J. Hoenicke
A. Nutz
submit until 15.12.2015, 14:15

Tutorials for Decision Procedures
 Exercise sheet 8

Exercise 1: Satisfying Interpretation for $T_{\text {cons }}$

Take the result of applying the congruence closure algorithm on exercise 1.(a):

$$
y=\operatorname{cons}(\operatorname{cdr}(x), \operatorname{car}(x)) \wedge x=\operatorname{cons}(\operatorname{car}(y), c d r(y)) .
$$

Give a satisfying Interpretation I. Under this interpretation, what is the value of the term $\operatorname{cons}(x, \operatorname{cons}(\operatorname{car}(x), \operatorname{car}(y)))$?

Exercise 2: Deciding $T_{\mathbb{Q}}$
Apply the Dutertre-de-Moura algorithm to decide the $T_{\mathbb{Q}}$-satisfiability of the following $\Sigma_{\mathbb{Q}}$-formulae. Give a satisfying $T_{\mathbb{Q}}$-interpretation if it exists.
(a) $x+2 y \geq 1 \wedge 2 x+y \geq 1 \wedge x+y \leq \frac{1}{2}$
(b) $x+2 y \geq 1 \wedge 2 x+y \geq 1 \wedge x+y \leq 1$
(c) $x+2 y>1 \wedge 2 x+y>1 \wedge x+y<1$
(d) $x+2 y \geq 1 \wedge 2 x+y \geq 1 \wedge x+y<\frac{2}{3}$

Exercise 3: Quantifier Elimination $T_{\mathbb{Q}}$
Use quantifier elimination to decide satisfiability of the following $\Sigma_{\mathbb{Q}}$-formula.

$$
\exists x \cdot \exists y \cdot(x+2 y>1 \wedge 2 x+y>1 \wedge x+y<1)
$$

You may use the sufficient set optimization from the answer to exercise 1 on sheet 6 :

- Split the set S from the algorithm into three sets according to what kind of atom each term occurs in:

$$
\begin{aligned}
& S_{A}=\left\{t \mid x<t \text { occurs in } F_{3}[x]\right\} \\
& S_{B}=\left\{t \mid t<x \text { occurs in } F_{3}[x]\right\} \\
& S_{C}=\left\{t \mid x=t \text { occurs in } F_{3}[x]\right\}
\end{aligned}
$$

- Then use the following, smaller set for the disjunction instead of S_{F} :

$$
S_{F}^{\prime}=\{-\infty, \infty\} \cup\left\{\left.\frac{a+b}{2} \right\rvert\, a \in S_{A}, b \in S_{B}\right\} \cup S_{C}
$$

