
Safra's Büchi determinization algorithm

Aditya Oak
Seminar on Automata Theory

28 Jan 2016

2

Introduction

Proposed by S. Safra in 1988

For determinization of non-deterministic Büchi
automaton

Gives equivalent Rabin or Muller automaton

Involves construction of multiple powersets in a tree
structure called as Safra Trees

3

Applying powerset construction to Büchi
automaton(1)

Fig. 1. Non-deterministic Büchi automaton

Accepts a(aab)ω

4

Applying powerset construction to Büchi
automaton(2)

Fig. 2. Deterministic automaton after powerset construction

Acceptance condition for accepting a(aab)ω ?

No Rabin acceptance condition is applicable. No accepting condition uniquely accepts the
language.

Hence classical powerset construction does not work in this scenario !!!

5

Trick 1 : “Initialize new runs of macrostates starting from recurring
states”[1, p. 47].

This allows the construction of an accepting run of the original
automaton. A new component is added to Safra tree whenever
recurring state occurs in a macrostate.
Using this, we track the paths which traverse through recurring
states.

 (Known as 'Branch Accepting')

Intuition behind Safra's algorithm(1)

Fig. 3. Branch Accepting

6

Trick 2 : “Keep track of joining runs of the non-deterministic Büchi
automaton just once”[1, p. 47].

q
1
q

2
 . . . fq

i
 . . . q

j−1
q

j
 . . . q

n
q

n+1
 and

q’
1
q’

2
. . . q’

i−1
q’

i
 . . . f’q’

j
 . . . q’

n
q

n+1

Both runs are joining in state q
n+1

, after passing through a recurring

state. Hence it is sufficient to continue with only one added
component, second component can be removed as both the
components hold the same information.

(Known as 'Horizontal Merge')

Intuition behind Safra's algorithm(2)

7

Trick 3 : “If all states in a macrostate have a recurring state as
predecessor, delete the corresponding components”[1, p. 48].

When a node's label is equal to the union of the labels of its child
nodes, then they all track the same run and hence all child nodes can
be removed.

(Known as 'Vertical Merge')

Intuition behind Safra's algorithm(3)

8

Safra Tree(1)

Consists of nodes

Safra trees form the states of resultant automaton

Each node in a Safra tree has
Name – Unique number in a single tree ({1, . . . ,2n})

 (n – number of states of original automaton)

Label / Macrostate – Set of states of original automaton

Mark (!) - A Boolean (i.e. either a node is marked or unmarked)

9

Safra Tree(2)

{q
0
, q

1
, q

2
}

{q
0
} {q

2
}

1

2 ! 3

Nodes

Safra Tree

Names

Labels

Mark

Fig. 4. A Safra Tree

10

Safra Tree(3)

Fig. 5. Resultant deterministic Rabin or Muller automaton

States (Safra Trees)

11

Safra's Algorithm

B = (Q, Σ, δ, q
0
, F)

R = (S, Σ, δ', s
0
, {(E

1
,F

1
),...,(E

2n
,F

2n
)})

Non-
deterministic
Büchi
Automaton
(given)

Rabin
Automaton

Safra's
Algorithm

12

Computation of initial state s
0
-

– Initial state s
0
 is a Safra tree with single node having name 1

and label q
0

Safra's Algorithm – computation of Rabin
automaton parameters (1)

{q
0
} 1

Fig. 6. State s
0

Computation of S -

– S is set of all reachable Safra trees from initial Safra tree s
0

13

Safra's Algorithm – computation of Rabin automaton
parameters (2)

 Computation of δ' (transition function) -

– Every single transition in Rabin automaton is obtained using following
six steps

1. Remove marks – All the marks (!) in a Safra tree are removed.

2. Branch accepting – For every node in a Safra tree, if label of a
node contains at least one accepting state, then new youngest
child node of this node is added with unique name. Label of this
child node is set of accepting states in parent node.

Fig. 7. Branch Accepting

14

Safra's Algorithm – computation of Rabin automaton
parameters (3)

Computation of δ' (transition function) (cont.) -

3. Powerset construction – Apply powerset construction on every
 node of Safra tree.

4. Horizontal merge – If a particular state in a node's label is also
present in the label of the node's older brother then that state is
removed from the node's label and also from all its children.

Fig. 8. Horizontal Merge

15

Safra's Algorithm – computation of Rabin automaton
parameters (4)

Computation of δ' (transition function) (cont.) -

5. Remove empty nodes – Nodes having empty labels are removed.

6. Vertical merge – For every node whose label is equal to the union
of the labels of its child nodes, all its child nodes are removed and
node is marked with '!'.

Fig. 9. Vertical Merge

16

Computation of acceptance condition

-

– For set of pairs {(E
1
,F

1
),...,(E

2n
,F

2n
)},

E
i
 : Safra trees without node i (i is name of a node)

F
i
: Safra trees with node i marked '!'

Safra's Algorithm – computation of Rabin
automaton parameters (5)

17

Safra's Algorithm – Example

Fig. 10. Büchi automaton

Accepts finitely many as and infinitely many bs i.e. Σ*(b)ω

18

Safra's Algorithm – computing s
0

Computation of initial state s
0
-

– Initial state s
0
 is a Safra tree with single node having name 1

and label q
0

{q
0
} 1

Fig. 11. State s
0

19

Safra's Algorithm – computing δ'

Rabin automaton
parameters
computed so far.

● s
0

● Computation of δ' (s
0
, a) -

➢ Step 1) Remove marks – No change

➢ Step 2) Branch accepting - No change

➢ Step 3) Powerset construction -

● In Büchi automaton δ(q
0
, a) = q

0

➢ Step 4) Horizontal merge – No change

➢ Step 5) Remove empty nodes – No change

➢ Step 6) Vertical merge – No change

Hence we have δ' (s
0
, a) = s

0

20

Safra's Algorithm – computing δ'

Rabin automaton
parameters
computed so far.

● s
0

● δ'(s
0
, a) = s

o

● Computation of δ' (s
0
, b) -

➢ Step 1) Remove marks – No change

➢ Step 2) Branch accepting – No change

➢ Step 3) Powerset construction -

● In Büchi automaton δ(q
0
, b) = {q

0
, q

1
}

➢ Step 4) Horizontal merge – No change

➢ Step 5) Remove empty nodes – No change

➢ Step 6) Vertical merge – No change

New state obtained !!!

Hence we have δ' (s
0
, b) = s

1

21

Safra's Algorithm – computing δ'

Rabin automaton
parameters
computed so far.

● s
0

● δ'(s
0
, a) = s

o

● δ'(s
0
, b) = s

1

● s
1

● Computation of δ' (s
1
, a) -

➢ Step 1) Remove marks – No change

➢ Step 2) Branch accepting – Applicable, as q
1
 is an accepting state

in original automaton, hence new child with unique name has to be
added.

● Step 3) Powerset construction -

22

Safra's Algorithm – computing δ'

Rabin automaton
parameters
computed so far.

● s
0

● δ'(s
0
, a) = s

o

● δ'(s
0
, b) = s

1

● s
1

● Computation of δ' (s
1
, a) (cont.) -

➢ Step 4) Horizontal merge – No change

➢ Step 5) Remove empty nodes – Applicable, node 2 is removed

➢ Step 6) Vertical merge – No change

Hence we have δ' (s
1
, a) = s

0

23

Safra's Algorithm – computing δ'

Rabin automaton
parameters
computed so far.

● s
0

● δ'(s
0
, a) = s

o

● δ'(s
0
, b) = s

1

● s
1

● δ'(s
1
, a) = s

o

● Computation of δ' (s
1
, b) -

➢ Step 1) Remove marks – No change

➢ Step 2) Branch accepting – Applicable, as q
1
 is an accepting state

in original automaton, hence new child with unique name has to be
added.

● Step 3) Powerset construction -

24

Safra's Algorithm – computing δ'

Rabin automaton
parameters
computed so far.

● s
0

● δ'(s
0
, a) = s

o

● δ'(s
0
, b) = s

1

● s
1

● δ'(s
1
, a) = s

o

● Computation of δ' (s
1
, b) (cont.) -

➢ Step 4) Horizontal merge – No change

➢ Step 5) Remove empty nodes – No change

➢ Step 6) Vertical merge – No change

New state obtained !!!

Hence we have δ' (s
1
, b) = s

2

25

Safra's Algorithm – computing δ'

Rabin automaton
parameters
computed so far.

● s
0

● δ'(s
0
, a) = s

o

● δ'(s
0
, b) = s

1

● s
1

● δ'(s
1
, a) = s

o

● δ'(s
1
, b) = s

2

● s
2

● Computation of δ' (s
2
, a) -

➢ After applying all the six steps again we get

δ' (s
2
, a) = s

0

● Computation of δ' (s
2
, a) -

➢ After applying all the six steps again we get

δ' (s
2
, a) = s

0

● Computation of δ' (s
2
, b) -

➢ After applying all the six steps again we get

δ' (s
2
, b) = s

3

Only difference between state s
2
 and

state s
3
 is the marking of node 2.

Therefore transitions from state s
3
 are

same as that from state s
2
.

26

Safra's Algorithm – computing δ'

Therefore we get transitions and states of Rabin automaton as -

● δ'(s
0
, a) = s

o

● δ'(s
0
, b) = s

1

● δ'(s
1
, a) = s

o

● δ'(s
1
, b) = s

2

● δ'(s
2
, a) = s

0

● δ'(s
2
, b) = s

3

● δ'(s
3
, a) = s

0

● δ'(s
3
, b) = s

3

27

Safra's Algorithm – Acceptance condition

Set of accepting pairs for Rabin automaton -

(For set of pairs {(E
1
,F

1
),...,(E

2n
,F

2n
)},

E
i
 : Safra trees without node i

F
i
: Safra trees with node i marked '!')

(E
1
, F

1
) = (ϕ, ϕ) as node 1 is present in all the states

and it is never marked.
(E

2
, F

2
) = ({s

0
, s

1
}, {s

3
}) as node 2 is absent in states s

0

and s
1
 and node is marked in state s

3
.

28

Safra's Algorithm – equivalent Rabin automaton

Fig. 12. Equivalent Rabin automaton

Accepts Σ*(b)ω

29

Safra's Algorithm – Remarks

● State complexity - 2
O(n log n)

(improved over previous complexities of)

● Optimal for conversion into Rabin automaton

● Using this algorithm as an intermediate step, Büchi automaton can be

complemented with same complexity which is also optimal.

22
O(n)

Fig. 13. Complementation steps
Source : [2][5]

30

References

1. Gradel E., Thomas W., Wilke T. : Automata, logics, and infinite games : A guide to
current research (2002)

2. Sadegh G. : Complementing Büchi Automata.
https://www.lrde.epita.fr/~sadegh/buchi-complementation-techrep.pdf (2009)

3. Bienvenu M. : Automata on infinite words and trees.
http://www.informatik.uni-bremen.de/tdki/lehre/ws09/automata/automata-notes.pdf
(2010)

4. Safra S. : On the Complexity of ω – Automata (1988)

5. Panigrahi D. : Complementing Büchi Automata : Safra's construction.
http://www.powershow.com/view1/1eeb50-ZDc1Z/Complementing_B_powerpoint_ppt_
presentation

6. K. Narayan Kumar : Safra's Determinization construction.
http://www.cmi.ac.in/~kumar/words/lecture11.pdf

https://www.lrde.epita.fr/~sadegh/buchi-complementation-techrep.pdf
http://www.informatik.uni-bremen.de/tdki/lehre/ws09/automata/automata-notes.pdf
http://www.powershow.com/view1/1eeb50-ZDc1Z/Complementing_B_powerpoint_ppt_presentation
http://www.powershow.com/view1/1eeb50-ZDc1Z/Complementing_B_powerpoint_ppt_presentation
http://www.cmi.ac.in/~kumar/words/lecture11.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

