Engineering, number 3147 in LNCS, pages 325–354.
Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

