— 15 — 2015-01-08 — main —

Software Design, Modelling and Analysis in UML

Lecture 15: Hierarchical State Machines [

ot CO(L S}'Q-Lc HG-CLAMJ.Y

2015-01-08

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 15 — 2015-01-08 — Sprelim —

Last Lecture:
e RTC-Rules: Discard, Dispatch, Commence, == Step, RTC

This Lecture:

o Educational Objectives: Capabilities for following tasks/questions.

What does this State Machine mean? What happens if | inject this event?

Can you please model the following behaviour.

What is: initial state.

What does this hierarchical State Machine mean? What may happen if |

inject this event?

What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, ...

e Content:

Transformer: Create and Destroy, Divergence

e Putting It All Together
o Hierarchical State Machines Syntax

— 15 — 2015-01-08 — main —

Missing Transformers: Create and Destroy

Transformer: Create

— 15 — 2015-01-08 — Sactnewkill —

abstract syntax concrete syntax
create(C, expr,v) exproV o= s C
intuitive semantics
Create an object of class C' and assign it to attribute v of the
object denoted by expression expr.
well-typedness
expr : Tp, v € atr(D),
atr(C) = {{vi : 71, expr?) | 1 <i < n}
semantics

observables
(error) conditions

ITexpr?] (o, uy) not defined for some i.

IF NEEDED: oy = hew &
frp, = N €y
Xz w,.% rﬂ.‘o)‘j

G NOT: x = (nas €)x + (ead)y,

&d: = hew Cf‘/l/'
o NOT: w (:«(.(0537 7 NEED *::,o ‘i (0.5),

Transformer: Create

— 15 — 2015-01-08 — Sactnewkill —

abstract syntax concrete syntax
create(C, expr,v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the
object denoted by expression expr.
well-typedness
expr : Tp, v € atr(D),
atr(C) = {{vi : 1i, expr?) | 1 <i < n}
semantics

observables

(error) conditions
ITexpr?] (o, uy) not defined for some i.

o We use an “and assign”-action for simplicity — it doesn't add or remove ex-
pressive power, but moving creation to the expression language raises all kinds
of other problems such as order of evaluation (and thus creation).

o Also for simplicity: no parameters to construction (~ parameters of constructor).
Adding them is straightforward (but somewhat tedious).

Create Transformer Example

— 15 — 2015-01-08 — Sactnewkill —

SMe: @ /B = new CID

create(C, expr,v)

tcreate(C,ezpr,v) [uE](U7 E) = .

q
Q
)

S
Il
=

Create Transformer Example

— 15 — 2015-01-08 — Sactnewkill —

SMc: s / Rn = new O
1
create(C, expr,v)
tcreate(C,ezpr,v) [um](m 5) = .
g d:D
n=10

=D lnt)
(won - dut: c.LO\Zb,)

How To Choose New Identities?

— 15 — 2015-01-08 — Sactnewkill —

e Re-use: choose any identity that is not alive now, i.e. not in dom(o).

e Doesn’t depend on history.

e

X %

o May “undangle” dangling references — may happen on some platforms.

&

o Fresh: choose any identity that has not been alive ever, i.e. not in dom(o)
and any predecessor in current run.

e Depends on history.

e Dangling references remain dangling — could mask “dirty” effects of

platform.

Transformer: Create

— 15 — 2015-01-08 — Sactnewkill —

ohose
Vv atx-
fowsts
b wo

’/ o' =olug = o(up) v — ul]U{u— {v;—d; | 1 <i<n}}
oD)EE

abstract syntax concrete syntax
create(C, expr,v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the
object denoted by expression expr.
well-typedness
expr : Tp, v € atr(D),
atr(C) = {(vi : 7i, exprd) | 1 <i < n}
semantics d of wew ab Z ey ol ject swua'las
((J’ E)a (Ulv EI) €t / Seud
iff

e’ =[ul(e); ue 2(C) fresh, i.e. u & dom(o);
ug ={1[ezpr](o,uz); di = I[exprd](o, uy) if exprd £ F¢’

A and d; € 2(7;) otherwise (non-determinism). 9
observables CRANM 1o
Obscreate [ux] = {(ua:a 1, (*a @), U,)}
(error)| conditions - 'l[u

I[expr](c,us;) not defined.

Clean elﬂw

Transformer: Destroy

— 15 — 2015-01-08 — Sactnewkill —

abstract syntax concrete syntax

destroy(ezpr) clolode o
m—w . /
intuitive semantics

Destroy the object denoted by expression expr.
well-typedness
expr :17c, C €6

semantics

observables ool

Obsdestroy[ux] - {(Ux, J_, (—}—’ @)’ U)}
(error) conditions R____—aofq

I[expr](o,uy) not defined.

Destroy Transformer Example

— 15 — 2015-01-08 — Sactnewkill —

SMc: - Eﬁ
¢ @ /@delete n[X\ @ >

destroy(expr)

tdestroy(ezpr) [um](g7 E) = ooo

What to Do With the Remaining Objects?

— 15 — 2015-01-08 — Sactnewkill —

e allow dangling references?
e or remove ug from o(u1)(n)?

Assume object ug is destroyed.by vy - = vyt
e object u; may still refer to it via association n:
pzal

e object uy may have been the last one linking to object wus:

e leave uy alone?

e or remove us also?

o Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This is in line with “expect the worst”, because there are target platforms which
don't provide garbage collection — and models shall (in general) be correct without
assumptions on target platform.

But: the more “dirty” effects we see in the model, the more expensive it often is to
analyse. Valid proposal for simple analysis: monotone frame semantics, no

destruction at all.
10/42

Transformer: Destroy

— 15 — 2015-01-08 — Sactnewkill —

— 15 — 2015-01-08 — main —

abstract syntax concrete syntax
destroy(ezpr)
intuitive semantics
Destroy the object denoted by expression expr.
well-typedness
expr :17c, C €6

semantics , Sz

t[uz)(o,€) = (U/’E) 1€"'°‘/‘“’l V@’l"&’é“ﬂ

where 0’ = 0]qom(o)\{u} With u = I[expr](c, us).
observables
ObSdestroy[“x] = {(ux> L1, (+» m’ u)}
(error) conditions
I[expr](o,uz) not defined.

Step and Run-to-completion Step

11/42

12/42

Notions of Steps: The Step

— 15 — 2015-01-08 — Sstmstep —

(cons,Snd)
EE——

Note: we call one evolution (o,) (o',€') a step.

Thus in our setting, a step directly corresponds to
one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)
That is: We're going for an interleaving semantics without true parallelism.

Remark: With only methods (later), the notion of step is not so clear.
For example, consider

e ¢ calls £() at ¢y, which calls g() at ¢; which in turn calls h() for c,.

e Is the completion of h() a step?

e Or the completion of £()7?

e Or doesn't it play a role?

It does play a role, because constraints/invariants are typically (= by convention)

assumed to be evaluated at step boundaries, and sometimes the convention is meant
to admit (temporary) violation in between steps. 13/42

Notions of Steps: The Run-to-Completion Step

— 15 — 2015-01-08 — Sstmstep —
8

What is a run-to-completion step...?

e Intuition: a maximal sequence of steps, where the first step is a dispatch
step and all later steps are commence steps.

e Note: one step corresponds to one transition in the state machine.
A run-to-completion step is in general not syntacically definable — one
transition may be taken multiple times during an RTC-step.

[X?OI/)(;: X-17
Example:
Elz > 0]/

(=T [x=]

14/42

Q

Notions of Steps: The RTC Step Cont’d

Proposal: Let

(conso,Sndp) (consn—1,5ndn—1)
(00, €0) ” - > (On,en), n >0,
"

be a finite (!), non-empty, maximal, consecutive sequence such that

e object u is alive in oy,
e ug = u and (consg, Sndyp) indicates dispatching to u, i.e. cons = {(u, ¥ — @}7

e there are no receptions by w in between, i.e.
cons; N {u} x Evs(&,2) =0,i > 1,
e u,_1 =wu and u is stable only in oy and o, i.e.
oo(u)(stable) = o, (u)(stable) = 1 and o;(u)(stable) =0 for 0 < i < n,

Let 0 = k1 < ko < --- < ky = n be the maximal sequence of indices such that
up, = u for 1 <7 < N. Then we call the sequence

i

— 15 — 2015-01-08 — Sstmstep —

(0(u) =) Ok, (W), Oy (W) -+ Oky (u) - (= On1(u))
a (!) run-to-completion computation of u (from (local) configuration oo(u)). 5 ,,
Divergence

We say, object u can diverge on reception cons from (local) configuration
oo(u) if and only if there is an infinite, consecutive sequence

(conso,Sndo) (cons1,Snd1)

(00,€0) (o1,€1)

such that u doesn’t become stable again.

o Note: disappearance of object not considered in the definitions.
By the current definitions, it's neither divergence nor an RTC-step.

.BD—E%EQ

16/42

— 15 — 2015-01-08 — Sstmstep —

Run-to-Completion Step: Discussion.

— 15 — 2015-01-08 — Sstmstep —

— 15 — 2015-01-08 — main —

What people may on our definition of RTC-step is that it takes a

global and non-compositional view. That is:

e In the projection onto a single object we still see the effect of interaction with
other objects.

o Adding classes (or even objects) may change the divergence behaviour of existing
ones.

e Compositional would be: the behaviour of a set of objects is determined by the

behaviour of each object “in isolation”.
Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step
is an interleaving of local ones?
Maybe: Strict interfaces. (Proof left as exercise...)

e (A): Refer to private features only via “self”.
(Recall that other objects of the same class can modify private attributes.)

e (B): Let objects only communicate by events, i.e.

don't let them modify each other’s local state via links at all.
17/42

References

41/42

— 15 — 2015-01-08 — main —

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs.
rhapsody statecharts: not all models are created equal. Software and Systems

Modeling, 6(4):415-435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A
formal semantics for a UML kernel language 1.2. IST/33522/WP
1.1/D1.1.2-Part1, Version 1.2.

[Fecher and Schénborn, 2007] Fecher, H. and Schdnborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L.,
Haverkort, B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume
4346 of LNCS, pages 244-260. Springer.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics
of statecharts. In Ehrig, H., Damm, W., GroBe-Rhode, M., Reif, W., Schnieder, E.,
and Westkamper, E., editors, Integration of Software Specification Techniques for
Applications in Engineering, number 3147 in LNCS, pages 325-354.
Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

[Storrle, 2005] Storrle, H. (2005). UML 2 fiir Studenten. Pearson Studium.

42/42

