— 18 — 2015-01-22 — main —

Software Design, Modelling and Analysis in UML

Lecture 18: Hierarchical State Machines 11

2015-01-22

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 18 — 2015-01-22 — Sprelim —

Last Lecture:

e Hierarchical State Machine Syntax
e Entry/Exit Actions

This Lecture:

¢ Educational Objectives: Capabilities for following tasks/questions.
e What does this State Machine mean? What happens if | inject this event?
e Can you please model the following behaviour.

e What does this hierarchical State Machine mean? What may happen if |
inject this event?

e What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...

e Content:

e Initial and Final State
e Composite State Semantics
e The Rest

— 18 — 2015-01-22 — main —

Initial Pseudostates and Final States

Initial Pseudostate

— 18 — 2015-01-22 — Sinitfin —

o /acty

\,Lnot,,

Principle:
e when entering a region without a specific destination state,
e then go to a state which is destination of an initiation transition,

e execute the action of the chosen initiation transitions between exit and
entry actions.

Special case: the region of top.
o If class C has a state-machine, then “create-C transformer” is the concatenation of
o the transformer of the “constructor” of C' (here not introduced explicitly) and

e a transformer corresponding to one initiation transition of the top region.

Towards Final States: Completion of States

E/acty lx¥€c16*152
/sc{(.'!;
e Transitions without trigger can c¢nceptienally be viewed as being sensitive
for the “completion event”. @

o Dispatching (here: E) can then alternatively be viewed as

(i) fetch event (here: E) from the ether,

(ii) take an enabled transition (here: to s2),
(iii) remove event from the ether,
(iv) after having finished entry and do action of current state (here: ss) — the

state is then called completed —,
(v) raise a completion event — with strict priority over events from ether!
(vi) if there is a transition enabled which is sensitive for the completion event,

o then take it (here: (s2,s3)).

e otherwise become stable.

— 18 — 2015-01-22 — Sinitfin —

Final States

s)t g

o If
e a step of object u moves w into a final state (s, fin), and
e all sibling regions are in a final state,

then (conceptionally) a completion event for the current composite state s
is raised.

o If there is a transition of a parent state (i.e., inverse of child) of s enabled
which is sensitive for the completion event,

e then take that transition,

e otherwise kill «

~ adjust (2.) and (3.) in the semantics accordingly

One consequence:
u never “survives’ reaching a state (s, fin) with s € child(top).

— 18 — 2015-01-22 — Sinitfin —

Composite States
(formalisation follows [Damm et al., 2003])

— 18 — 2015-01-22 — main —

7/30

Composite States

¢ In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

e Idea: in Tron, for the Player's Statemachine,
instead of

write

resigned resigned

— 18 — 2015-01-22 — Shierstm —

8/30

Composite States

and instead of

— 18 — 2015-01-22 — Shierstm —

Recall: Syntax

—
|/

a
w

1

VA w

ﬂ ﬂ
—_

translates to

({(top, st), (s, st), (s1,st)(s], 5;12(82, st)(sh, st)(s3, st)(sh, st)},
S, kind

itOp Hi{’SR S {{Sla Sll}a {527 8I2}7 {837 Sé}}a 51+ (07 Sll = (Z)v s];7

region

—, 1, annot)

— 18 — 2015-01-22 — Shierstm —

10/30

Syntax: Fork/Join

— 18 — 2015-01-22 — Shierstm —

o For brevity, we always consider transitions with (possibly) multiple sources
and targets, i.e.

¥ (=) = (29\0) x (2°\0)

e For instance,

translates to

(&)
(Sv kind, region, {tl}a {tl = ({827 33}7 {857 86})}7 {tl = (t’f’, gd7 aCt)})
~~

Vv
annot

P
tLap (fs,f, {59])
o Naming convention: ¢ (t) = (source(t), target(t)).

11/30

Composite States: Blessing or Curse?

States:
e what are legal state
configurations?

e what is the type of the
implicit st attribute?

Transitions:

e what are legal transi-
tionst ﬂed?

1e when is a transition en-

4 abled?

| e what effects do transi-
tions have?

State Configuration

what may happen on E?

what may happen on FE, F7?

can E, G kill the object?

o The type of st is from now on a set of states, i.e. st : 2°

o Aset S; C S is called (legal) state configurations if and only if

e top € S1, and

o for each state s € Sy, for each non-empty region () # R € region(s),
exactly one (non pseudo-state) child of s (from R) is in Sy, i.e.

e Examples:

— 18 — 2015-01-22 — Shierstm —

[{so € R | kind(so) € {st, fin}} N S1| = 1.

S={2 X ébp)u.'gsx,v)
S=1s, 095 K (w dd of fp’s r?.h)

$= 54’?:5!527 \/

12/30

13/30

State Configuration

o The type of st is from now on a set of states, i.e. st : 2°
o Aset S; C S is called (legal) state configurations if and only if

e top € 51, and

o for each state s € Sy, for each non-empty region () # R € region(s),
exactly one (non pseudo-state) child of s (from R) is in Sy, i.e.

{so € R | kind(so) € {st, fin}} NSy =1.

e Examples:

S:{JW,S' S1, SZISSS (/

S \

NOTE: S tan be «éé/rw'mép/ S

{57‘ S, 553

— 18 — 2015-01-22 — Shierstm —

13/30

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:
e top <s, forall se€ S,

o s < ¢, forall s € child(s),

e transitive, reflexive, antisymmetric,

o s’ <sands”" <simplies s’ <s” ors” <5

— 18 — 2015-01-22 — Shierstm —

14/30

Least Common Ancestor and Ting

o The least common ancestor is the function lca : 25\ {#)} — S such that

o The states in S; are (transitive) children of lca(S}), i.e.

lea(S1) < s, for alls € S; C S,

o lca(S1) is minimal, i.e. if § < s for all s € 51, then § < lca(S7)

e Note: lca(S) exists for all S; C S (last candidate: top).

— 18 — 2015-01-22 — Shierstm —
a
[\

Least Common Ancestor and Ting

e Two states s1, so € S are called orthogonal, denoted s; L so, if and only if

e they are unordered, i.e. s1 £ s9 and sy £ s1, and
o they “live” in different regions of an AND-state, i.e.

Nasstine)

Js, region(s) = {S1,..., 8.} 1L <i# j<n:sy € child"(S;)As2 € child*(S;),

0
i
e 4
N
[V
%

R
“N

‘
c
i N- .s
(%J N Some 'Ca'\‘ﬁ- &
|
]
z
=
&
I
ee]
n

16/30

Least Common Ancestor and Ting

o A set of states 57 C S is called consistent, denoted by | 57,
if and only if for each s,s" € Sy,
e s< ¢, or
o s’ <s, or

o 51 ¢g.

— 18 — 2015-01-22 — Shierstm —

17/30

Legal Transitions (€|

A hiearchical state-machine (S, kind, region, —, 1, annot) is called
weII formed if and only if for all transitions ¢t €—,

@ (i) source and destination are consistent, i.e. | source(t) and | target(t)}
(ii) source (and destination) states are pairwise orthogonal, i.e.

o forall sgs’ € source(t) (€ target(t)), s L &,

iii) the top state is neither
() sourcepnor destination, i.e. ‘A/.\ } \
o top ¢ source(t) U source(t). - i N
1
e Recall: final states are i “}E/
not sources of transitions. i \ »

I
I P
|
L

Example: \\

— 18 — 2015-01-22 — Shierstm —

18/30

— 18 — 2015-01-22 — main —

— 18 — 2015-01-22 — main —

References

29/30

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs.
rhapsody statecharts: not all models are created equal. Software and Systems

Modeling, 6(4):415-435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A
formal semantics for a UML kernel language 1.2. IST/33522/WP
1.1/D1.1.2-Part1, Version 1.2.

[Fecher and Schénborn, 2007] Fecher, H. and Schénborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L.,
Haverkort, B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume

4346 of LNCS, pages 244-260. Springer.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics
of statecharts. In Ehrig, H., Damm, W., GroBe-Rhode, M., Reif, W., Schnieder, E.,
and Westkamper, E., editors, Integration of Software Specification Techniques for
Applications in Engineering, number 3147 in LNCS, pages 325-354.
Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

30

30

