
–
1
5
–
2
0
1
5
-0
1
-0
8
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 15: Hierarchical State Machines I

2015-01-08

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
p
re
li
m

–

2/42

Last Lecture:

• RTC-Rules: Discard, Dispatch, Commence. item Step, RTC

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• What is: initial state.

• What does this hierarchical State Machine mean? What may happen if I
inject this event?

• What is: AND-State, OR-State, pseudo-state, entry/exit/do, final state, . . .

• Content:

• Transformer: Create and Destroy, Divergence

• Putting It All Together

• Hierarchical State Machines Syntax



Missing Transformers: Create and Destroy

–
1
5
–
2
0
1
5
-0
1
-0
8
–
m
a
in

–

3/42

Transformer: Create

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
a
ct
n
ew

k
il
l
–

4/42

abstract syntax concrete syntax

create(C, expr , v)
intuitive semantics

Create an object of class C and assign it to attribute v of the
object denoted by expression expr .

well-typedness

expr : τD, v ∈ atr(D),
atr(C) = {〈v1 : τ1, expr

0
i 〉 | 1 ≤ i ≤ n}

semantics

. . .
observables

. . .
(error) conditions

IJexpr0i K(σ, ux) not defined for some i.



Transformer: Create

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
a
ct
n
ew

k
il
l
–

4/42

abstract syntax concrete syntax

create(C, expr , v)
intuitive semantics

Create an object of class C and assign it to attribute v of the
object denoted by expression expr .

well-typedness

expr : τD, v ∈ atr(D),
atr(C) = {〈v1 : τ1, expr

0
i 〉 | 1 ≤ i ≤ n}

semantics

. . .
observables

. . .
(error) conditions

IJexpr0i K(σ, ux) not defined for some i.

• We use an “and assign”-action for simplicity — it doesn’t add or remove ex-
pressive power, but moving creation to the expression language raises all kinds
of other problems such as order of evaluation (and thus creation).

• Also for simplicity: no parameters to construction (∼ parameters of constructor).
Adding them is straightforward (but somewhat tedious).

Create Transformer Example

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
a
ct
n
ew

k
il
l
–

5/42

SMC :
s1 s2

/ . . . ;n := new C; . . .

create(C, expr , v)

tcreate(C,expr ,v)[ux](σ, ε) = ...

σ: d : D

n = ∅

:σ′

ε: :ε′



Create Transformer Example

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
a
ct
n
ew

k
il
l
–

5/42

SMC :
s1 s2

/ . . . ;n := new C; . . .

create(C, expr , v)

tcreate(C,expr ,v)[ux](σ, ε) = ...

σ: d : D

n = ∅

:σ′

ε: :ε′

How To Choose New Identities?

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
a
ct
n
ew

k
il
l
–

6/42

• Re-use: choose any identity that is not alive now, i.e. not in dom(σ).

• Doesn’t depend on history.

• May “undangle” dangling references – may happen on some platforms.

• Fresh: choose any identity that has not been alive ever, i.e. not in dom(σ)
and any predecessor in current run.

• Depends on history.

• Dangling references remain dangling – could mask “dirty” effects of
platform.



Transformer: Create

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
a
ct
n
ew

k
il
l
–

7/42

abstract syntax concrete syntax

create(C, expr , v)
intuitive semantics

Create an object of class C and assign it to attribute v of the
object denoted by expression expr .

well-typedness

expr : τD, v ∈ atr(D),
atr(C) = {〈v1 : τ1, expr

0
i 〉 | 1 ≤ i ≤ n}

semantics

((σ, ε), (σ′, ε′)) ∈ t

iff
σ′ = σ[u0 7→ σ(u0)[v 7→ u]] ∪ {u 7→ {vi 7→ di | 1 ≤ i ≤ n}},

ε′ = [u](ε); u ∈ D(C) fresh, i.e. u 6∈ dom(σ);
u0 = IJexprK(σ, ux); di = IJexpr0i K(σ, ux) if expr

0
i 6= ‘ ’

and di ∈ D(τi) otherwise (non-determinism).
observables

Obscreate[ux] = {(ux,⊥, (∗, ∅), u)}
(error) conditions

IJexprK(σ, ux) not defined.

Transformer: Destroy

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
a
ct
n
ew

k
il
l
–

8/42

abstract syntax concrete syntax

destroy(expr)
intuitive semantics

Destroy the object denoted by expression expr .
well-typedness

expr : τC , C ∈ C

semantics

. . .
observables

Obsdestroy[ux] = {(ux,⊥, (+, ∅), u)}
(error) conditions

IJexprK(σ, ux) not defined.



Destroy Transformer Example

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
a
ct
n
ew

k
il
l
–

9/42

SMC :
s1 s2

/ . . . ; delete n; . . .

destroy(expr)

tdestroy(expr)[ux](σ, ε) = ...

σ: c : C : Cn :σ′

ε: :ε′

What to Do With the Remaining Objects?

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
a
ct
n
ew

k
il
l
–

10/42

Assume object u0 is destroyed. . .

• object u1 may still refer to it via association r:

• allow dangling references?

• or remove u0 from σ(u1)(r)?

• object u0 may have been the last one linking to object u2:

• leave u2 alone?

• or remove u2 also?

• Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This is in line with “expect the worst”, because there are target platforms which
don’t provide garbage collection — and models shall (in general) be correct without
assumptions on target platform.

But: the more “dirty” effects we see in the model, the more expensive it often is to
analyse. Valid proposal for simple analysis: monotone frame semantics, no
destruction at all.



Transformer: Destroy

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
a
ct
n
ew

k
il
l
–

11/42

abstract syntax concrete syntax

destroy(expr)
intuitive semantics

Destroy the object denoted by expression expr .
well-typedness

expr : τC , C ∈ C

semantics

t[ux](σ, ε) = (σ′, ε)

where σ′ = σ|dom(σ)\{u} with u = IJexprK(σ, ux).

observables

Obsdestroy[ux] = {(ux,⊥, (+, ∅), u)}
(error) conditions

IJexprK(σ, ux) not defined.

Step and Run-to-completion Step

–
1
5
–
2
0
1
5
-0
1
-0
8
–
m
a
in

–

12/42



Notions of Steps: The Step

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
st
m
st
ep

–

13/42

Note: we call one evolution (σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′) a step.

Thus in our setting, a step directly corresponds to

one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We’re going for an interleaving semantics without true parallelism.

Remark: With only methods (later), the notion of step is not so clear.
For example, consider

• c1 calls f() at c2, which calls g() at c1 which in turn calls h() for c2.

• Is the completion of h() a step?

• Or the completion of f()?

• Or doesn’t it play a role?

It does play a role, because constraints/invariants are typically (= by convention)
assumed to be evaluated at step boundaries, and sometimes the convention is meant
to admit (temporary) violation in between steps.

Notions of Steps: The Run-to-Completion Step

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
st
m
st
ep

–

14/42

What is a run-to-completion step...?

• Intuition: a maximal sequence of steps, where the first step is a dispatch
step and all later steps are commence steps.

• Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable — one
transition may be taken multiple times during an RTC-step.

Example:

s1 s2

E[x > 0]/

/x := x− 1

σ:
: C

x = 2

ε:

E for u



Notions of Steps: The RTC Step Cont’d

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
st
m
st
ep

–

15/42

Proposal: Let

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

. . .
(consn−1,Sndn−1)
−−−−−−−−−−−→

un−1

(σn, εn), n > 0,

be a finite (!), non-empty, maximal, consecutive sequence such that

• object u is alive in σ0,

• u0 = u and (cons0, Snd0) indicates dispatching to u, i.e. cons = {(u,~v 7→ ~d)},

• there are no receptions by u in between, i.e.

cons i ∩ {u} × Evs(E ,D) = ∅, i > 1,

• un−1 = u and u is stable only in σ0 and σn, i.e.

σ0(u)(stable) = σn(u)(stable) = 1 and σi(u)(stable) = 0 for 0 < i < n,

Let 0 = k1 < k2 < · · · < kN = n be the maximal sequence of indices such that
uki

= u for 1 ≤ i ≤ N . Then we call the sequence

(σ0(u) =) σk1
(u), σk2

(u) . . . , σkN
(u) (= σn−1(u))

a (!) run-to-completion computation of u (from (local) configuration σ0(u)).

Divergence

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
st
m
st
ep

–

16/42

We say, object u can diverge on reception cons from (local) configuration
σ0(u) if and only if there is an infinite, consecutive sequence

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→ (σ1, ε1)

(cons1,Snd1)
−−−−−−−−→ . . .

such that u doesn’t become stable again.

• Note: disappearance of object not considered in the definitions.
By the current definitions, it’s neither divergence nor an RTC-step.



Run-to-Completion Step: Discussion.

–
1
5
–
2
0
1
5
-0
1
-0
8
–
S
st
m
st
ep

–

17/42

What people may dislike on our definition of RTC-step is that it takes a
global and non-compositional view. That is:

• In the projection onto a single object we still see the effect of interaction with
other objects.

• Adding classes (or even objects) may change the divergence behaviour of existing
ones.

• Compositional would be: the behaviour of a set of objects is determined by the
behaviour of each object “in isolation”.
Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any global run-to-completion step
is an interleaving of local ones?

Maybe: Strict interfaces. (Proof left as exercise...)

• (A): Refer to private features only via “self”.

(Recall that other objects of the same class can modify private attributes.)

• (B): Let objects only communicate by events, i.e.
don’t let them modify each other’s local state via links at all.

References

–
1
5
–
2
0
1
5
-0
1
-0
8
–
m
a
in

–

41/42



–
1
5
–
2
0
1
5
-0
1
-0
8
–
m
a
in

–

42/42

[Crane and Dingel, 2007] Crane, M. L. and Dingel, J. (2007). UML vs. classical vs.
rhapsody statecharts: not all models are created equal. Software and Systems
Modeling, 6(4):415–435.

[Damm et al., 2003] Damm, W., Josko, B., Votintseva, A., and Pnueli, A. (2003). A
formal semantics for a UML kernel language 1.2. IST/33522/WP
1.1/D1.1.2-Part1, Version 1.2.

[Fecher and Schönborn, 2007] Fecher, H. and Schönborn, J. (2007). UML 2.0 state
machines: Complete formal semantics via core state machines. In Brim, L.,
Haverkort, B. R., Leucker, M., and van de Pol, J., editors, FMICS/PDMC, volume
4346 of LNCS, pages 244–260. Springer.

[Harel and Kugler, 2004] Harel, D. and Kugler, H. (2004). The rhapsody semantics
of statecharts. In Ehrig, H., Damm, W., Große-Rhode, M., Reif, W., Schnieder, E.,
and Westkämper, E., editors, Integration of Software Specification Techniques for
Applications in Engineering, number 3147 in LNCS, pages 325–354.
Springer-Verlag.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure, version
2.1.2. Technical Report formal/07-11-02.

[Störrle, 2005] Störrle, H. (2005). UML 2 für Studenten. Pearson Studium.


