— 14 — 2014-12-18 — main —

Software Design, Modelling and Analysis in UML
Lecture 14: Core State Machines IV

2014-12-18

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 14 — 2014-12-18 — Sprelim —

Last Lecture:

e System configuration
e Transformer

e Action language: skip, update

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.
e What does this State Machine mean? What happens if | inject this event?

e Can you please model the following behaviour.
e What is: Signal, Event, Ether, Transformer, Step, RTC.

e Content:
e Action Language: send (create/destroy later)
e Run-to-completion Step
e Putting It All Together

Transformer Cont’d

— 14 — 2014-12-18 — main —

Transformer: Skip

abstract syntax
skip
intuitive semantics
do nothing

/.
}L‘L;Lq:](o'v 5) = {(O'v 5)}

Obssxipluz](o,e) =0

well-typedness
semantics
observables

(error) conditions

concrete syntax

— 14 — 2014-12-18 — Sactlang —

Transformer: Update

— 14 — 2014-12-18 — Sactlang —

update(expr;, v, expry) expius= Oxply
intuitive semantics
Update attribute v in the object denoted by expr; to the
value denoted by expr,.
well-typedness
expry : 7c and v : 7 € atr(C); expry : T
semantics
tupdate(ezprl,v,ezprz)[uw](a’5 = {(0175 }

ta)]]

| ———————
— where ¢’ = olu — o(u)[v — J[expr

with u =
SHC é(' observables
Mat u Obsupdate(ezprl,v,emprz)[uw] =0

(error) conditions v vy
Not defined if I[expr;] (o, B) or I[exprs] (o, #) not defined.

abstract syntax concrete syntax

bdn. oleol

by epl;
(e lhire B el

Update Transformer Example

— 14 — 2014-12-18 — Sactlang —

SMec: Jri=x+1

T)
&f‘

ol 2
(implicilly If.) ’

tupdate(exprl,v,emprz)[um](gv E) = (U/ = 0’[’[1, = U(u) [U = I[[EZPTZ]] (Uv uw)“ae)v u

= I[expr,] (o, us)

T+ (5)= TO+ D (5,0,) = S

o |u:C Lupdate u :C | .
r=4 Ux= Uy r=5
y=0 y=20

v
. v=Il self K[O',Ux} "5
=L {s40(s, Sl b) i(r"‘

’/&/G"(s WX vy

Transformer: Send

' 's'end(E(ex]?rl, ceey €TPT,), €TIDT 4ot OR 4 !E (0‘2‘7/ -
intuitive semantics
Object uy : C sends event E to object expr,,, i.e. create a fresh
signal instance, fill in its attributes, and place it in the ether.
well-typedness
expray o, C,D € €\ &, E € &, atr(E) ={v1 : T1,...,0n : Tn};
expr; 17, 1 <i<m;

5 semantics Letaderce
J';):;» (OJ7 El) € tsend(E(exprl expr,,),eTpr gg;) [um](a, 5) /
—_—)

iffo’ =cU{y—{vimdi|1<i<n}}; € =e® (ugs,u);
if ugsr = I[exprgq](o, uz) € dom(o); d; = I[expr;] (o, uz) for
. 1<i<n;

I i bey visibility and igability in C
all expressions obey visibility and navigability in hew> Sty

abstract syntax concrete syntax
ol)

B ~ Na
o o] e P(E) a fresh identity, i.e. u ¢ dom(o), o
g oM ¢ M‘!' and where (o/,) = (0,¢) if ugy & dom(c). &—do W"""‘y 7(2"41
T Cb*ud[” observables k! e
f:jd 5%6{, Obssend[ux] = {(ux7ua (Evdlv-“vdn)audst)} g
I i Ccoovdl | (error) conditions
Sl O et Ifexpr] (o, uy) not defined for any
i‘* Lo expr € {expr 4o, €TPTY, . . ., €xpr, } -
Send Transformer Example
SMC: |
n!F(r+1
(o) /IO UL ()
LSl »
i
e [%¥4
Usend(eapr o, EB(expry .. ezprn),exprdst)[ux](o—a £) 3 (o 5/) iff e’ =e® (wdst, w);
o =cU{ur— {v;—>d;i|1<i<n}}; ugs = Iexpr] (o, uz) € dom(o);
d; = Ifexpr;](o,uz), 1 <i<n;ue Z(E) a fresh identity;
e e P4
” o ¢ /\f/sw\/\,——} ~— o
‘ xr = 5 ‘)ng Z}?E‘F
Eb J’" P =4
“?"’ g
[oe] V
I Ay /
g € § . €=
< N4 :
D R D e
<‘r <%
h LS 8/37

Sequential Composition of Transformers

— 14 — 2014-12-18 — Sactlang —

e Sequential composition ¢; o t5 of transformers t1 and to is canonically

defined as

(t2 o t1)[uz](o,€) = tafug](t1[us](0, €))

with observation

Obs(tQOtl)[ux](a, g) = Obsy, [uz](0,€) U Obsy,[ug](t1(0,€)).

o Clear: not defined if one the two intermediate “micro steps” is not defined.

Transformers And Denotational Semantics

— 14 — 2014-12-18 — Sactlang —

Observation: our transformers are in principle the denotational semantics
of the actions/action sequences. The trivial case, to be precise.

. 63) x:=b ebe 3"‘()0

Note: with the previous examples, we can capture

empty statements, skips, ‘g' b
. g5,
e assignments, edizqa

conditionals (by normalisation and auxiliary variables),

add cad: Bo(

create/destroy,

. . . to
but not possibly diverging loops. i s s H, .

Our (Simple) Approach: if the action language is, e.g. Java, ?
then (syntactically) forbid loops and calls of recursive functions.

Other Approach: use full blown denotational semantics. (7} olele- (a) “‘tA;D

No show-stopper, because loops in the action annotation can be convgrted
into transition cycles in the state machine.

10/37

— 14 — 2014-12-18 — main —

Step and Run-to-completion Step

Transition Relation, Computation

— 14 — 2014-12-18 — Sstmrtc —

-)

Definition. Let A be a set of actions and S a (not necessarily
finite) set of of states.

We call
— CSxAxS

a (labelled) transition relation.

Let Sy C S be a set of initial states. A sequence
[
ao al a
So —> 81 —> 82 — ...

with s; € S, a; € A is called computation of the labelled transi-
tion system (S, —,.Sy) if and only if
A

e initiation: sy € Sy

e consecution: (s;,a;,s;+1) €— for i € Ny.

\ J

11/37

12/37

Active vs. Passive Classes/Objects

e Note: From now on, assume that all classes are active for simplicity.

We'll later briefly discuss the Rhapsody framework which proposes a way
how to integrate non-active objects.

e Note: The following RTC “algorithm” follows [?] (i.e. the one realised by
the Rhapsody code generation) where the standard is ambiguous or leaves
choices.

— 14 — 2014-12-18 — Sstmrtc —

From Core State Machines to LTS

Definition. Let % = (%, %0, Vo, atro, &) be a signature with signals (all
classes active), 2 a structure of .%, and (Eth, ready, ®, S, [-]) an ether over
y() and @0.

Assume there is one core state machine M per class C € 7.

We say, the state machines induce the following labelled transition re-

lation on states S = EL—TU {#3} Fthy with actions A =
(222 0 upe.2xa©) g (Dyxeh) ofef
—— | E)"

if and only if

(i) an event with destination w is discarded,
(ii) an event is dispatched to wu, i.e. stable object processes an event, or

(iii) run-to-completion processing by u commences,
i.e. object u is not stable and continues to process an event,

(iv) the environment interacts with object w,

s Lem)y e andlonly if

(v) s =# and cons = 0, or an error condition occurs during consumption

of cons. /

— 14 — 2014-12-18 — Sstmrtc —

1337

14/37

(i) Discarding An Event

(cons,Snd)
e

u

(0,¢) (o', €
if

e an F-event (instance of signal E) is ready in ¢ for object u of a class %,

u € dom(o) NP(C)ANJug € D(&) : ug € ready(e, u)

i.e. if

e u is stable and in state machine state s, i.e. o(u)(stable) =1 and o(u)(st) = s,

o but there is no corresponding transition enabled (all transitions incident with

current state of u either have other triggers or the guard is not satisfied)

V (s, F, expr,act,s'’) €= (SM¢g): F #EV I[[expr]](?r’,)l): 0
W Cattent shle boiharel aloe R see
and

o the system configuration Boest changesi.e. o' = o \fuz P G(ué)j

o the event ug is removed from the ether, i.e.

e =e0ug,

— 14 — 2014-12-18 — Sstmrtc —

i)

15/37
Example: Discard {signal, env)
[z>0]/z:=2—1n!J H
SMeo: & Glz > 0]/z =y) (signal)
H/z:=y/x n o
1 0,11 z,2: Int
gw (L‘?'l y : Int ((env))

c:C

o: 8§
=L2=Uly= (IE) ﬂ ""‘- !
z lsj_ Sly 2 !-3 ’ __L_l’c._——ﬁ

stable =1 }.G

£
/ veedy (g)c) =y]

e Ju € dom(o) N 2(CWV o o(u)(stable) = Lya(u)(st) = s,y
Jup € 9(8) : up € ready(e,u), \e

o Y (s, F,expr,act,s’) €= (SMc¢) :
F # EV I[expr](o) = OV

oo =0, =c60ug
e cons = {(u, (E,0(ug)))}, Snd =10

— 14 — 2014-12-18 — Sstmrtc —

16/37

(ii) Dispatch (0,¢) L), (o oty i

u

o uedom(o)NZ2(C)ANJug € Z(&) : ug € ready(e, u)
e u is stable and in state machine state s, i.e. o(u)(stable) =1 and o(u)(st) = s,
e a transition is enabled, i.e.

3 (s, F, expr,act,s') €= (SMc¢) : F = E A [expr](c) =1

where & = o[u.params g — ug].

and

e (0’,€’) results from applying t,.; to (o,e) and removing ug from the ether, i.e.
[vl
(U,/u 5,) & tact (&7 AS) uE)a

o' = (0"[u.st — s', u.stable — b, u.params g — 0])| o)\ {up}

where b depends:

e If u becomes stable in s/, then b = 1. It does become stable if and only if there
is no transition without trigger enabled for u in (¢/,¢’).
e Otherwise b = 0.
e Consumption of ug and the side effects of the action ?{ﬁ observed, i.e.

cons = {(u, (E,o0(ug)))}, Snd = Obst\n:f(é,s Oug). 17/37

— 14 — 2014-12-18 — Sstmrtc —

(signal, env))

[z>0]/z:=2—1n!J q

Example: Dispatch

SMC: .E G[l’ > O]/I =y [% {(signal))
S — G.J

H/z:=y/x n o
0,11 2, z: Int
y : Int ((env))
o c:C ,
' r=1,2=0,y=2 _.'3’- d
st =81 ! fosing
stable = 1 ‘;’f““

l
i (1] o
M(‘Eﬁ\':} =¢

e Ju € dom(o) N Z2(C)/ o o(u)(stable) = yo(u)(st) =5,
Jup € 2(8) : ugp € ready(c,u)/

o 3 (s, F, expr, act,s') €= (SMc) :
F=ENI[ezpr](G) =1/

o 0 = olu.paramsp — ug).

o (0",€) =teu(0,e S uE)

o o/ = (0"[u.st — s, u.stable — b,u.paramsy >
M2\ fus}

o cons = {(u, (E,o(ug)))}, Snd = Obsy,,, (6,6 © up)

8/37

— 14 — 2014-12-18 — Sstmrtc —

(iii) Commence Run-to-Completion

(cons,Snd)
e

u

(0,¢) (o', €
if

e there is an unstable object u of a class ¥, i.e.

u € dom(o) N 2(C) A o(u)(stable) =0

e there is a transition without trigger enabled from the current state s = o(u)(st),

i.e.
3 (s, -, expr, act,s’) €= (SMc) : I[expr](c) =1

and

(0”,€") € taet|u)(o,),

where b depends as before.

— 14 — 2014-12-18 — Sstmrtc —

Example: Commence

cons =0, Snd = Obs,,,(0,¢).

nt &

e (0',€’) results from applying t,.: to (o,¢), i.e.

o' = o"[u.st — s’ u.stable — b]

e Only the side effects of the action are observed, i.e.

1937

(signal, env))

[z>0]/z:=2—1n!J q
SMC: - G[I > O]/ZE =Y m {(signal))
S1 e — 52 G.J
H/z:=y/x n o
<, 0,1 x,z: Int
—~= y : Int ((env))
"\ —
c:C —/C_d !
7 =2,2=0,y=2 a
[I BV R sy
-2
stable =0 <hile =0

: é’
(¢, 85)

e Ju € dom(a) N 2(C) : a(u)(stable) = 0y
o (s, -, expr, act,s’) €= (SMc¢) :
Ieapr]() = 1.

* wtmptstatte;—H o(u)(st) = s.,,

— 14 — 2014-12-18 — Sstmrtc —

O (0'”7 <C:l) = tact(gae)v

o' =o' [u.st — §',u.stable — b]
o cons =0, Snd = Obsq,,,(0,¢€)
P0/37

(iv) Environment Interaction

Assume that a set &, C & is designated as environment events and a set
of attributes v, C V is designated as input attributes.

Then (O’,é‘) (cons,Snd) (0_,75,)
env
if

e environment event E € &,,, is spontaneously sent to an alive object u € Z(0), i.e.

o=cU{ug—{vi—di|1<i<n}, &=chug

where ug ¢ dom(o) and atr(E) = {vy,...,v,}.

o Sending of the event is observed, i.e. cons =0, Snd = {(env, E(d))}.

. or
E e Values of input attributes change freely in alive objects, i.e.
2 Vo eV Vu e dom(o): o' (u)(v) # o(u)(v) = v € Vepy.
% and no objects appear or disappear, i.e. dom(¢’) = dom(o).
Toed=e 2137
Example: Environment {signal, env)
[z>0]/z:=2—1n!J q
SMC: - G[I > O]/ZE =Y m {(signal))
T T
H/z:=y/x n o
0,11 2, z: Int
y : Int ((env))
. c:C
o:
z=0,2=0,y =2
st = so
stable = 1

— 14 — 2014-12-18 — Sstmrtc —

o o'=cU{ug— {vi—>di|1<i<n} o u € dom(o)

o ¢/ =@ ug where ug ¢ dom(o) o cons =, .
and atr(E) = {v1,...,v,}. Snd = {(env, E(d))}.

22/37

(v) Error Conditions

| s (cons,Snd) ”
l’v{/ u
if, in (ii) or (iii),

o [[expr] is not defined for o, or
o taet is not defined for (o, ¢),

and .
D

e consumption is observed according to (ii) or (iii), but Snd = 0.

— 14 — 2014-12-18 — Sstmrtc —

Examples:
[S1
\)
Flerue] /ags
. @E[eaﬂpr}/x = x/O@
2337
Example: Error Condition (signal, env)

x>0]/v:=x—1;n!J

L

SMC: .E G[I > 0]/$ =Y % {(signal))
G,J

H/z:=y/x n o
0,11 2, z: Int
y : Int ((env))

c:C
r=0,2=0,y =27
st = s9
stable = 1

o I[expr] not defined for o, or e consumption according to (ii) or (iii)

o tact is not defined for (o, €) o Snd =10

— 14 — 2014-12-18 — Sstmrtc —

24/37

Notions of Steps: The Step

— 14 — 2014-12-18 — Sstmstep —

. (cons,Snd) N
Note: we call one evolution (0,e) ——— (0, ¢’) 3
u

Thus in our setting, a step directly corresponds to
one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)

That is: We're going for an interleaving semantics without true parallelism.

25/37

Notions of Steps: The Step

— 14 — 2014-12-18 — Sstmstep —

(cons,Snd)
EE—

Note: we call one evolution (o, ¢) (o',€) a step.

Thus in our setting, a step directly corresponds to
one object (namely u) takes a single transition between regular states.

(We have to extend the concept of “single transition” for hierarchical state machines.)
That is: We're going for an interleaving semantics without true parallelism.
Remark: With only methods (later), the notion of step is not so clear.

For example, consider

e cp calls £() at ¢y, which calls g() at ¢; which in turn calls h () for c,.

e Is the completion of h() a step?

e Or the completion of £()7?

e Or doesn't it play a role?

It does play a role, because constraints/invariants are typically (= by convention)

assumed to be evaluated at step boundaries, and sometimes the convention is meant
to admit (temporary) violation in between steps. 25/37

Notions of Steps: The Run-to-Completion Step

What is a run-to-completion step...?

o Intuition: a maximal sequence of steps, where the first step is a dispatch
step and all later steps are commence steps.

o Note: one step corresponds to one transition in the state machine.

A run-to-completion step is in general not syntacically definable — one
transition may be taken multiple times during an RTC-step.

Example:
Elz > 0]/

Jri=x—1

Q

— 14 — 2014-12-18 — Sstmstep —

Notions of Steps: The RTC Step Cont’d

Proposal: Let

(consp,Sndp) (consn—1,5ndn—_1)
> (On,en), n >0,

(Uo, 60)
uo Un—1

be a finite (!), non-empty, maximal, consecutive sequence such that

e object u is alive in oy,
o uy = u and (consg, Sndy) indicates dispatching to u, i.e. cons = {(u, 7 d)},

o there are no receptions by w in between, i.e.
cons; N {u} X Evs(&,2) = 0,1 > 1,
e u,_1 =u and u is stable only in oy and o, i.e.

oo(u)(stable) = o, (u)(stable) = 1 and o;(u)(stable) =0 for 0 < i < n,

— 14 — 2014-12-18 — Sstmstep —

26/37

2737

Notions of Steps: The RTC Step Cont’d

Proposal: Let

(conso,Sndp) (consn—1,5ndn—1)
(00, €0) ” - > (On,en), n >0,
"

be a finite (!), non-empty, maximal, consecutive sequence such that

e object u is alive in oy,

e ug = u and (consg, Sndyp) indicates dispatching to u, i.e. cons = {(u, 7 — d)},

e there are no receptions by w in between, i.e.
cons; N {u} x Evs(&,2) =0,i > 1,

e u,_1 =wu and u is stable only in oy and o, i.e.

ug, =u for 1 <i <N,

— 14 — 2014-12-18 — Sstmstep —

Notions of Steps: The RTC Step Cont’d

Proposal: Let

(consp,Sndp) (consn,l,Sndnfl)\

(on,en), n>0,

(0'0, 60) .
uo Un—1

be a finite (!), non-empty, maximal, consecutive sequence such that

e object u is alive in oy,

e ug = u and (consg, Sndy) indicates dispatching to u, i.e. cons = {(u, ¥ +— d)},

o there are no receptions by w in between, i.e.
cons; N {u} X Evs(&,2) = 0,1 > 1,

e u,_1 =u and u is stable only in oy and o, i.e.

ug, =u for 1 <4 < N. Then we call the sequence

(o0(u) =) ok, (W), 0k, (u) - Ohy (1) (= On1(u))

— 14 — 2014-12-18 — Sstmstep —

-

oo(u)(stable) = o, (u)(stable) = 1 and o;(u)(stable) =0 for 0 < i < n,

Let 0 = k1 < ko < --- < ky = n be the maximal sequence of indices such that

-

oo(u)(stable) = o, (u)(stable) = 1 and o;(u)(stable) =0 for 0 < i < n,

Let 0 = k1 < ko < --- < ky = n be the maximal sequence of indices such that

a (!) run-to-completion computation of u (from (local) configuration og(u)).

2737

2737

