

J. Hoenicke A. Nutz 1.12.2015 submit until 8.12.2015, 14:15

Tutorials for Decision Procedures Exercise sheet 7

Exercise 1: Constructing the DAG

Describe a procedure that takes the abstract syntax tree of a conjunctive quantifier-free Σ_E -formula and constructs the corresponding DAG. The procedure should run in linear time in the size of the formula on average. You can assume an O(1) implementation for hash tables.

Exercise 2: Complexity of T_E

Give an upper bound for the complexity of deciding a conjunctive quantifier-free formula of T_{E} . Let *n* be the number of symbols in *F*. The complexity should be given as a polynomial in *n*.

Exercise 3: DP for quantifier-free $T_{cons} \cup T_E$

Apply the decision procedure for quantifier-free $T_{cons} \cup T_{\mathsf{E}}$ to decide satisfiability of the following $\Sigma_{cons} \cup \Sigma_{\mathsf{E}}$ -formulae:

(a)
$$y = cons(cdr(x), car(x)) \land x = cons(car(y), cdr(y))$$

(b)
$$y = cons(cdr(x), car(x)) \land x = cons(car(y), cdr(y)) \land car(x) \neq cdr(x)$$

(c) $\neg atom(x) \land y = cons(cdr(x), car(x)) \land z = cons(cdr(y), car(y)) \land z \neq x$