
J. Hoenicke
A. Nutz

12.01.2016
submit until 19.01.2016, 14:15

Tutorials for Decision Procedures
Exercise sheet 10

Exercise 1: Correctness of DP for T Z
A

Let I be an interpretation. Prove for F [i] : expr ≤ expr that I |= F [i] → F [t], where
i = (i1, . . . , in) and t is the vector t = (t1, . . . , tn) ∈ In with αI [tk] = projI(αI [ik]) (in the
notation of the book t = projI(i)). The expression expr is either a universal variable ik
or a pexpr. Note that I contains all pexpr and that

projI(v) =

{
max{αI [t] | t ∈ I ∧ αI [t] ≤ v} if for some t ∈ I: αI [t] ≤ v

min{αI [t] | t ∈ I} otherwise

Exercise 2: Nelson-Oppen
Apply the deterministic version of Nelson-Oppen to the following TE ∪ TQ-formulae:

(a) x+ y = z ∧ f(z) = x+ y ∧ f(f(x+ y)) 6= z.

(b) g(x+y, z) = f(g(x, y)) ∧ x+z = y ∧ z ≥ 0 ∧ x ≥ y ∧ g(x, x) = z ∧ f(z) 6= g(2x, 0)

Exercise 3: DPLL(T)
In the last lecture we presented the CDCL algorithm in the form of the six rules Decide,
Propagate , Conflict , Explain, Learn, Backtrack.
In the lecture on propositional logic we presented the same algorithm as a functional
program (printed below).
Which lines of the functional code correspond to which of the six rules? (There may not
always be an exact correspondence, in such cases please add a short explanation.)



let rec dpll =
let prop U =
let ` = choose U ∩ unassigned in

val[`] := >
let C = dpll in

if (C = satisfiable)
satisfiable

else

val[`] := undef
if (` /∈ C) C
else U \ {`} ∪ C \ {`}

if conflictclauses 6= ∅
choose conflictclauses

else if unitclauses 6= ∅
prop (choose unitclauses)

else if coreclauses 6= ∅
let ` = choose (

⋃
coreclauses) ∩ unassigned in

val[`] := >
let C = dpll in

if (C = satisfiable) satisfiable
else

val[`] := undef
if (` /∈ C) C
else learn C;prop C

else satisfiable


