— 13 - 2014-12-16 — main —

Software Design, Modelling and Analysis in UML

Lecture 13: Core State Machines 11

2014-12-16

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 13 — 2014-12-16 — Sprelim —

Last Lecture:

e Basic causality model
e Ether

This Lecture:
¢ Educational Objectives: Capabilities for following tasks/questions.

e What does this State Machine mean? What happens if | inject this event?
e Can you please model the following behaviour.
e What is: Signal, Event, Ether, Transformer, Step, RTC.

e Content:
e System configuration
e Transformer
e Examples for transformer

— 13 - 2014-12-16 — main —

— 13 — 2014-12-16 — Sether —

System Configuration, Ether, Transformer

3/60

Ether aka. Event Pool

Definition. Let .¥ = (7, %, V, atr, &) be a signature with signals

and Z a structure.

We call a tuple (Eth, ready,®,0,[-]) an ether over 5” and 7 if

and only if it provides {o¢ an event wd dn *x& - obtui « sel of

Y P ﬁ?o[P :5‘W/ Im.S‘*’“taf)
o a ready operation which ylé\js a set of efnts that e ready for a glven s
object, i.e.
ready : Eth x 9(€) — 27(¢)
° tion to insert t destined f bject,
a operation to in {::::ever:légces 'Inf mglver: c0> Jef. ‘57
v &’
@ : Eth x 2(¢) x 2(&)—>Eth

‘ ® a operation to remove an event, i.e. ,
3 &N € ‘n
7 ©: Eth x 9(&) — Eth
§ e an operation to clear the ether for a given object, i.e.
& _ [-]: Eth x 2(€) — Eth.)
1 50

— 13 — 2014-12-16 — Sether —

Ether: Examples g‘ g(1)
—

o A (single, global, shared, reliable) FIFO queue is an ether:

. Bih= (DEOXDE)) eg £= (vl 6h)be)

He oA a{df({:"Wy/.(_ rr:?«h—w ' pars (u,efé@(t)KaD(é)
ready((ve)e€, v) =‘{{("'e)§ ¥ v=d redy (¢ v) =4

g othsnn'se !

Hewe)og.lo) 7 o] -c% ort
e((u,e\.a,£)={fwﬂimw”L ; Sy,
° [']:vc\m‘!t 2l (U),J f”’“s fpw 4);\:.. S?e/a-((

e One FIFO queue per active object is an ether.

o Lossy queue (@ becomes a relation then).
e One-place buffer.

e Priority queue.

o Multi-queues (one per sender).

o Trivial example: sink, “black hole”.

12 — 2014-12-09 — Sether

19/50

15.3.12 StateMachine romac, 2007p, 563;

— 13 — 2014-12-16 — Sether —

e The order of dequeuing is ,
leaving open the possibility of modeling
different priority-based schemes.

e Run-to-completion may be implemented

in e

Ether and [OMG, 2007b]

— 13 — 2014-12-16 — Sether —

The standard distinguishes, e.g., SignalEvent [OMG, 2007b, 450],
Reception [OMG, 2007b, 447].

On SignalEvents, it says

A signal event represents the receipt of an asynchronous signal instance.
A signal event may, for example, cause a state machine to trigger a
transition. [OMG, 2007b, 449] [...]

Semantic Variation Points

The means by which requests are transported to their target depend on
the type of requesting action, the target, the properties of the
communication medium, and numerous other factors.

In some cases, this is instantaneous and completely reliable while in
others it may involve transmission delays of variable duration, loss of
requests, reordering, or duplication.

(See also the discussion on page 421.) [OMG, 2007b, 450]

Our ether is a general representation of the possible choices.

Often seen minimal requirement: order of sending by one object is presererd.
60

But: we'll later brieflv discuss “discardine” of events.

Events Are Instances of Signals

— 13 — 2014-12-16 — Sether —

/Definition. Let 9y be a structure of the signature with signals .7 :\
(%, 6o, Vo, atrg, &) and let E € & be a signal.
Let atr(E) = {v1,...,v,}. We call
e=(E,{vy = di,...,vn = dp}),
or shorter (if mapping is clear from context)
(E, (d1,...,dy)) or (E,d),
an event (or an instance) of signal E (if type-consistent).
\We use Evs(8p, o) to denote the set of all events of all signals in . wrt. Zp.)

As we always try to maximize confusion...:

e By our existing naming convention, u € Z(E) is also called instance of the
(signal) class E in system configuration (o, ¢) if u € dom(o).

e The corresponding event is then (E,o(u)).

V] My
¢ “
]
£/
zf“ﬁi‘sfo]
& (v, 22)
byt ekl
v
aéex.sa.mi)
() S —(s/s)
whiel. oSjad

Yoahs Avmd. e.g,

Signals? Events...? Ether..?!

— 13 — 2014-12-16 — Sether —

The idea is the following:

Signals are types (classes).

Instances of signals (in the standard sense) are kept in the system state
component o of system configurations (o, €).

Identities of signal instances are kept in the ether.

Each signal instance is in particular an event — somehow “a recording that
this signal occurred” (without caring for its identity)
The main difference between signal instance and event:

Events don't have an identity.

Why is this useful? In particular for reflective descriptions of behaviour, we
are typically not interested in the identity of a signal instance, but only
whether it is an “E" or “F", and which parameters it carries.

— 13 = 2014-12-16 — Sstmscnf —

System Configuration

Definition. Let % = (%, %o, Vo, atro, &) be a signature with signals, 2 a
structure of %, (Eth, ready,®, S, [-]) an ether over ., and %.
Furthermore assume there is one core state machine M¢ per class C € .

A system configuration over .%y, %y, and Eth is a pair

a{“wo bﬁ:(.\ss (0,¢) € 29 x Eth .
‘
where \£ # &:{j Ydve @(8&1) =B
I (FOiS 1CeP, B
Vo U {(stable : Bool, —, true, ()} Ly“’ Wzéc e
O {{stc : Syg,+,50,0) | C € G} shit ro
U {(pammsE Eo1,+,0,0) | E € &},
{C s atro(C) \E

U {stable, stc} U {paramsp | E € &} | C € €}, &y)
st of shries of shole waddine of clus ¢
© 9= U{Sy — S(Mc) | C € G}, and \E e ooy ks o

_

o o(u)(r)ﬁ@(&) = () for each u € dom(o) and r € Vo &~ ,ks&wcu are Wzrw

System Configuration: Example

— 13 — 2014-12-16 — Sstmscnf —

0 = (%, 6o, Vo, atro, &), Do; (0,¢) € E?, x Eth where
S =(HU{Smu, | C et} %,
Vo U {(stable : Bool, —, true,0)} U {(stc : Sme,+, s0,0) | C € €}
}‘; U {{paramsg : Eo1,+,0,0) | E € &},
{C — atro(C) U {stable, stc} U {paramsy | E € &} | C € €}, &)
E o 9 =9y U{Su, — S(M¢) | C e €}, and
o(u)(r) N 2(&) = 0 for each u € dom(o) and r € V.

1 s, F= (81 Btfufsn3,
T 0 {d:elF‘, $C, ETF3,
bt b e]
bibet}, ushile: Bals
o fente v i St
wﬁc f—f:;bii, 4 f:"““t f—': :'i
— fe) (I L shil, <] eE
U{WEI N‘Q)-F? =
&
q-s-\ it\ 3, J_)/_g,,{} }'Jo, IS (V)f)

pe— ?EIY\) d)

g

10/60

11/60

System Configuration Step-by-Step

o We start with some signature with signals .y = (%, %0, Vo, atro, &).

o A system configuration is a pair (o,) which
comprises a system state o wrt. . (not wrt. .%).

e Such a system state o wrt. . provides, for each object u € dom(o),

e values for the explicit attributes in 1,
e values for a number of implicit attributes, namely
e a stability flag, i.e. o(u)(stable) is a boolean value,

o a current (state machine) state, i.e. o(u)(st) denotes one of the
states of core state machine M¢,

e a temporary association to access event parameters for each class,
i.e. o(u)(paramsg) is defined for each E € &.

e For convenience require: there is no link to an event except for paramsg.

— 13 = 2014-12-16 — Sstmscnf —

12/60

Stability

Definition.
Let (o,¢) be a system configuration over some .%y, %, Eth.

We call an object u € dom(o) N Z(%)) stable in o if and only if

o(u)(stable) = true.

— 13 — 2014-12-16 — Sstmscnf —

13/60

Where are we? Gy ShAWe=erbmf o

e Wanted: a labelled transition relation

(0,€)

(cons,Snd)
—_—

Ug

(o', €)

on system configuration, labelled with the consumed and sent events,
(¢’,€") being the result (or effect) of one object u, taking a transition of
its state machine from the current state machine state o (u,)(stc).

e Have: system configuration (o, &) comprising current state machine state
and stability flag for each object, and the ether.

e Plan:

(i) Introduce transformer as the semantics of action annotions.
Intuitively, (o/,¢’) is the effect of applying the transformer
of the taken transition.

— 13 = 2014-12-16 — Sstmscnf —

transitions — the run-to-completion “algorithm”.

Why Transformers?

¢ Recall the (simplified) syntax of transition annotations:

annot = | (event) ['[(guard) ‘]| ['/)" (action)] |

o Clear: (event) is from & of the corresponding signature.

o But: What are (guard) and (action)?

e UML can be viewed as being parameterized in expression language
(providing {guard)) and action language (providing (action)).
e Examples:
e Expression Language:
o OCL
e Java, C++, ... expressions

e Action Language:

o UML Action Semantics, “Executable UML"
e Java, C++, ...statements (plus some event send action)

— 13 — 2014-12-16 — Strafo —

(ii) Explain how to choose transitions depending on € and when to stop taking

14/60

15/60

— 13 — 2014-12-16 — Strafo —

o el v ,
Transformer “; « fockon, bl e dshitieis

7 N

Definition.

Let 2 the set of system configurations over some %y, %o, Eth.

We call a reIat|onc§p¥- k&kl{ St /"'JS “”‘é Aﬁ’

Jhe ke L ety
D(E) x (52 x Fth) x (5% x Bth) O
t C
C 9((2 =3 k2

a (system configuration) transformer. “gste m//m

\ before ccar. He achn y

e In the following, we assume that each application of a transformer t to some

system configuration (o,) for object u, is associated Wlthi §et of %bservatlons

J 0{ JMH CM

o of e,

Obst[uz](a, 5) 2@(‘5)><@(£’)><Evs(€ U {*,+},2)x 2(€) e— Qv M“)

T d e ’E,.?,,,,/ ool o
o An observation (ugre, ue, (E,d), ugst) € Obsi|uz](o,) wa/: ol <oy
represents the information that, as a “side effect” of u, executing ¢,
an event (!) (E,cf) has been sent from Ugyc tO Ugst.

Special cases: creation/destruction.

Transformers as Abstract Actions! | @k’

— 13 — 2014-12-16 — Strafo —

L
In the following, we assume that we're given II%NJI(GN) =

e an expression language Ezpr for guards, and

e an action language Act for actions, 2

and that we're given

daly, oblecipise

16/60

‘ fstf Buf) =hue
fe {7, Lawd (s,
3#90»’%

e a semantics for boolean expressions in form of a partial function
I1-1(-, -) : Bapr — (22 x 2(€) + B)

which evaluates expressions in a given system configuration,

Assuming I to be partial is a way to treat “undefined” during runtime. If I is not defined

(for instance because of dangling-reference navigation or division-by-zero), we want to go

to a designated “error” system configuration.

e a transformer for each action: for each act € Act, we assume to have

taet € D(€) x (22 x Eth) x (X% x Eth)

17/60

Expression/Action Language Examples

We can make the assumptions from the previous slide
because instances exist:

e for OCL, we have the OCL semantics from Lecture 03. Simply remove the
pre-images which map to “1".

o for Java, the operational semantics of the SWT lecture uniquely defines
transformers for sequences of Java statements.

We distinguish the following kinds of transformers:

e skip: do nothing — recall: this is the default action

e send: modifies € — interesting, because state machines are built around
sending/consuming events

create/destroy: modify domain of ¢ — not specific to state machines, but let's
discuss them here as we're at it

update: modify own or other objects’ local state — boring

18/60

— 13 — 2014-12-16 — Strafo —
[]

A Simple Action Language

|h4{\4‘%6/{ﬂ74‘346 we W

Aty = { s
U 3 updete (e, v, ow,) | oy, expie € OBy c |/
U { sted (etpir, €, 090, | ophr o, coclep, ek
U wede (C epn,v) | CEONE, g €0LEspis ve /)
U { dostoy (ag) | e € XL Epe

Bf"fm U?t&ﬁlﬂab ¥(Wud9“”%)---
oo ¥f ViZ N C’i
o (v #al] -

— 13 — 2014-12-16 — Sactlang —

19/60

Transformer Examples: Presentation

op
intuitive semantics

well-typedness

semantics
((0,€), (0",€")) € toplug] iff ...
or
toplug](o,€) = {(a',z—:')] where . .. }
observables

(error) conditions

Not defined if ...

abstract syntax concrete syntax

Obsop[uz] = {...}, not a relation, depends on choice

— 13 — 2014-12-16 — Sactlang —

Transformer: Skip

skip
intuitive semantics
do nothing

J.
t{us](0, &) = {(0,€)}

Obssipluz](o,e) =0

well-typedness
semantics
observables

(error) conditions

abstract syntax concrete syntax

— 13 — 2014-12-16 — Sactlang —

20/60

21/60

Transformer: Update

— 13 — 2014-12-16 — Sactlang —

— 13 - 2014-12-16 — main —

oL

tupdate(ezprl,v ewprz)[um](a 5) = {(OJ € }
| einuelelon (00—
where o/ = o[u = o(u)[v — I[[eszQ]](%J]] with -

abstract syntax concrete syntax

update(expr;, v, expry) e&xply oV = P2
intuitive semantics

Update attribute v in the object denoted by expr; to the
value denoted by expr,.
well-typedness — I 7T TS
expr; :T7c and v i T e atr(C); expry : T;
expry, expry obey visibility and navigability

semantics etlsd

u = Iexpr](o, A il

observables ___,_\ o&po\'- aﬁ«d/d b

Obsupdate(ezprl,v exprsy) ux =0 W" (ff‘- Ve .b (’S()

(error) conditions
Not defined if I[expr] (o,e) or I[expry](o,u) not defined.

References

22/60

59/60

Harel and Gery, 1997] Harel, D. and Gery, E. (1997). Executable object
modeling with statecharts. IEEE Computer, 30(7):31-42.

[OMG, 2007a] OMG (2007a). Unified modeling language: Infrastructure,
version 2.1.2. Technical Report formal/07-11-04.

[OMG, 2007b] OMG (2007b). Unified modeling language: Superstructure,
version 2.1.2. Technical Report formal/07-11-02.

60/60

— 13 - 2014-12-16 — main —

