Decision Procedures

Jochen Hoenicke

Software Engineering
\(-\frac{\stackrel{y}{2}}{\substack{品
른}}\)
Albert-Ludwigs-University Freiburg

Winter Term 2015/16

Organisation

Organisation

Dates

- Lecture is Tuesday 14-16 (c.t) and Thursday 14-15 (c.t).
- Tutorials will be given on Thursday 15-16. Starting next week (this week is a two hour lecture).
- Exercise sheets are uploaded on Tuesday. They are due on Tuesday the week after.
To successfully participate, you must
- prepare the exercises (at least 50%)
- actively participate in the tutorial
- pass an oral examination

Literature

The Calculus of Computation:
 Decision Procedures with
 Applications to Verification

by

Aaron Bradley
Zohar Manna

Springer 2007

Motivation

Motivation

Decision Procedures are algorithms to decide formulae. These formulae can arise

- in Hoare-style software verification,
- in hardware verification,
- in synthesis,
- in scheduling,
- in planning,
- ...

Motivation (2)

Consider the following program:

```
for
            \(@ \ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)\)
            (int \(i:=\ell ; i \leq u ; i:=i+1)\{\)
            if \(((a[i]=e))\) \{
            \(r v:=\) true;
            \}
    \(\}\)
```

How can we prove that the formula is a loop invariant?

Motivation (3)

Prove the Hoare triples (one for if case, one for else case)

$$
\begin{aligned}
& \text { assume } \ell \leq i \leq u \wedge(r v \leftrightarrow \exists j \cdot \ell \leq j<i \wedge a[j]=e) \\
& \text { assume } i \leq u \\
& \text { assume } a[i]=e \\
& r v:=\text { true; } \\
& i:=i+1 \\
& @ \ell \leq i \leq u \wedge(r v \leftrightarrow \exists j \cdot \ell \leq j<i \wedge a[j]=e)
\end{aligned}
$$

assume $\ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)$
assume $i \leq u$
assume $a[i] \neq e$
$i:=i+1$
@ $\ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)$

Motivation (4)

A Hoare triple $\{P\} S\{Q\}$ holds, iff

$$
P \rightarrow w p(S, Q)
$$

(wp denotes is weakest precondition)
For assignments wp is computed by substitution:

```
assume \(\ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)\)
assume \(i \leq u\)
assume \(a[i]=e\)
\(r v:=\) true;
    \(i:=i+1\)
    \(@ \ell \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e)\)
```

holds if and only if:

$$
\begin{aligned}
\ell & \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e) \wedge i \leq u \wedge a[i]=e \\
\rightarrow \ell & \leq i+1 \leq u \wedge(\text { true } \leftrightarrow \exists j . \ell \leq j<i+1 \wedge a[j]=e)
\end{aligned}
$$

Motivation (5)

We need an algorithm that decides whether a formula holds.

$$
\begin{aligned}
\ell & \leq i \leq u \wedge(r v \leftrightarrow \exists j . \ell \leq j<i \wedge a[j]=e) \wedge i \leq u \wedge a[i]=e \\
\rightarrow \ell & \leq i+1 \leq u \wedge(\text { true } \leftrightarrow \exists j . \ell \leq j<i+1 \wedge a[j]=e)
\end{aligned}
$$

If the formula does not hold it should give a counterexample, e.g.:

$$
\ell=0, i=1, u=1, r v=\text { false }, a[0]=0, a[1]=1, e=1,
$$

This counterexample shows that $i+1 \leq u$ can be violated.
This lecture is about algorithms checking for validity and producing these counterexamples.

Contents of Lecture

Topics

- Propositional Logic
- First-Order Logic
- First-Order Theories
- Quantifier Elimination
- Decision Procedures for Linear Arithmetic
- Decision Procedures for Uninterpreted Functions
- Decision Procedures for Arrays
- Combination of Decision Procedures
- DPLL(T)
- Craig Interpolants

Foundations: Propositional Logic

Syntax of Propositional Logic

Atom truth symbols T ("true") and \perp ("false") propositional variables $P, Q, R, P_{1}, Q_{1}, R_{1}, \cdots$
Literal atom α or its negation $\neg \alpha$
Formula literal or application of a
logical connective to formulae F, F_{1}, F_{2}

$\neg F$	"not"	(negation)
$\left(F_{1} \wedge F_{2}\right)$	"and"	(conjunction)
$\left(F_{1} \vee F_{2}\right)$	"or"	(disjunction)
$\left(F_{1} \rightarrow F_{2}\right)$	"implies"	(implication)
$\left(F_{1} \leftrightarrow F_{2}\right)$	"if and only if"	(iff)

Example: Syntax

formula $F:((P \wedge Q) \rightarrow(T \vee \neg Q))$
atoms: P, Q, T
literal: $\neg Q$
subformulas: $(P \wedge Q), \quad(T \vee \neg Q)$
Parentheses can be omitted: $\quad F: P \wedge Q \rightarrow T \vee \neg Q$

- \neg binds stronger than
- \wedge binds stronger than
- \vee binds stronger than
- $\rightarrow, \leftrightarrow$.

Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value $0 / 1$ where 0 corresponds to value false 1 true

Interpretation I: $\{P \mapsto 1, Q \mapsto 0, \cdots\}$
Evaluation of logical operators:

F_{1}	F_{2}	$\neg F_{1}$	$F_{1} \wedge F_{2}$	$F_{1} \vee F_{2}$	$F_{1} \rightarrow F_{2}$	$F_{1} \leftrightarrow F_{2}$
0	0		0	0	1	1
0	1		0	1	1	0
1	0		0	1	0	0
1	1		1	1	1	1

Example: Semantics

$$
\begin{aligned}
& F: P \wedge Q \rightarrow P \vee \neg Q \\
& I:\{P \mapsto 1, Q \mapsto 0\} \\
& \qquad
\end{aligned}
$$

F evaluates to true under I

Inductive Definition of PL's Semantics

$$
\begin{array}{llll}
I \models F & \text { if } F \text { evaluates to } & 1 / \text { true } & \text { under } I \\
I \not \models F & 0 / \text { false } &
\end{array}
$$

Base Case:

$$
\begin{aligned}
& I \not \models T \\
& I \not \models \perp \\
& I \models P \quad \text { iff } \quad I[P]=1 \\
& I \not \models P \quad \text { iff } \quad I[P]=0
\end{aligned}
$$

Inductive Case:

$$
\begin{array}{ll}
I \models \neg F & \text { iff } I \not \models F \\
I \models F_{1} \wedge F_{2} & \text { iff } I \models F_{1} \text { and } I \models F_{2} \\
I \models F_{1} \vee F_{2} & \text { iff } I \models F_{1} \text { or } I \models F_{2} \\
I \models F_{1} \rightarrow F_{2} & \text { iff, if } I \models F_{1} \text { then } I \models F_{2} \\
I \models F_{1} \leftrightarrow F_{2} & \text { iff, } I \models F_{1} \text { and } I \models F_{2}, \\
& \quad \text { or } I \not \models F_{1} \text { and } I \not \models F_{2}
\end{array}
$$

Example: Inductive Reasoning

$$
\begin{gathered}
F: P \wedge Q \rightarrow P \vee \neg Q \\
I:\{P \mapsto 1, Q \mapsto 0\}
\end{gathered}
$$

1. $I \models P$
2. $I \not \vDash Q$
3. $\quad I \models \neg Q$
4. $I \not \vDash P \wedge Q$
5. $\quad I \models P \vee \neg Q$
6. $\quad I \models F$
since $I[P]=1$
since $I[Q]=0$
by 2 , \neg
by $2, \wedge$
by $1, \vee$
by $4, \rightarrow \quad$ Why?

Thus, F is true under I.

Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that $I \vDash F$.

Definition (Validity)

F is valid iff for all interpretations $I, I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

Proof.

F is valid iff $\forall I: l \models F$ iff $\neg \exists l: l \not \models F$ iff $\neg F$ is unsatisfiable.
Decision Procedure: An algorithm for deciding validity or satisfiability.

Examples: Satisfiability and Validity

Now assume, you are a decision procedure.
Which of the following formulae is satisfiable, which is valid?

- $F_{1}: P \wedge Q$ satisfiable, not valid
- $F_{2}: \neg(P \wedge Q)$ satisfiable, not valid
- $F_{3}: P \vee \neg P$ satisfiable, valid
- $F_{4}: \neg(P \vee \neg P)$ unsatisfiable, not valid
- $F_{5}:(P \rightarrow Q) \wedge(P \vee Q) \wedge \neg Q$ unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?

Decision Procedure

We will present three Decision Procedures for propositional logic

- Truth Tables
- Semantic Tableaux
- DPLL/CDCL

Method 1: Truth Tables

$F: P \wedge Q \rightarrow P \vee \neg Q$

P	Q	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

Thus F is valid.

$$
F: P \vee Q \rightarrow P \wedge Q
$$

P	Q	$P \vee Q$	$P \wedge Q$	F
0	0	0	0	1
0	1	1	0	0
1	0	1	0	0
1	1	1	1	1
\leftarrow	\leftarrow satisfying I			

Thus F is satisfiable, but invalid.

Method 2: Semantic Argument (Semantic Tableaux)

- Assume F is not valid and I a falsifying interpretation: $I \not \models F$
- Apply proof rules.
- If no contradiction reached and no more rules applicable, F is invalid.
- If in every branch of proof a contradiction reached, F is valid.

Semantic Argument: Proof rules

$$
\begin{gathered}
\frac{l \models \neg F}{I \not \models F} \\
I \models F \wedge G \\
I \models F \\
I \models G \leftarrow \text { and } \\
\frac{I \models F \vee G}{I \models F \mid I \models G} \\
\frac{I \models F \rightarrow G}{I \not \models F \mid l \models G} \\
I \models F \leftrightarrow G \\
\hline I \models F \wedge G \mid l \nLeftarrow F \vee G \\
I \models F \\
I \not \models F \\
I \models \perp
\end{gathered}
$$

Example

Prove $\quad F: P \wedge Q \rightarrow P \vee \neg Q \quad$ is valid.
Let's assume that F is not valid and that I is a falsifying interpretation.

1. $\quad \mid \nmid P \wedge Q \rightarrow P \vee \neg Q$	assumption
2. $\quad I \vDash P \wedge Q$	1, Rule \rightarrow
3. $I \not \vDash P \vee \neg Q$	1, Rule \rightarrow
4. $\quad I \models P$	2, Rule \wedge
5. $I \not \vDash P$	3, Rule \vee
6. $\quad I \neq \perp$	4 and 5 are contradictory

Thus F is valid.

Example 2

Prove $\quad F:(P \rightarrow Q) \wedge(Q \rightarrow R) \rightarrow(P \rightarrow R) \quad$ is valid.
Let's assume that F is not valid.

Our assumption is incorrect in all cases $-F$ is valid.

Example 3

Is $\quad F: P \vee Q \rightarrow P \wedge Q \quad$ valid?
Let's assume that F is not valid.

$$
\begin{aligned}
& \text { 1. } \quad I \not \vDash P \vee Q \rightarrow P \wedge Q \quad \text { assumption } \\
& \text { 2. } \quad I \vDash P \vee Q \quad 1 \text { and } \rightarrow \\
& \text { 3. } I \not \vDash P \wedge Q \\
& 1 \text { and } \rightarrow
\end{aligned}
$$

We cannot always derive a contradiction. F is not valid.
Falsifying interpretation:
 We have to derive a contradiction in all cases for F to be valid.

Method 3: DPLL/CDCL

DPLL/CDCL is a efficient decision procedure for propositional logic. History:

- 1960s: Davis, Putnam, Logemann, and Loveland presented DPLL.
- 1990s: Conflict Driven Clause Learning (CDCL).
- Today, very efficient solvers using specialized data structures and improved heuristics.
DPLL/CDCL doesn't work on arbitrary formulas, but only on a certain normal form.

Normal Forms

Idea: Simplify decision procedure, by simplifying the formula first. Convert it into a simpler normal form, e.g.:

- Negation Normal Form: No \rightarrow and no \leftrightarrow; negation only before atoms.
- Conjunctive Normal Form: Negation normal form, where conjunction is outside, disjunction is inside.
- Disjunctive Normal Form: Negation normal form, where disjunction is outside, conjunction is inside.
The formula in normal form should be equivalent to the original input.

Equivalence

F_{1} and F_{2} are equivalent ($F_{1} \Leftrightarrow F_{2}$) iff for all interpretations $I, I \models F_{1} \leftrightarrow F_{2}$

To prove $F_{1} \Leftrightarrow F_{2}$ show $F_{1} \leftrightarrow F_{2}$ is valid.
F_{1} implies $F_{2}\left(F_{1} \Rightarrow F_{2}\right)$
iff for all interpretations $I, I \models F_{1} \rightarrow F_{2}$
$F_{1} \Leftrightarrow F_{2}$ and $F_{1} \Rightarrow F_{2}$ are not formulae!

Equivalence is a Congruence relation

If $F_{1} \Leftrightarrow F_{1}^{\prime}$ and $F_{2} \Leftrightarrow F_{2}^{\prime}$, then

- $\neg F_{1} \Leftrightarrow \neg F_{1}^{\prime}$
- $F_{1} \vee F_{2} \Leftrightarrow F_{1}^{\prime} \vee F_{2}^{\prime}$
- $F_{1} \wedge F_{2} \Leftrightarrow F_{1}^{\prime} \wedge F_{2}^{\prime}$
- $F_{1} \rightarrow F_{2} \Leftrightarrow F_{1}^{\prime} \rightarrow F_{2}^{\prime}$
- $F_{1} \leftrightarrow F_{2} \Leftrightarrow F_{1}^{\prime} \leftrightarrow F_{2}^{\prime}$
- if we replace in a formula F a subformula F_{1} by F_{1}^{\prime} and obtain F^{\prime}, then $F \Leftrightarrow F^{\prime}$.

Negation Normal Form (NNF)

Negations appear only in literals. (only \neg, \wedge, \vee)
To transform F to equivalent F^{\prime} in NNF use recursively the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \perp \\
\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
\neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2}
\end{array}\right\} \text { De Morgan's Law } \begin{aligned}
& \\
& F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2} \\
& F_{1} \leftrightarrow F_{2} \Leftrightarrow\left(F_{1} \rightarrow F_{2}\right) \wedge\left(F_{2} \rightarrow F_{1}\right)
\end{aligned}
$$

Example: Negation Normal Form

Convert $F:\left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right)$ into NNF

$$
\begin{aligned}
& \left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right) \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right) \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(\neg \neg Q_{2} \vee R_{2}\right) \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(Q_{2} \vee R_{2}\right)
\end{aligned}
$$

The last formula is equivalent to F and is in NNF.

Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals

$$
\bigvee_{i} \bigwedge_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

To convert F into equivalent F^{\prime} in DNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\left(F_{1} \vee F_{2}\right) \wedge F_{3} \Leftrightarrow\left(F_{1} \wedge F_{3}\right) \vee\left(F_{2} \wedge F_{3}\right) \\
F_{1} \wedge\left(F_{2} \vee F_{3}\right) \Leftrightarrow\left(F_{1} \wedge F_{2}\right) \vee\left(F_{1} \wedge F_{3}\right)
\end{array}\right\} \text { dist }
$$

Example

Convert $F:\left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right)$ into DNF

$$
\begin{array}{rlr}
& \left(Q_{1} \vee \neg \neg R_{1}\right) \wedge\left(\neg Q_{2} \rightarrow R_{2}\right) & \\
\Leftrightarrow & \left(Q_{1} \vee R_{1}\right) \wedge\left(Q_{2} \vee R_{2}\right) & \text { in NNF } \\
\Leftrightarrow & \left(Q_{1} \wedge\left(Q_{2} \vee R_{2}\right)\right) \vee\left(R_{1} \wedge\left(Q_{2} \vee R_{2}\right)\right) & \text { dist } \\
\Leftrightarrow & \left(Q_{1} \wedge Q_{2}\right) \vee\left(Q_{1} \wedge R_{2}\right) \vee\left(R_{1} \wedge Q_{2}\right) \vee\left(R_{1} \wedge R_{2}\right) & \text { dist }
\end{array}
$$

The last formula is equivalent to F and is in DNF. Note that formulas can grow exponentially.

Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals

$$
\bigwedge_{i} \bigvee_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

To convert F into equivalent F^{\prime} in CNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\begin{aligned}
& \left(F_{1} \wedge F_{2}\right) \vee F_{3} \Leftrightarrow\left(F_{1} \vee F_{3}\right) \wedge\left(F_{2} \vee F_{3}\right) \\
& F_{1} \vee\left(F_{2} \wedge F_{3}\right) \Leftrightarrow\left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)
\end{aligned}
$$

A disjunction of literals $P_{1} \vee P_{2} \vee \neg P_{3}$ is called a clause. For brevity we write it as set: $\left\{P_{1}, P_{2}, \overline{P_{3}}\right\}$.
A formula in CNF is a set of clauses (a set of sets of literals).

Equisatisfiability

Definition (Equisatisfiability)

F and F^{\prime} are equisatisfiable, iff

$$
F \text { is satisfiable if and only if } F^{\prime} \text { is satisfiable }
$$

Every formula is equisatifiable to either \top or \perp. There is a efficient conversion of F to F^{\prime} where

- F^{\prime} is in CNF and
- F and F^{\prime} are equisatisfiable

Note: efficient means polynomial in the size of F.

Conversion to equisatisfiable CNF

Basic Idea:

- Introduce a new variable P_{G} for every subformula G; unless G is already an atom.
- For each subformula $G: G_{1} \circ G_{2}$ produce a small formula $P_{G} \leftrightarrow P_{G_{1}} \circ P_{G_{2}}$.
- encode each of these (small) formulae separately to CNF.

The formula

$$
P_{F} \wedge \bigwedge_{G} C N F\left(P_{G} \leftrightarrow P_{G_{1}} \circ P_{G_{2}}\right)
$$

is equisatisfiable to F.
The number of subformulae is linear in the size of F.
The time to convert one small formula is constant!

Example: CNF

Convert $F: P \vee Q \rightarrow P \wedge \neg R$ to CNF. Introduce new variables: $P_{F}, P_{P \vee Q}, P_{P \wedge \neg R}, P_{\neg R}$. Create new formulae and convert them to CNF separately:

- $P_{F} \leftrightarrow\left(P_{P \vee Q} \rightarrow P_{P \wedge \neg R}\right)$ in CNF:

$$
F_{1}:\left\{\left\{\overline{P_{F}}, \overline{P_{P \vee Q}}, P_{P \wedge \neg R}\right\},\left\{P_{F}, P_{P \vee Q}\right\},\left\{P_{F}, \overline{P_{P \wedge \neg R}}\right\}\right\}
$$

- $P_{P \vee Q} \leftrightarrow P \vee Q$ in CNF:

$$
F_{2}:\left\{\left\{\overline{P_{P \vee Q}}, P \vee Q\right\},\left\{P_{P \vee Q}, \bar{P}\right\},\left\{P_{P \vee Q}, \bar{Q}\right\}\right\}
$$

- $P_{P \wedge \neg R} \leftrightarrow P \wedge P_{\neg R}$ in CNF:

$$
F_{3}:\left\{\left\{\overline{P_{P \wedge \neg R}} \vee P\right\},\left\{\overline{P_{P \wedge \neg R}}, P_{\neg R}\right\},\left\{P_{P \wedge \neg R}, \bar{P}, \overline{P_{\neg R}}\right\}\right\}
$$

- $P_{\neg R} \leftrightarrow \neg R$ in CNF: $F_{4}:\left\{\left\{\overline{P_{\neg R}}, \bar{R}\right\},\left\{P_{\neg R}, R\right\}\right\}$ $\left\{\left\{P_{F}\right\}\right\} \cup F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$ is in CNF and equisatisfiable to F.

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

- Algorithm to decide PL formulae in CNF.
- Published by Davis, Logemann, Loveland (1962).
- Often miscited as Davis, Putnam (1960), which describes a different algorithm.

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

```
let rec DPLL \(F=\)
    let \(F^{\prime}=\operatorname{PROP} F\) in
    let \(F^{\prime \prime}=\operatorname{PLP} F^{\prime}\) in
    if \(F^{\prime \prime}=\top\) then true
    else if \(F^{\prime \prime}=\perp\) then false
    else
        let \(P=\) Choose \(\operatorname{vars}\left(F^{\prime \prime}\right)\) in
        \(\left(\operatorname{DPLL} F^{\prime \prime}\{P \mapsto \top\}\right) \vee\left(\operatorname{DPLL} F^{\prime \prime}\{P \mapsto \perp\}\right)\)
```


Unit Propagagion

Unit Propagation (PROP)
If a clause contains one literal ℓ,

- Set ℓ to T.
- Remove all clauses containing ℓ.
- Remove $\neg \ell$ in all clauses.

Based on resolution

$$
\frac{\ell \quad \neg \vee C}{C} \leftarrow \text { clause }
$$

Pure Literal Propagagion

Pure Literal Propagation (PLP)
If P occurs only positive (without negation), set it to T. If P occurs only negative set it to \perp.

Example

$$
F:(\neg P \vee Q \vee R) \wedge(\neg Q \vee R) \wedge(\neg Q \vee \neg R) \wedge(P \vee \neg Q \vee \neg R)
$$

Branching on Q

$$
F\{Q \mapsto \top\}:(R) \wedge(\neg R) \wedge(P \vee \neg R)
$$

By unit resolution

$$
\frac{R \quad(\neg R)}{\perp}
$$

$F\{Q \mapsto \top\}=\perp \Rightarrow$ false
On the other branch
$F\{Q \mapsto \perp\}:(\neg P \vee R)$
$F\{Q \mapsto \perp, R \mapsto \top, P \mapsto \perp\}=\top \Rightarrow$ true
F is satisfiable with satisfying interpretation

$$
I:\{P \mapsto \text { false, } Q \mapsto \text { false, } R \mapsto \text { true }\}
$$

Example

$F:(\neg P \vee Q \vee R) \wedge(\neg Q \vee R) \wedge(\neg Q \vee \neg R) \wedge(P \vee \neg Q \vee \neg R)$

$I:\{P \mapsto$ false, $Q \mapsto$ false, $R \mapsto$ true $\}$

Knight and Knaves

A island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet four inhabitants: Alice, Bob, Charles and Doris.

- Alice says that Doris is a knave.
- Bob tells you that Alice is a knave.
- Charles claims that Alice is a knave.
- Doris tells you, 'Of Charles and Bob, exactly one is a knight.'

Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

- $A \leftrightarrow \neg D$
- $B \leftrightarrow \neg A$
- $C \leftrightarrow \neg A$
- $D \leftrightarrow \neg(C \leftrightarrow B)$

In CNF:

- $\{\bar{A}, \bar{D}\},\{A, D\}$
- $\{\bar{B}, \bar{A}\},\{B, A\}$
- $\{\bar{C}, \bar{A}\},\{C, A\}$
- $\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}$

Solving Knights and Knaves

$$
\begin{array}{r}
F:\{\{\bar{A}, \bar{D}\},\{A, D\},\{\bar{B}, \bar{A}\},\{B, A\},\{\bar{C}, \bar{A}\},\{C, A\}, \\
\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}\}
\end{array}
$$

PROP and PLP are not applicable. Decide on A :
$F\{A \mapsto \perp\}:\{\{D\},\{B\},\{C\},\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}\}$
By Prop we get:

$$
F\{A \mapsto \perp, D \mapsto \top, B \mapsto \top, C \mapsto \top\}: \perp
$$

Unsatisfiable! Now set A to T :
$F\{A \mapsto \top\}:\{\{\bar{D}\},\{\bar{B}\},\{\bar{C}\},\{\bar{D}, \bar{C}, \bar{B}\},\{\bar{D}, C, B\},\{D, \bar{C}, B\},\{D, C, \bar{B}\}\}$
By Prop we get:

$$
F\{A \mapsto T, D \mapsto \perp, B \mapsto \perp, C \mapsto \perp\}: \top
$$

Satisfying assignment!

Learning is Useful

Consider the following problem:

$$
\begin{array}{r}
\left\{\left\{A_{1}, B_{1}\right\},\left\{\overline{P_{0}}, \overline{A_{1}}, P_{1}\right\},\left\{\overline{P_{0}}, \overline{B_{1}}, P_{1}\right\},\left\{A_{2}, B_{2}\right\},\left\{\overline{P_{1}}, \overline{A_{2}}, P_{2}\right\},\left\{\overline{P_{1}}, \overline{B_{2}}, P_{2}\right\}\right. \\
\left.\ldots,\left\{A_{n}, B_{n}\right\},\left\{\overline{P_{n-1}}, \overline{A_{n}}, P_{n}\right\},\left\{\overline{P_{n-1}}, \overline{B_{n}}, P_{n}\right\},\left\{P_{0}\right\},\left\{\overline{P_{n}}\right\}\right\}
\end{array}
$$

For some literal orderings, we need exponentially many steps. Note, that

$$
\left\{\left\{A_{i}, B_{i}\right\},\left\{\overline{P_{i-1}}, \overline{A_{i}}, P_{i}\right\},\left\{\overline{P_{i-1}}, \overline{B_{i}}, P_{i}\right\}\right\} \Rightarrow\left\{\left\{\overline{P_{i-1}}, P_{i}\right\}\right\}
$$

If we learn the right clauses, unit propagation will immediately give unsatisfiable.

Partial Assignments and Unit/Conflict Clauses

Do not change the clause set, but only assign literals (as global variables). When you assign true to a literal ℓ, also assign false to $\bar{\ell}$.
For a partial assignment

- A clause is true if one of its literals is assigned true.
- A clause is a conflict clause if all its literals are assigned false.
- A clause is a unit clause if all but one literals are assigned false and the last literal is unassigned.
If the assignment of a literal from a conflict clause is removed we get a unit clause.
Explain unsatisfiability of partial assignment by conflict clause and learn it!

Conflict Driven Clause Learning (CDCL)

Idea: Explain unsatisfiability of partial assignment by conflict clause and learn it!

- If a conflict is found we return the conflict clause.
- If variable in conflict were derived by unit propagation use resolution rule to generate a new conflict clause.
- If variable in conflict was derived by decision, use learned conflict as unit clause

DPLL with CDCL

The functions DPLL and PROP return a conflict clause or satisfiable.

```
let rec DPLL \(=\)
    let PROP \(U=\)
    if conflictclauses \(\neq \emptyset\)
        choose conflictclauses
    else if unitclauses \(\neq \emptyset\)
    PROP (CHOOSE unitclauses)
    else if coreclauses \(\neq \emptyset\)
        let \(\ell=\) ChOOSE ( \(\cup\) coreclauses) \(\cap\) unassigned in
        \(\operatorname{val}[\ell]:=\top\)
        let \(C=\) DPLL in
        if ( \(C=\) satisfiable) satisfiable
        else
            \(\operatorname{val}[\ell]:=\) undef
            if \((\bar{\ell} \notin C) C\)
            else LEARN \(C\); prop \(C\)
    else satisfiable
```


Unit propagation

The function PROP takes a unit clause and does unit propagation. It calis DPLL recursively and returns a conflict clause or satisfiable. recursively:

$$
\begin{aligned}
& \text { let Prop } U= \\
& \text { let } \ell=\text { CHOOSE } U \cap \text { unassigned in } \\
& \text { val }[\ell]:=T \\
& \text { let } C=\text { DPLL in } \\
& \text { if }(C=\text { satisfiable }) \\
& \text { satisfiable } \\
& \text { else } \\
& \text { val }[\ell]:=\text { undef } \\
& \text { if }(\bar{\ell} \notin C) C \\
& \text { else } U \backslash\{\ell\} \cup C \backslash\{\bar{\ell}\}
\end{aligned}
$$

The last line does resolution:

$$
\frac{\ell \vee C_{1} \quad \neg \ell \vee C_{2}}{C_{1} \vee C_{2}}
$$

Example

$\left\{\left\{A_{1}, B_{1}\right\},\left\{\overline{P_{0}}, \overline{A_{1}}, P_{1}\right\},\left\{\overline{P_{0}}, \overline{B_{1}}, P_{1}\right\},\left\{A_{2}, B_{2}\right\},\left\{\overline{P_{1}}, \overline{A_{2}}, P_{2}\right\},\left\{\overline{P_{1}}, \overline{B_{2}}, P_{2}\right\}\right.$, $\left.\ldots,\left\{A_{n}, B_{n}\right\},\left\{\overline{P_{n-1}}, \overline{A_{n}}, P_{n}\right\},\left\{\overline{P_{n-1}}, \overline{B_{n}}, P_{n}\right\},\left\{P_{0}\right\},\left\{\overline{P_{n}}\right\}\right\}$

- Unit propagation (PROP) sets P_{0} and $\overline{P_{n}}$ to true.
- Decide, e.g. A_{1}, Prop sets $\overline{P_{1}}$
- Continue until A_{n-1}, Prop sets $\overline{P_{n-1}}, \overline{A_{n}}$ and $\overline{B_{n}}$
- Conflict clause computed: $\left\{\overline{A_{n-1}}, \overline{P_{n-2}}, P_{n}\right\}$.
- Conflict clause does not depend on A_{1}, \ldots, A_{n-2} and can be used again.

DPLL (without Learning)

DPLL with CDCL

Some Notes about DPLL with Learning

- Pure Literal Propagation is unnecessary:

A pure literal is always chosen right and never causes a conflict.

- Modern SAT-solvers use this procedure but differ in
- heuristics to choose literals/clauses.
- efficient data structures to find unit clauses.
- better conflict resolution to minimize learned clauses.
- restarts (without forgetting learned clauses).
- Even with the optimal heuristics DPLL is still exponential: The Pidgeon-Hole problem requires exponential resolution proofs.

Summary

- Syntax and Semantics of Propositional Logic
- Methods to decide satisfiability/validity of formulae:
- Truth table
- Semantic Tableaux
- DPLL
- Run-time of all presented algorithms is worst-case exponential in length of formula.
- Deciding satisfiability is NP-complete.

Further route of this lecture

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
\Longrightarrow Restrictions to decidable fragments of FOL
- Quantifier Free Fragment (QFF)
- QFF of Equality
- Presburger arithmetic
- (QFF of) Linear integer arithmetic
- Real arithmetic
- (QFF of) Linear real/rational arithmetic
- QFF of Recursive Data Structures
- QFF of Arrays
- Putting it all together (Nelson-Oppen).

First-Order Logic

Syntax of First-Order Logic

Also called Predicate Logic or Predicate Calculus

FOL Syntax

variables
constants
functions
terms
x, y, z, \cdots
a, b, c, \cdots
f, g, h, \cdots with arity $n>0$
variables, constants or n -ary function applied to n terms as arguments $a, x, f(a), g(x, b), f(g(x, f(b)))$
predicates p, q, r, \cdots with arity $n \geq 0$
atom
literal
atom or its negation $p(f(x), g(x, f(x))), \quad \neg p(f(x), g(x, f(x)))$

Note: 0-ary functions: constant 0 -ary predicates: P, Q, R, \ldots

Syntax of First-Order Logic (2)

quantifiers

existential quantifier $\exists x . F[x]$
"there exists an x such that $F[x]$ "
universal quantifier $\forall x . F[x]$
"for all $x, F[x]$ "
FOL formula literal, application of logical connectives $(\neg, \vee, \wedge, \rightarrow, \leftrightarrow)$ to formulae, or application of a quantifier to a formula

Example

FOL formula

$$
\forall x \cdot(\underbrace{p(f(x), x) \rightarrow(\exists y \cdot(\underbrace{p(f(g(x, y))), g(x, y))}_{G})) \wedge q(x, f(x))}_{F})
$$

The scope of $\forall x$ is F.
The scope of $\exists y$ is G.
The formula reads:
"for all x ,
if $p(f(x), x)$
then there exists a y such that $p(f(g(x, y)), g(x, y))$ and $q(x, f(x)) "$

Famous theorems in FOL

- The length of one side of a triangle is less than the sum of the lengths of the other two sides

$$
\forall x, y, z . \operatorname{triangle}(x, y, z) \rightarrow \text { length }(x)<\text { length }(y)+\text { length }(z)
$$

- Fermat's Last Theorem.

$$
\begin{aligned}
& \forall n \text {. integer }(n) \wedge n>2 \\
& \rightarrow \forall x, y, z \text {. } \\
& \quad \text { integer }(x) \wedge \operatorname{integer}(y) \wedge \operatorname{integer}(z) \\
& \quad \wedge x>0 \wedge y>0 \wedge z>0 \\
& \quad \rightarrow x^{n}+y^{n} \neq z^{n}
\end{aligned}
$$

Pumping Lemma

For every regular Language L there is some $n \geq 0$, such that for all words $z \in L$ with $|z| \geq n$ there is a decomposition $z=u v w$ with $|v| \geq 1$ and $|u v| \leq n$, such that for all $i \geq 0: u v^{i} w \in L$.

```
\(\forall\) L. regularlanguage \((L) \rightarrow\)
    \(\exists n\). integer \((n) \wedge n \geq 0 \wedge\)
    \(\forall z . z \in L \wedge|z| \geq n \rightarrow\)
        \(\exists u, v, w . \operatorname{word}(u) \wedge \operatorname{word}(v) \wedge \operatorname{word}(w) \wedge\)
    \(z=u v w \wedge|v| \geq 1 \wedge|u v| \leq n \wedge\)
    \(\forall i\). integer \((i) \wedge i \geq 0 \rightarrow u v^{i} w \in L\)
```

Predicates: regularlanguage, integer, word, $\cdot \in \cdot, \cdot \leq \cdot, \cdot \geq \cdot, \cdot=\cdot$
Constants: 0, 1
Functions: | \mid (word length), concatenation, iteration

FOL Semantics

An interpretation I : $\left(D_{I}, \alpha_{I}\right)$ consists of:

- Domain D_{l}
non-empty set of values or objects for example $D_{l}=$ playing cards (finite), integers (countable infinite), or reals (uncountable infinite)
- Assignment α_{l}
- each variable x assigned value $\alpha_{l}[x] \in D_{l}$
- each n-ary function f assigned

$$
\alpha_{l}[f]: \quad D_{l}^{n} \rightarrow D_{l}
$$

In particular, each constant a (0-ary function) assigned value $\alpha_{l}[a] \in D_{l}$

- each n-ary predicate p assigned

$$
\alpha_{l}[p]: D_{l}^{n} \rightarrow\{\top, \perp\}
$$

In particular, each propositional variable P (0-ary predicate) assigned truth value (\top, \perp)

Example

$$
F: p(f(x, y), z) \rightarrow p(y, g(z, x))
$$

Interpretation I: $\left(D_{l}, \alpha_{l}\right)$

$$
D_{l}=\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\} \quad \text { integers }
$$

$$
\alpha_{l}[f]: \quad D_{I}^{2} \rightarrow D_{l} \quad \alpha_{l}[g]: D_{I}^{2} \rightarrow D_{l}
$$

$$
(x, y) \mapsto x+y \quad(x, y) \mapsto x-y
$$

$$
\alpha_{I}[p]: \quad D_{I}^{2} \rightarrow\{\top, \perp\}
$$

$$
(x, y) \mapsto \begin{cases}\top & \text { if } x<y \\ \perp & \text { otherwise }\end{cases}
$$

Also $\alpha_{I}[x]=13, \alpha_{I}[y]=42, \alpha_{I}[z]=1$
Compute the truth value of F under I

$$
\begin{array}{lll}
\text { 1. } \quad I \not \models p(f(x, y), z) & \text { since } 13+42 \geq 1 \\
\text { 2. } \quad I \not \models p(y, g(z, x)) & \text { since } 42 \geq 1-13 \\
\text { 3. } \quad I \not \models F & \text { by } 1,2, \text { and } \rightarrow
\end{array}
$$

F is true under I

Semantics: Quantifiers

For a variable x :

Definition (x-variant)

An x-variant of interpretation I is an interpretation $J:\left(D_{J}, \alpha_{J}\right)$ such that

- $D_{l}=D_{J}$
- $\alpha_{l}[y]=\alpha_{J}[y]$ for all symbols y, except possibly x

That is, I and J agree on everything except possibly the value of x
Denote $J: I \triangleleft\{x \mapsto v\}$ the x-variant of I in which $\alpha_{J}[x]=v$ for some $v \in D_{l}$. Then

- $I \models \forall x$. $F \quad$ iff for all $v \in D_{l}, l \triangleleft\{x \mapsto \mathrm{v}\} \vDash F$
- $l \models \exists x . F \quad$ iff there exists $v \in D_{l}$ s.t. $I \triangleleft\{x \mapsto v\} \models F$

Example

Consider

$$
F: \forall x . \exists y .2 \cdot y=x
$$

Here $2 \cdot y$ is the infix notatation of the term $\cdot(2, y)$, and $2 \cdot y=x$ is the infix notatation of the atom $=(\cdot(2, y), x)$.

- 2 is a 0 -ary function symbol (a constant).
- . is a 2-ary function symbol.
- = is a 2-ary predicate symbol.
- x, y are variables.

What is the truth-value of F ?

Example (\mathbb{Z})

$$
F: \forall x . \exists y .2 \cdot y=x
$$

Let l be the standard interpration for integers, $D_{l}=\mathbb{Z}$.
Compute the value of F under I :

$$
I \models \forall x . \exists y .2 \cdot y=x
$$

iff

$$
\text { for all } v \in D_{l}, l \triangleleft\{x \mapsto v\} \models \exists y .2 \cdot y=x
$$

iff
for all $\mathrm{v} \in D_{l}$, there exists $\mathrm{v}_{1} \in D_{l}, I \triangleleft\{x \mapsto \mathrm{v}\} \triangleleft\left\{y \mapsto \mathrm{v}_{1}\right\} \models 2 \cdot y=x$
The latter is false since for $1 \in D_{l}$ there is no number v_{1} with $2 \cdot v_{1}=1$.

Example (\mathbb{Q})

$$
F: \forall x . \exists y .2 \cdot y=x
$$

Let $/$ be the standard interpration for rational numbers, $D_{l}=\mathbb{Q}$. Compute the value of F under I :

$$
I \models \forall x . \exists y .2 \cdot y=x
$$

iff

$$
\text { for all } v \in D_{l}, l \triangleleft\{x \mapsto v\} \vDash \exists y .2 \cdot y=x
$$

iff
for all $\mathrm{v} \in D_{I}$, there exists $\mathrm{v}_{1} \in D_{I}, I \triangleleft\{x \mapsto \mathrm{v}\} \triangleleft\left\{y \mapsto \mathrm{v}_{1}\right\} \models 2 \cdot y=x$
The latter is true since for $v \in D_{\text {l }}$ we can choose $v_{1}=\frac{v}{2}$.

Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that $I \models F$.

Definition (Validity)

F is valid iff for all interpretations $I, I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

Substitution

Suppose, we want to replace terms with other terms in formulas, e.g.

$$
F: \forall y .(p(x, y) \rightarrow p(y, x))
$$

should be transformed to

$$
G: \forall y .(p(a, y) \rightarrow p(y, a))
$$

We call the mapping from x to a a substituion denoted as $\sigma:\{x \mapsto a\}$. We write $F \sigma$ for the formula G.
Another convenient notation is $F[x]$ for a formula containing the variable x and $F[a]$ for $F \sigma$.

Substitution

Definition (Substitution)

A substitution is a mapping from terms to terms, e.g.

$$
\sigma:\left\{t_{1} \mapsto s_{1}, \ldots, t_{n} \mapsto s_{n}\right\}
$$

By $F \sigma$ we denote the application of σ to formula F, i.e., the formula F where all occurences of t_{1}, \ldots, t_{n} are replaced by s_{1}, \ldots, s_{n}.

For a formula named $F[x]$ we write $F[t]$ as shorthand for $F[x]\{x \mapsto t\}$.

Safe Substitution

Care has to be taken in the presence of quantifiers:

$$
F[x]: \exists y \cdot y=\operatorname{Succ}(x)
$$

What is $F[y]$?
We need to rename bounded variables occuring in the substitution:

$$
F[y]: \exists y^{\prime} \cdot y^{\prime}=\operatorname{Succ}(y)
$$

Bounded renaming does not change the models of a formula:

$$
(\exists y \cdot y=\operatorname{Succ}(x)) \Leftrightarrow\left(\exists y^{\prime} \cdot y^{\prime}=\operatorname{Succ}(x)\right)
$$

Recursive Definition of Substitution

$$
\begin{aligned}
& t \sigma= \begin{cases}\sigma(t) & t \in \operatorname{dom}(\sigma) \\
f\left(t_{1} \sigma, \ldots, t_{n} \sigma\right) & t \notin \operatorname{dom}(\sigma) \wedge t=f\left(t_{1}, \ldots, t_{n}\right) \\
x & t \notin \operatorname{dom}(\sigma) \wedge t=x\end{cases} \\
& p\left(t_{1}, \ldots, t_{n}\right) \sigma=p\left(t_{1} \sigma, \ldots, t_{n} \sigma\right) \\
& (\neg F) \sigma=\neg(F \sigma) \\
& (F \wedge G) \sigma=(F \sigma) \wedge(G \sigma) \\
& (\forall x . F) \sigma= \begin{cases}\forall x . F \sigma & x \notin \operatorname{Vars}(\sigma) \\
\forall x^{\prime} .\left(\left(F\left\{x \mapsto x^{\prime}\right\}\right) \sigma\right) & \text { otherwise and } x^{\prime} \text { is fresh }\end{cases} \\
& (\exists x . F) \sigma= \begin{cases}\exists x . F \sigma & x \notin \operatorname{Vars}(\sigma) \\
\exists x^{\prime} .\left(\left(F\left\{x \mapsto x^{\prime}\right\}\right) \sigma\right) & \text { otherwise and } x^{\prime} \text { is fresh }\end{cases}
\end{aligned}
$$

Example: Safe Substitution $F \sigma$

$$
\begin{gathered}
F:(\forall x . p(x, y)) \rightarrow q(f(y), x) \\
\text { bound by } \forall x \nearrow \text { free } \\
\sigma:\{x \mapsto g(x), y \mapsto f(x), f(y) \mapsto h(x, y)\}
\end{gathered}
$$

$F \sigma$?
(1) Rename

$$
\underset{\uparrow}{F^{\prime}:} \underset{\uparrow}{\forall x^{\prime}} \cdot p\left(x^{\prime}, y\right) \rightarrow q(f(y), x)
$$

where x^{\prime} is a fresh variable
(2) $F \sigma: \forall x^{\prime} \cdot p\left(x^{\prime}, f(x)\right) \rightarrow q(h(x, y), g(x))$

Semantic Tableaux

Recall rules from propositional logic:

$$
\begin{aligned}
& \frac{l \models \neg F}{I \not \models F} \\
& \frac{l \not \models \neg F}{l \mid=F} \\
& \begin{array}{l}
I \models F \wedge G \\
I \models F \\
I \models G \quad \leftarrow \text { and }
\end{array} \\
& \\
& \begin{array}{c}
l \vDash F \rightarrow G \\
I \not \models F \mid l \models G
\end{array} \\
& \frac{I \models F \leftrightarrow G}{I \models F \wedge G \quad|\mid \vDash F \vee G} \\
& \frac{I \not \models F \leftrightarrow G}{I \models F \wedge \neg G \quad \mid \quad I \models \neg F \wedge G} \\
& \begin{array}{l}
I \models F \\
I \not \models F \\
I \models \perp
\end{array}
\end{aligned}
$$

Semantic Tableaux for FOL

The following additional rules are used for quantifiers:

$$
\begin{array}{cc}
\frac{I \models \forall x . F[x] \text { for any term } t}{I \models F[t]} & \frac{I \not \models \forall x . F[x]}{l \not \models F[a]} \text { for a fresh constant a } \\
\frac{I \models \exists x . F[x]}{I \models F[a]} \text { for a fresh constant a } & \frac{l \not \models \exists x . F[x]}{l \not \models F[t]} \text { for any term } t
\end{array}
$$

(We assume that there are infinitely many constant symbols.)
The formula $F[t]$ is created from the formula $F[x]$ by the substitution $\{x \mapsto t\}$ (roughly, replace every x by t).

Example

Show that $(\exists x . \forall y . p(x, y)) \rightarrow(\forall x . \exists y . p(y, x))$ is valid.
Assume otherwise.

1. $\quad I \notin(\exists x . \forall y \cdot p(x, y)) \rightarrow(\forall x . \exists y . p(y, x)) \quad$ assumption
2. $I \models \exists x . \forall y . p(x, y)$
3. $I \not \vDash \forall x$. $\exists y . p(y, x)$
4. $\quad I \vDash \forall y . p(a, y)$
5. $\quad I \not \vDash \exists y . p(y, b)$
6. $\quad I \vDash p(a, b)$
7. $I \not \vDash p(a, b)$
8. $I \models \perp$

1 and \rightarrow
1 and \rightarrow
2, \exists ($x \mapsto a$ fresh $)$
3, \forall ($x \mapsto b$ fresh $)$
4, $\forall(y \mapsto b)$
5, $\exists(y \mapsto a)$
6,7 contradictory
Thus, the formula is valid.

Example

Is $F:(\forall x . p(x, x)) \rightarrow(\exists x . \forall y . p(x, y))$ valid?.
Assume I is a falsifying interpretation for F and apply semantic argument:

$$
\begin{aligned}
& \text { 1. } \quad I \quad \vDash(\forall x . p(x, x)) \rightarrow(\exists x . \forall y . p(x, y)) \\
& \text { 2. } I \models \forall x \cdot p(x, x) \quad 1 \text { and } \rightarrow \\
& \text { 3. } I \notin \exists x . \forall y \cdot p(x, y) \quad 1 \text { and } \rightarrow \\
& \text { 4. } \quad l \models p\left(a_{1}, a_{1}\right) \quad 2, \forall \\
& \text { 5. } I \not \vDash \forall y . p\left(a_{1}, y\right) \quad 3, \exists \\
& \text { 6. } I \not \vDash p\left(a_{1}, a_{2}\right) \quad 5, \forall \\
& \text { 7. } I \models p\left(a_{2}, a_{2}\right) \quad 2, \forall \\
& \text { 8. } I \not \vDash \forall y . p\left(a_{2}, y\right) \quad 3, \exists \\
& \text { 9. } I \not \models p\left(a_{2}, a_{3}\right) \quad 8, \forall
\end{aligned}
$$

No contradiction. Falsifying interpretation I can be "read" from proof:

$$
D_{l}=\mathbb{N}, \quad p_{l}(x, y)= \begin{cases}\text { true } & y=x \\ \text { false } & y=x+1 \\ \text { arbitrary } & \text { otherwise }\end{cases}
$$

Semantic Argument Proof

To show FOL formula F is valid, assume $I \not \vDash F$ and derive a contradiction $l \models \perp$ in all branches

- Soundness

If every branch of a semantic argument proof reach $/ \vDash \perp$, then F is valid

- Completeness

Each valid formula F has a semantic argument proof in which every branch reaches $I \models \perp$

- Non-termination

For an invalid formula F the method is not guaranteed to terminate. Thus, the semantic argument is not a decision procedure for validity.

Soundness (proof sketch)

If for interpretation / the assumption of the proof holds then there is an interpretation I^{\prime} and a branch such that all statements on that branch hold.
I^{\prime} differs from I in the values $\alpha_{I}\left[a_{i}\right]$ of fresh constants a_{i}.
If all branches of the proof end with $I \models \perp$, then the assumption was wrong. Thus, if the assumption was $I \not \vDash F$, then F must be valid.

Completeness (proof sketch)

Consider (finite or infinite) proof trees starting with $I \not \vDash F$. We assume that

- all possible proof rules were applied in all non-closed branches.
- the \forall and \exists rules were applied for all terms.

This is possible since the terms are countable.

If every branch is closed, the tree is finite (Kőnig's Lemma) and we have a finite proof for F.

Completeness (proof sketch, continued)

Otherwise, the proof tree has at least one open branch P. We show that $t^{2^{2}} F$ is not valid.
(1) The statements on that branch P form a Hintikka set:

- $I \models F \wedge G \in P$ implies $I \models F \in P$ and $I \models G \in P$.
- $I \not \vDash F \wedge G \in P$ implies $I \not \vDash F \in P$ or $I \not \vDash G \in P$.
- $I \models \forall x$. $F[x] \in P$ implies for all terms $t, I \models F[t] \in P$.
- $I \not \vDash \forall x . F[x] \in P$ implies for some term $a, I \not \vDash F[a] \in P$.
- Similarly for $\vee, \rightarrow, \leftrightarrow, \exists$.
(2) Choose $D_{l}:=\{t \mid t$ is term $\}, \alpha_{l}[f]\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots t_{n}\right)$, $\alpha_{l}[x]=x$ (every term is interpreted as itself)

$$
\alpha_{l}[p]\left(t_{1}, \ldots, t_{n}\right)= \begin{cases}\text { true } & I \models p\left(t_{1}, \ldots, t_{n}\right) \in P \\ \text { false } & \text { otherwise }\end{cases}
$$

(3) I satisfies all statements on the branch.

In particular, I is a falsifying interpretation of F, thus F is not valid.

Normal Forms

Also in first-order logic normal forms can be used:

- Devise an algorithm to convert a formula to a normal form.
- Then devise an algorithm for satisfiability/validity that only works on the normal form.

Negation Normal Forms (NNF)

Negations appear only in literals. (only $\neg, \wedge, \vee, \exists, \forall$)
To transform F to equivalent F^{\prime} in NNF use recursively the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \perp \quad \neg \perp \Leftrightarrow \top \\
\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
\neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2}
\end{array}\right\} \text { De Morgan's Law }
$$

Example: Conversion to NNF

$G: \forall x .(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w)$.
(1) $\forall x \cdot(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w)$
(2) $\forall x \cdot \neg(\exists y \cdot p(x, y) \wedge p(x, z)) \vee \exists w \cdot p(x, w)$

$$
F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2}
$$

(3) $\forall x \cdot(\forall y \cdot \neg(p(x, y) \wedge p(x, z))) \vee \exists w \cdot p(x, w)$

$$
\neg \exists x . F[x] \Leftrightarrow \forall x . \neg F[x]
$$

(9) $\forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists w \cdot p(x, w)$

Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

$$
Q_{1} x_{1} \cdots Q_{n} x_{n} . F\left[x_{1}, \cdots, x_{n}\right]
$$

where $Q_{i} \in\{\forall, \exists\}$ and F is quantifier-free.
Every FOL formula F can be transformed to formula F^{\prime} in PNF s.t. $F^{\prime} \Leftrightarrow F$:
(1) Write F in NNF
(3) Rename quantified variables to fresh names

- Move all quantifiers to the front

Example: PNF

Find equivalent PNF of

$$
F: \forall x \cdot((\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists y \cdot p(x, y))
$$

- Write F in NNF

$$
F_{1}: \forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists y . p(x, y)
$$

- Rename quantified variables to fresh names

$$
\begin{gathered}
F_{2}: \quad \forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists w . p(x, w) \\
\uparrow \text { in the scope of } \forall x
\end{gathered}
$$

Example: PNF

- Move all quantifiers to the front

$$
F_{3}: \forall x . \forall y . \exists w . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Alternately,

$$
F_{3}^{\prime}: \forall x . \exists w . \forall y . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Note: In $F_{2}, \forall y$ is in the scope of $\forall x$, therefore the order of quantifiers must be $\cdots \forall x \cdots \forall y \cdots$

$$
F_{4} \Leftrightarrow F \text { and } F_{4}^{\prime} \Leftrightarrow F
$$

Note: However $G \nLeftarrow F$

$$
G: \forall y . \exists w . \forall x . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Decidability of FOL

- FOL is undecidable (Turing \& Church)

There does not exist an algorithm for deciding if a FOL formula F is valid, i.e. always halt and says "yes" if F is valid or say "no" if F is invalid.

- FOL is semi-decidable

There is a procedure that always halts and says "yes" if F is valid, but may not halt if F is invalid.

On the other hand,

- PL is decidable

There exists an algorithm for deciding if a PL formula F is valid, e.g., the truth-table procedure.

Similarly for satisfiability

Theories

Theories

In first-order logic function symbols have no predefined meaning:
The formula $1+1=3$ is satisfiable.

We want to fix the meaning for some function symbols.
Examples:

- Equality theory
- Theory of natural numbers
- Theory of rational numbers
- Theory of arrays or lists

First-Order Theories

Definition (First-order theory)

A First-order theory T consists of

- A Signature Σ - set of constant, function, and predicate symbols
- A set of axioms A_{T} - set of closed (no free variables) Σ-formulae

A Σ-formula is a formula constructed of constants, functions, and predicate symbols from Σ, and variables, logical connectives, and quantifiers

- The symbols of Σ are just symbols without prior meaning
- The axioms of T provide their meaning

Theory of Equality T_{E}

Signature $\quad \Sigma_{=}:\{=, a, b, c, \cdots, f, g, h, \cdots, p, q, r, \cdots\}$

- =, a binary predicate, interpreted by axioms.
- all constant, function, and predicate symbols.

Axioms of T_{E} :
(1) $\forall x \cdot x=x$ (reflexivity)
(3) $\forall x, y \cdot x=y \rightarrow y=x$ (symmetry)
(1) $\forall x, y, z, x=y \wedge y=z \rightarrow x=z$
(transitivity)
(- for each positive integer n and n-ary function symbol f, $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \Lambda_{i} x_{i}=y_{i} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ (congruence)
(0) for each positive integer n and n-ary predicate symbol p, $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \Lambda_{i} x_{i}=y_{i} \rightarrow\left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)$ (equivalence)

Axiom Schemata

Congruence and Equivalence are axiom schemata.
(9) for each positive integer n and n-ary function symbol f, $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \bigwedge_{i} x_{i}=y_{i} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ (congruence)
(0) for each positive integer n and n-ary predicate symbol p, $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \bigwedge_{i} x_{i}=y_{i} \rightarrow\left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)$ (equivalence)

For every function symbol there is an instance of the congruence axiom schemata.
Example: Congruence axiom for binary function f_{2} :
$\forall x_{1}, x_{2}, y_{1}, y_{2} . x_{1}=y_{1} \wedge x_{2}=y_{2} \rightarrow f_{2}\left(x_{1}, x_{2}\right)=f_{2}\left(y_{1}, y_{2}\right)$
$A_{T_{\mathrm{E}}}$ contains an infinite number of these axioms.

Definition (T-interpretation)

An interpretation I is a T-interpretation, if it satisfies all the axioms of T.

Definition (T-valid)
A \sum-formula F is valid in theory $T(T$-valid, also $T \models F)$, if every T-interpretation satisfies F.

Definition (T-satisfiable)

A Σ-formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation that satisfies F

Definition (T-equivalent)

Two \sum-formulae F_{1} and F_{2} are equivalent in T (T-equivalent), if $F_{1} \leftrightarrow F_{2}$ is T-valid,

Example: T_{E}-validity

Semantic argument method can be used for T_{E}
Prove

$$
F: a=b \wedge b=c \rightarrow g(f(a), b)=g(f(c), a) \quad T_{\mathrm{E}} \text {-valid. }
$$

Suppose not; then there exists a T_{E}-interpretation I such that $I \not \vDash F$.
Then,

1.	$l \nLeftarrow F$	assumption
2.	$l \vDash a=b \wedge b=c$	$1, \rightarrow$
3.	$l \forall g(f(a), b)=g(f(c), a)$	$1, \rightarrow$
4.	$l \models \forall x, y, z \cdot x=y \wedge y=z \rightarrow x=z$	transitivity
5.	$\prime \models a=b \wedge b=c \rightarrow a=c$	$4,3 \times \forall\{x \mapsto a, y \mapsto b, z \mapsto c\}$
6 a	$\prime \mid \forall a=b \wedge b=c$	$5, \rightarrow$
$7 a$	$l \vDash \perp$	2 and 6a contradictory
6 b .	$l \vDash a=c$	4, 5, (5, \rightarrow)
$7 b$.	$l \models a=c \rightarrow f(a)=f(c)$	(congruence), $2 \times \forall$
8 ba .	$l\|\forall a=c \quad \cdots\| \vDash \perp$	
8 bb .	$l \models f(a)=f(c)$	$7 \mathrm{~b}, \rightarrow$
$9 b b$.	$l \vDash a=b$	$2, \wedge$
10 bb .	$l \vDash a=b \rightarrow b=a$	(symmetry), $2 \times \forall$
11 bba .	$l\|\vDash a=b \quad \cdots\| \vDash \perp$	
11 bbb .	$l \vDash b=a$	10bb, \rightarrow
$12 b b b$.	$I \models f(a)=f(c) \wedge b=a \rightarrow g(f(a), b)=g(f(c), a)$	(congruence), $4 \times \forall$
$\ldots 13$	$l \vDash g(f(a), b)=g(f(c), a)$	$8 \mathrm{bb}, 11 \mathrm{bbb}, 12 \mathrm{bbb}$

3 and 13 are contradictory. Thus, F is T_{E}-valid.

Decidability of T_{E}

Is it possible to decide T_{E}-validity?
T_{E}-validity is undecidable.
If we restrict ourself to quantifier-free formulae we get decidability:
For a quantifier-free formula T_{E}-validity is decidable.

Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of formulae of the theory.

Example: quantifier-free fragment of theory T is the set of quantifier-free formulae in T.

A theory T is decidable if $T \models F$ (T-validity) is decidable for every Σ-formula F,
i.e., there is an algorithm that always terminate with "yes", if F is T-valid, and "no", if F is T-invalid.
A fragment of T is decidable if $T \models F$ is decidable for every Σ-formula F in the fragment.

Natural Numbers and Integers

Natural numbers $\mathbb{N}=\{0,1,2, \cdots\}$
Integers $\quad \mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}$
Three variations:

- Peano arithmetic $T_{\text {PA }}$: natural numbers with addition and multiplication
- Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition
- Theory of integers $T_{\mathbb{Z}}$: integers with,,$+->$

Peano Arithmetic $T_{P A}$ (first-order arithmetic)

Signature: $\quad \Sigma_{\text {PA }}:\{0,1,+, \cdot,=\}$
Axioms of T_{PA} : axioms of T_{E},
(1) $\forall x \cdot \neg(x+1=0)$
(2) $\forall x, y \cdot x+1=y+1 \rightarrow x=y$
(successor)
(3) $F[0] \wedge(\forall x . F[x] \rightarrow F[x+1]) \rightarrow \forall x . F[x]$ (induction)
(3) $\forall x \cdot x+0=x$
(3) $\forall x, y \cdot x+(y+1)=(x+y)+1$
(0) $\forall x \cdot x \cdot 0=0$
(3) $\forall x, y \cdot x \cdot(y+1)=x \cdot y+x$ (plus zero) (plus successor) (times zero) (times successor)
Line 3 is an axiom schema.

Expressiveness of Peano Arithmetic

$3 x+5=2 y$ can be written using $\Sigma_{P A}$ as

$$
x+x+x+1+1+1+1+1=y+y
$$

We can define $>$ and \geq : $\quad 3 x+5>2 y \quad$ write as
$\exists z . z \neq 0 \wedge 3 x+5=2 y+z$
$3 x+5 \geq 2 y$ write as $\exists z .3 x+5=2 y+z$
Examples for valid formulae:

- Pythagorean Theorem is T_{PA}-valid

$$
\exists x, y, z . x \neq 0 \wedge y \neq 0 \wedge z \neq 0 \wedge x x+y y=z z
$$

- Fermat's Last Theorem is T_{PA}-valid (Andrew Wiles, 1994) $\forall n . n>2 \rightarrow \neg \exists x, y, z . x \neq 0 \wedge y \neq 0 \wedge z \neq 0 \wedge x^{n}+y^{n}=z^{n}$

Expressiveness of Peano Arithmetic (2)

In Fermat's theorem we used x^{n}, which is not a valid term in $\Sigma_{P A}$. However, there is the $\Sigma_{P A}$-formula $\operatorname{EXP}[x, n, r]$ with
(1) EXP $[x, 0, r] \leftrightarrow r=1$
(2) $\operatorname{EXP}[x, i+1, r] \leftrightarrow \exists r_{1} . \operatorname{EXP}\left[x, i, r_{1}\right] \wedge r=r_{1} \cdot x$

$$
\begin{aligned}
& E X P[x, n, r]: \exists d, m \cdot(\exists z \cdot d=(m+1) z+1) \wedge \\
& \quad\left(\forall i, r_{1} \cdot i<n \wedge r_{1}<m \wedge\left(\exists z \cdot d=((i+1) m+1) z+r_{1}\right) \rightarrow\right. \\
& \left.r_{1} x<m \wedge\left(\exists z \cdot d=((i+2) m+1) z+r_{1} \cdot x\right)\right) \wedge \\
& r<m \wedge(\exists z \cdot d=((n+1) m+1) z+r)
\end{aligned}
$$

Fermat's theorem can be stated as:

$$
\begin{aligned}
& \forall n . n>2 \rightarrow \neg \exists x, y, z, r x, r y . x \neq 0 \wedge y \neq 0 \wedge z \neq 0 \wedge \\
& \quad \operatorname{XXP}[x, n, r x] \wedge \operatorname{EXP}[y, n, r y] \wedge \operatorname{EXP}[z, n, r x+r y]
\end{aligned}
$$

Decidability of Peano Arithmetic

Gödel showed that for every recursive function $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ there is a Σ_{PA}-formula $F\left[x_{1}, \ldots, x_{n}, r\right]$ with

$$
F\left[x_{1}, \ldots, x_{n}, r\right] \leftrightarrow r=f\left(x_{1}, \ldots, x_{n}\right)
$$

$T_{\text {PA }}$ is undecidable. (Gödel, Turing, Post, Church)
The quantifier-free fragment of T_{PA} is undecidable. (Matiyasevich, 1970)

Remark: Gödel's first incompleteness theorem

Peano arithmetic $T_{P A}$ does not capture true arithmetic:
There exist closed $\Sigma_{P A}$-formulae representing valid propositions of number theory that are not $T_{P A}$-valid.
The reason: $T_{P A}$ actually admits nonstandard interpretations

For decidability: no multiplication

Presburger Arithmetic $T_{\mathbb{N}}$

Signature: $\Sigma_{\mathbb{N}}:\{0,1,+,=\} \quad$ no multiplication!
Axioms of $T_{\mathbb{N}}$: axioms of T_{E},
(1) $\forall x \cdot \neg(x+1=0)$
(3) $\forall x, y \cdot x+1=y+1 \rightarrow x=y$
(successor)
(-) $F[0] \wedge(\forall x . F[x] \rightarrow F[x+1]) \rightarrow \forall x . F[x]$ (induction)
(-) $\forall x \cdot x+0=x$ (plus zero)
(0) $\forall x, y \cdot x+(y+1)=(x+y)+1$
(plus successor)
3 is an axiom schema.
$T_{\mathbb{N}}$-satisfiability and $T_{\mathbb{N}}$-validity are decidable. (Presburger 1929)

Theory of Integers $T_{\mathbb{Z}}$

Signature:
$\Sigma_{\mathbb{Z}}:\{\ldots,-2,-1,0,1,2, \ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots,+,-,=,>\}$ where

- ..., $-2,-1,0,1,2, \ldots$ are constants
- ..., $-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot \ldots$ are unary functions
(intended meaning: $2 \cdot x$ is $x+x$)
$\bullet+,-,=,>$ have the usual meanings.

Relation between $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$

$T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$ have the same expressiveness:

- For every $\Sigma_{\mathbb{Z}}$-formula there is an equisatisfiable $\Sigma_{\mathbb{N}}$-formula.
- For every $\Sigma_{\mathbb{N}}$-formula there is an equisatisfiable $\Sigma_{\mathbb{Z}}$-formula.
$\Sigma_{\mathbb{Z}}$-formula F and $\Sigma_{\mathbb{N}}$-formula G are equisatisfiable iff:
F is $T_{\mathbb{Z}}$-satisfiable iff $\quad G$ is $T_{\mathbb{N}}$-satisfiable

Example: $\Sigma_{\mathbb{N}}$-formula to $\Sigma_{\mathbb{Z}}$-formula.

Example: The $\Sigma_{\mathbb{N}^{-}}$-formula

$$
\forall x . \exists y \cdot x=y+1
$$

is equisatisfiable to the $\Sigma_{\mathbb{Z}}$-formula:

$$
\forall x . x>-1 \rightarrow \exists y . y>-1 \wedge x=y+1
$$

Example: $\Sigma_{\mathbb{Z}}$-formula to $\Sigma_{\mathbb{N}}$-formula

Consider the $\Sigma_{\mathbb{Z}}$-formula
$F_{0}: \forall w, x . \exists y, z . x+2 y-z-7>-3 w+4$
Introduce two variables, v_{p} and v_{n} (range over the nonnegative integers) for each variable v (range over the integers) of F_{0}

$$
\begin{aligned}
& F_{1}: \quad \forall w_{p}, w_{n}, x_{p}, x_{n} \cdot \exists y_{p}, y_{n}, z_{p}, z_{n} . \\
& \quad\left(x_{p}-x_{n}\right)+2\left(y_{p}-y_{n}\right)-\left(z_{p}-z_{n}\right)-7>-3\left(w_{p}-w_{n}\right)+4
\end{aligned}
$$

Eliminate - by moving to the other side of $>$

$$
\begin{aligned}
F_{2}: \quad & \forall w_{p}, w_{n}, x_{p}, x_{n} \cdot \exists y_{p}, y_{n}, z_{p}, z_{n} \\
\quad & x_{p}+2 y_{p}+z_{n}+3 w_{p}>x_{n}+2 y_{n}+z_{p}+7+3 w_{n}+4
\end{aligned}
$$

Eliminate $>$ and numbers:

$$
\begin{aligned}
& \forall w_{p}, w_{n}, x_{p}, x_{n} . \exists y_{p}, y_{n}, z_{p}, z_{n} . \exists u . \\
& F_{3}: \quad \neg(u=0) \wedge x_{p}+y_{p}+y_{p}+z_{n}+w_{p}+w_{p}+w_{p} \\
& =x_{n}+y_{n}+y_{n}+z_{p}+w_{n}+w_{n}+w_{n}+u \\
& \quad+1+1+1+1+1+1+1+1+1+1+1
\end{aligned}
$$

which is a $\Sigma_{\mathbb{N}^{-}}$formula equisatisfiable to F_{0}.

Reducing $T_{\mathbb{Z}}$ to $T_{\mathbb{N}}$.

To decide $T_{\mathbb{Z}}$-validity for a $\Sigma_{\mathbb{Z}}$-formula F :

- transform $\neg F$ to an equisatisfiable $\Sigma_{\mathbb{N}}$-formula $\neg G$,
- decide $T_{\mathbb{N}}$-validity of G.

Rationals and Reals

$$
\Sigma=\{0,1,+,-, \cdot,=, \geq\}
$$

- Theory of Reals $T_{\mathbb{R}}$ (with multiplication)

$$
x \cdot x=2 \quad \Rightarrow \quad x= \pm \sqrt{2}
$$

- Theory of Rationals $T_{\mathbb{Q}}$ (no multiplication)

$$
\underbrace{2 x}_{x+x}=7 \Rightarrow x=\frac{2}{7}
$$

Note: Strict inequality

$$
\forall x, y . \exists z . x+y>z
$$

can be expressed as

$$
\forall x, y . \exists z . \neg(x+y=z) \wedge x+y \geq z
$$

Theory of Reals $T_{\mathbb{R}}$

Signature: $\Sigma_{\mathbb{R}}:\{0,1,+,-, \cdot,=, \geq\}$ with multiplication.
Axioms of $T_{\mathbb{R}}$: axioms of T_{E},
(1) $\forall x, y, z \cdot(x+y)+z=x+(y+z)$
(2) $\forall x, y \cdot x+y=y+x$
(3) $\forall x \cdot x+0=x$
(1) $\forall x \cdot x+(-x)=0$
(3) $\forall x, y, z \cdot(x \cdot y) \cdot z=x \cdot(y \cdot z)$
(0) $\forall x, y \cdot x \cdot y=y \cdot x$
(1) $\forall x \cdot x \cdot 1=x$
(8) $\forall x \cdot x \neq 0 \rightarrow \exists y \cdot x \cdot y=1$
(9) $\forall x, y, z \cdot x \cdot(y+z)=x \cdot y+x \cdot z$
(1) $0 \neq 1$
(1) $\forall x, y \cdot x \geq y \wedge y \geq x \rightarrow x=y$
(3) $\forall x, y, z . x \geq y \wedge y \geq z \rightarrow x \geq z$
(3) $\forall x, y \cdot x \geq y \vee y \geq x$
(4) $\forall x, y, z . x \geq y \rightarrow x+z \geq y+z$
(1) $\forall x, y \cdot x \geq 0 \wedge y \geq 0 \rightarrow x \cdot y \geq 0$
(0) $\forall x$. $\exists y \cdot x=y \cdot y \vee x=-y \cdot y$
(13) for each odd integer n,

$$
\forall x_{0}, \ldots, x_{n-1} \cdot \exists y \cdot y^{n}+x_{n-1} y^{n-1} \cdots+x_{1} y+x_{0}=0
$$

Example

$F: \forall a, b, c . b^{2}-4 a c \geq 0 \leftrightarrow \exists x . a x^{2}+b x+c=0$ is $T_{\mathbb{R}^{-v a l i d} .}$
As usual: x^{2} abbreviates $x \cdot x$, we omit \cdot, e.g. in $4 a c$, 4 abbreviate $1+1+1+1$ and $a-b$ abbreviates $a+(-b)$.

2. $\quad I \vDash \exists y . b b-4 a c=y^{2} \vee b b-4 a c=-y^{2}$
3. $\quad l \vDash d^{2}=b b-4 a c \vee d^{2}=-(b b-4 a c)$
4. $\quad I \mid=d \geq 0 \vee 0 \geq d$
5. $\quad I \models d^{2} \geq 0$
6. $\quad l \mid=2 a \cdot e=1$

7a. $\quad I \models b b-4 a c \geq 0$
8a. $\quad I \mid \vDash \exists x \cdot a x x+b x+c=0$
9a. $\quad I \not \vDash a((-b+d) e)^{2}+b(-b+d) e+c=0$
10a. $\quad I \not \vDash a b^{2} e^{2}-2 a b d e^{2}+a d^{2} e^{2}$

$$
-b^{2} e+b d e+c=0
$$

11a. $\quad I \vDash d d=b b-4 a c$
12a. $\quad I \not \vDash a b^{2} e^{2}-b d e+a\left(b^{2}-4 a c\right) e^{2}$

$$
-b^{2} e+b d e+c=0
$$

13a. $\quad I \not \vDash 0=0$
14a. $I \models \perp$
assumption
square root, \forall
2, \exists
\geq total
4, case distinction, • ordered

- inverse, \forall, \exists
$1, \leftrightarrow$
$1, \leftrightarrow$
$8 \mathrm{a}, \exists$
distributivity
3, 5, 7a
6,11 a, congruence
3 , distributivity, inverse
13a, reflexivity

Example

Decidability of $T_{\mathbb{R}}$

$T_{\mathbb{R}}$ is decidable (Tarski, 1930) High time complexity: $O\left(2^{2^{k n}}\right)$

Theory of Rationals $T_{\mathbb{Q}}$

Signature: $\Sigma_{\mathbb{Q}}:\{0,1,+,-,=, \geq\}$ no multiplication! Axioms of $T_{\mathbb{Q}}$: axioms of T_{E},
(1) $\forall x, y, z \cdot(x+y)+z=x+(y+z)$
(2) $\forall x, y \cdot x+y=y+x$
(3) $\forall x \cdot x+0=x$
(9) $\forall x \cdot x+(-x)=0$
(6) $1 \geq 0 \wedge 1 \neq 0$
(0) $\forall x, y \cdot x \geq y \wedge y \geq x \rightarrow x=y$
(1) $\forall x, y, z . x \geq y \wedge y \geq z \rightarrow x \geq z$
(8) $\forall x, y \cdot x \geq y \vee y \geq x$
(9) $\forall x, y, z . x \geq y \rightarrow x+z \geq y+z$
(+ associativity)
(+ commutativity)
(+ identity)
(+ inverse)
(one)
(antisymmetry)
(transitivity)
(totality)
(+ ordered)
(10) For every positive integer n :
$\forall x . \exists y . x=\underbrace{y+\cdots+y}_{n}$
(divisible)

Expressiveness and Decidability of $T_{\mathbb{Q}}$

Rational coefficients are simple to express in $T_{\mathbb{Q}}$
Example: Rewrite

$$
\frac{1}{2} x+\frac{2}{3} y \geq 4
$$

as the $\Sigma_{\mathbb{Q}^{-}}$-formula

$$
x+x+x+y+y+y+y \geq \underbrace{1+1+\cdots+1}_{24}
$$

$T_{\mathbb{Q}}$ is decidable
Efficient algorithm for quantifier free fragment

Recursive Data Structures (RDS)

- Data Structures are tuples of variables.

Like struct in C, record in Pascal.

- In Recursive Data Structures, one of the tuple elements can be the data structure again.
Linked lists or trees.

RDS theory of LISP-like lists, $T_{\text {cons }}$

$$
\Sigma_{\text {cons }}:\{\text { cons, car, cdr, atom, }=\}
$$

where
cons (a, b) - list constructed by adding a in front of list b
$\operatorname{car}(x) \quad-$ left projector of $x: \operatorname{car}(\operatorname{cons}(a, b))=a$
$\operatorname{cdr}(x)$ - right projector of $x: \operatorname{cdr}(\operatorname{cons}(a, b))=b$ $\operatorname{atom}(x)$ - true iff x is a single-element list

Axioms: The axioms of $A_{T_{E}}$ plus

- $\forall x, y \cdot \operatorname{car}(\operatorname{cons}(x, y))=x$
- $\forall x, y \cdot \operatorname{cdr}(\operatorname{cons}(x, y))=y$
- $\forall x$. $\neg \operatorname{atom}(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=x$
- $\forall x, y . \neg \operatorname{atom}(\operatorname{cons}(x, y))$
(left projection)
(right projection)
(construction)
(atom)

Axioms of Theory of Lists $T_{\text {cons }}$

(1) The axioms of reflexivity, symmetry, and transitivity of $=$
(2) Congruence axioms

$$
\begin{aligned}
& \forall x_{1}, x_{2}, y_{1}, y_{2} \cdot x_{1}=x_{2} \wedge y_{1}=y_{2} \rightarrow \operatorname{cons}\left(x_{1}, y_{1}\right)=\operatorname{cons}\left(x_{2}, y_{2}\right) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{car}(x)=\operatorname{car}(y) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{cdr}(x)=\operatorname{cdr}(y)
\end{aligned}
$$

(3) Equivalence axiom

$$
\forall x, y . x=y \rightarrow(\operatorname{atom}(x) \leftrightarrow \operatorname{atom}(y))
$$

(9) $\forall x, y \cdot \operatorname{car}(\operatorname{cons}(x, y))=x$
(left projection)
(3) $\forall x, y \cdot \operatorname{cdr}(\operatorname{cons}(x, y))=y$
(right projection)
(0) $\forall x$. $\neg \operatorname{atom}(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=x$
(construction)
(1) $\forall x, y$. \neg atom $(\operatorname{cons}(x, y))$
(atom)

Decidability of $T_{\text {cons }}$

$T_{\text {cons }}$ is undecidable Quantifier-free fragment of $T_{\text {cons }}$ is efficiently decidable

Example: $T_{\text {cons }}$-Validity

We argue that the following $\Sigma_{\text {cons }}$-formula F is $T_{\text {cons }}$-valid:

$$
\begin{aligned}
& F: \quad \operatorname{car}(a)=\operatorname{car}(b) \wedge \operatorname{cdr}(a)=\operatorname{cdr}(b) \wedge \neg \operatorname{atom}(a) \wedge \neg \operatorname{atom}(b) \\
& \rightarrow a=b \\
& \text { 1. } \quad I \not \vDash F \\
& \text { 2. } \quad I \vDash \operatorname{car}(a)=\operatorname{car}(b) \\
& \text { 3. } \quad I \vDash \operatorname{cdr}(a)=\operatorname{cdr}(b) \\
& \text { 4. } \quad I \models \neg \operatorname{atom}(a) \\
& \text { 5. } \quad I \models \neg \operatorname{atom}(b) \\
& 1, \rightarrow, \wedge \\
& \text { 6. } \quad I \not \vDash a=b \\
& 1, \rightarrow, \wedge \\
& \text { 7. } \quad I \vDash \operatorname{cons}(\operatorname{car}(a), \operatorname{cdr}(a))=\operatorname{cons}(\operatorname{car}(b), \operatorname{cdr}(b)) \\
& \text { 2, 3, (congruence) } \\
& \text { 8. } \quad l \vDash \operatorname{cons}(\operatorname{car}(a), \operatorname{cdr}(a))=a \quad 4 \text {, (construction) } \\
& \text { 9. } \quad I \models \operatorname{cons}(\operatorname{car}(b), \operatorname{cdr}(b))=b \quad 5 \text {, (construction) } \\
& \text { 10. } \quad I \vDash a=b \\
& \text { 7, 8, 9, (transitivity) }
\end{aligned}
$$

Lines 6 and 10 are contradictory. Therefore, F is $T_{\text {cons }}$-valid.

Theory of Arrays T_{A}

Signature：$\left.\Sigma_{\mathrm{A}}:\{\cdot \cdot \cdot], \cdot\langle\cdot \triangleleft \cdot\rangle,=\right\}$ ， where
－a［i］binary function－ read array a at index $i($＂read $(a, i) ")$
－$a\langle i \triangleleft v\rangle$ ternary function－ write value v to index i of array a（＂write (a, i, e)＂）

Axioms

（1）the axioms of（reflexivity），（symmetry），and（transitivity）of T_{E}
（2）$\forall a, i, j . i=j \rightarrow a[i]=a[j]$
（3）$\forall a, v, i, j . i=j \rightarrow a\langle i \triangleleft v\rangle[j]=v$
（c）$\forall a, v, i, j . i \neq j \rightarrow a\langle i \triangleleft v\rangle[j]=a[j]$
（array congruence）
（read－over－write 1）
（read－over－write 2）

Equality in T_{A}

Note: $=$ is only defined for array elements

$$
a[i]=e \rightarrow a\langle i \triangleleft e\rangle=a
$$

not T_{A}-valid, but

$$
a[i]=e \rightarrow \forall j . a\langle i \triangleleft e\rangle[j]=a[j],
$$

is T_{A}-valid.
Also

$$
a=b \rightarrow a[i]=b[i]
$$

is not T_{A}-valid: We only axiomatized a restricted congruence.
T_{A} is undecidable Quantifier-free fragment of T_{A} is decidable

Theory of Arrays $T_{\mathrm{A}}^{=}$(with extensionality)

Signature and axioms of $T_{\mathrm{A}}^{=}$are the same as T_{A}, with one additional axiom

$$
\forall a, b .(\forall i . a[i]=b[i]) \leftrightarrow a=b \quad \text { (extensionality) }
$$

Example:

$$
F: a[i]=e \rightarrow a\langle i \triangleleft e\rangle=a
$$

is $T_{\mathrm{A}}^{=}$-valid.
$T_{\mathrm{A}}^{=}$is undecidable Quantifier-free fragment of $T_{\mathrm{A}}^{=}$is decidable

Combination of Theories

How do we show that

$$
1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

is ($T_{\mathrm{E}} \cup T_{\mathbb{Z}}$)-unsatisfiable?
Or how do we prove properties about
an array of integers, or
a list of reals ... ?
Given theories T_{1} and T_{2} such that

$$
\Sigma_{1} \cap \Sigma_{2}=\{=\}
$$

The combined theory $T_{1} \cup T_{2}$ has

- signature $\Sigma_{1} \cup \Sigma_{2}$
- axioms $A_{1} \cup A_{2}$

Nelson \& Oppen

qff = quantifier-free fragment

Nelson \& Oppen showed that
if satisfiability of qff of T_{1} is decidable, satisfiability of qff of T_{2} is decidable, and certain technical requirements are met then satisfiability of qff of $T_{1} \cup T_{2}$ is decidable.

Lists with equality $T_{\text {cons }}^{=}$

$$
T_{\text {cons }}^{=}: \quad T_{\mathrm{E}} \cup T_{\text {cons }}
$$

Signature: $\quad \Sigma_{\mathrm{E}} \cup \Sigma_{\text {cons }}$
(this includes uninterpreted constants, functions, and predicates)
Axioms: union of the axioms of T_{E} and $T_{\text {cons }}$
$T_{\text {cons }}^{=}$is undecidable Quantifier-free fragment of $T_{\text {cons }}^{=}$is efficiently decidable

Example: $T_{\text {cons }}^{=}-V a l i d i t y ~$

We argue that the following $\Sigma_{\text {cons }}^{=}-$formula F is $T_{\text {cons }}^{=}-$valid:

$$
\begin{aligned}
& F: \quad \operatorname{car}(a)=\operatorname{car}(b) \wedge \operatorname{cdr}(a)=\operatorname{cdr}(b) \wedge \neg \text { atom }(a) \wedge \neg \text { atom }(b) \\
& \rightarrow f(a)=f(b) \\
& \text { 1. } I \not \vDash F \\
& \text { 2. } \quad I \models \operatorname{car}(a)=\operatorname{car}(b) \\
& \text { assumption } \\
& \text { 3. } \quad I \models \operatorname{cdr}(a)=\operatorname{cdr}(b) \\
& 1, \rightarrow, \wedge \\
& \text { 4. } \quad l=\text { ᄀatom(a) } \\
& 1, \rightarrow, \wedge \\
& \text { 5. } \quad I \models \neg \operatorname{atom}(b) \\
& 1, \rightarrow, \wedge \\
& \text { 6. } \quad I \not \vDash f(a)=f(b) \\
& 1, \rightarrow, \wedge \\
& \text { 7. } \quad l \models \operatorname{cons}(\operatorname{car}(a), \operatorname{cdr}(a))=\operatorname{cons}(\operatorname{car}(b), \operatorname{cdr}(b)) \\
& \text { 2, 3, (congruence) } \\
& \text { 8. } \quad I=\operatorname{cons}(\operatorname{car}(a), \operatorname{cdr}(a))=a \quad 4, \text { (construction) } \\
& \text { 9. } \quad I=\operatorname{cons}(\operatorname{car}(b), \operatorname{cdr}(b))=b \quad 5 \text {, (construction) } \\
& \text { 10. } I \models a=b \\
& \text { 7, 8, 9, (transitivity) } \\
& \text { 11. } I \models f(a)=f(b) \\
& \text { 10, (congruence) }
\end{aligned}
$$

Lines 6 and 11 are contradictory. Therefore, F is $T_{\text {cons }}^{=}-$valid.

First-Order Theories

	Theory	Decidable	QFF Dec.
T_{E}	Equality	-	\checkmark
$T_{\text {PA }}$	Peano Arithmetic	-	-
$T_{\mathbb{N}}$	Presburger Arithmetic	\checkmark	\checkmark
$T_{\mathbb{Z}}$	Linear Integer Arithmetic	\checkmark	\checkmark
$T_{\mathbb{R}}$	Real Arithmetic	\checkmark	\checkmark
$T_{\mathbb{Q}}$	Linear Rationals	\checkmark	\checkmark
$T_{\text {cons }}$	Lists	-	\checkmark
$T_{\text {cons }}^{=}$	Lists with Equality	-	\checkmark
T_{A}	Arrays	-	\checkmark
$T_{\bar{A}}^{=}$	Arrays with Extensionality	-	\checkmark

Quantifier Elimination

Quantifier Elimination

Quantifier Elimination (QE) removes quantifiers from formulae:

- Given a formula with quantifiers, e.g., $\exists x . F[x, y, z]$.
- Goal: find an equivalent quantifier-free formula $G[y, z]$.
- The free variables of F and G are the same.

$$
\exists x . F[x, y, z] \Leftrightarrow G[y, z]
$$

QE as Decision Procedure

Decide satisfiabilty for a formula F, e.g. in $T_{\mathbb{Q}}$, using quantifier elimination:

- Given a formula F, with free variable x_{1}, \ldots, x_{n}.
- Build $\exists x_{1} \ldots \exists x_{n} . F$.
- Build equivalent quantifier free formula G. G contains only constants, functions and predicates i.e. $0,1,+,-, \geq,=$.
- Compute truth value of G.

QE algorithm

In developing a QE algorithm for theory T, we need only consider formulâe of the form

```
\existsx.F
```

for quantifier-free F
Example: For Σ-formula

$$
\begin{aligned}
& G_{1}: \exists x . \forall y \cdot \underbrace{\exists z . F_{1}[x, y, z]}_{F_{2}[x, y]} \\
& G_{2}: \exists x \cdot \forall y \cdot F_{2}[x, y] \\
& G_{3}: \exists x \cdot \neg \underbrace{\exists y . \neg F_{2}[x, y]}_{F_{3}[x]} \\
& G_{4}: \underbrace{\exists x . \neg F_{3}[x]}_{F_{4}} \\
& G_{5}: F_{4}
\end{aligned}
$$

G_{5} is quantifier-free and T-equivalent to G_{1}

Syntactic sugar for Rationals

Consider the Signature of Rationals: $\quad \Sigma_{\mathbb{Q}}:\{0,1,+,-,=, \geq\}$
We extend the signature with the predicate $>$, which is defined as

$$
x>y: \Leftrightarrow x \geq y \wedge \neg(x=y) .
$$

Additionally we allow predicates $<$ and \leq :

$$
x<y: \Leftrightarrow y>x \quad x \leq y: \Leftrightarrow y \geq x
$$

We extend the signature by fractions:

$$
\dot{a} \in \Sigma_{\mathbb{Q}} \text { for } a \in \mathbb{Z}^{+}
$$

which are unary function symbols, with their usual meaning.

Ferrante and Rackoff's Method

Given a $\Sigma_{\mathbb{Q}}$-formula $\exists x . F[x]$, where $F[x]$ is quantifier-free Generate quantifier-free formula F_{4} (four steps) s.t.
F_{4} is $\Sigma_{\mathbb{Q}}$-equivalent to $\exists x . F[x]$.
(1) Put $F[x]$ in NNF.
(2) Eliminate negated literals.
(3) Solve the literals s.t. x appears isolated on one side.
(9) Finite disjunction $\bigvee_{t \in S_{F}} F[t]$.

$$
\exists x . F[x] \Leftrightarrow \bigvee_{t \in S_{F}} F[t] .
$$

where S_{F} depends on the formula F.

Step 1 and 2

Step 1: Put $F[x]$ in NNF. The result is $\exists x . F_{1}[x]$.
Step 2: Eliminate negated literals and \geq (left to right)

$$
\begin{aligned}
s \geq t & \Leftrightarrow s>t \vee s=t \\
\neg(s>t) & \Leftrightarrow t>s \vee t=s \\
\neg(s \geq t) & \Leftrightarrow t>s \\
\neg(s=t) & \Leftrightarrow t<s \vee t>s
\end{aligned}
$$

The result $\exists x . F_{2}[x]$ does not contain negations.

Step 3

Solve for x in each atom of $F_{2}[x]$, e.g.,

$$
a x+t_{2}<b x+t_{1} \quad \Rightarrow \quad x<\frac{t_{1}-t_{2}}{a-b}
$$

where $a-b \in \mathbb{Z}^{+}$.
All atoms containing x in the result $\exists x . F_{3}[x]$ have form
(A) $x<t$
(B) $t<x$
(C) $x=t$
where t is a term that does not contain x.

Step 4 (Part 1)

Construct from $F_{3}[x]$

- left infinite projection $F_{3}[-\infty]$ by replacing
(A) atoms $x<t$ by \top
(B) atoms $t<x$ by \perp
(C) atoms $x=t$ by \perp
- right infinite projection $F_{3}[+\infty]$ by replacing
(A) atoms $x<t$ by \perp
(B) atoms $t<x$ by \top
(C) atoms $x=t$ by \perp

Step 4 (Part 2)

Let S be the set of terms t from (A), (B), (C) atoms.
Construct the formula

$$
F_{4}: \bigvee_{t \in S_{F}} F_{3}[t], \quad \text { where } S_{F}:=\{-\infty, \infty\} \cup\left\{\left.\frac{s+t}{2} \right\rvert\, s, t \in S\right\}
$$

which is $T_{\mathbb{Q}}$-equivalent to $\exists x . F[x]$.

- $F_{3}[-\infty]$ captures the case when small $x \in \mathbb{Q}$ satisfy $F_{3}[x]$
- $F_{3}[-\infty]$ captures the case when large $x \in \mathbb{Q}$ satisfy $F_{3}[x]$
- if $s \equiv t, \frac{s+t}{2}=s$ captures the case when $s \in S$ satisfies $F_{3}[s]$ if $s<t$ are adjacent numbers, $\frac{s+t}{2}$ represents the whole interval (s, t).

Intuition

Four cases are possible:
(1) All numbers x smaller than the smallest term satisfy $F[x]$.

$$
\longleftarrow) t_{1} t_{2} \cdots t_{n}
$$

(2) All numbers x larger than the largest term satisfy $F[x]$.

$$
t_{1} t_{2} \cdots t_{n}(\longrightarrow
$$

(3) Some t_{i}, satisfies $F[x]$.

$$
\begin{array}{llll}
t_{1} & \cdots & t_{i} \cdots & t_{n} \\
& \uparrow & &
\end{array}
$$

(9) On an open interval between two terms every element satisfies $F[x]$.

$$
\left.t_{1} \cdots \quad t_{i} \underset{\frac{t_{i}+t_{i+1}}{2}}{\longleftrightarrow}\right) t_{i+1} \cdots t_{n}
$$

Correctness of Step 4

Theorem

Let S_{F} be the set of terms constructed from $F_{3}[x]$ as in Step 4. Then $\exists x . F_{3}[x] \Leftrightarrow \bigvee_{t \in S_{F}} F_{3}[t]$.

Proof of Theorem

\Leftarrow If $\bigvee_{t \in S_{F}} F_{3}[t]$ is true, then $F_{3}[t]$ for some $t \in S_{F}$ is true.
If $F_{3}\left[\frac{s+t}{2}\right]$ is true, then obviously $\exists x . F_{3}[x]$ is true.
If $F_{3}[-\infty]$ is true, choose some $x<t$ for all $t \in S$. Then $F_{3}[x]$ is true.
If $F_{3}[\infty]$ is true, choose some $x>t$ for all $t \in S$. Then $F_{3}[x]$ is true.

Correctness of Step 4

\Rightarrow If $I \vDash \exists x . F_{3}[x]$ then there is value v such that

$$
I \triangleleft\{x \mapsto \mathrm{v}\} \models F_{3}
$$

If $v<\alpha_{I}[t]$ for all $t \in S$, then $I \models F_{3}[-\infty]$.
If $\mathrm{v}>\alpha_{I}[t]$ for all $t \in S$, then $I \models F_{3}[\infty]$.
If $v=\alpha_{l}[t]$ for some $t \in S$, then $I \models F\left[\frac{t+t}{2}\right]$.
Otherwise choose largest $s \in S$ with $\alpha_{l}[s]<\mathrm{v}$ and smallest $t \in S$ with $\alpha_{l}[t]>\mathrm{v}$.
Since no atom of F_{3} can distinguish between values in interval (s, t), $F_{3}[v] \Leftrightarrow F_{3}\left[\frac{s+t}{2}\right]$. Hence, $I \models F\left[\frac{s+t}{2}\right]$.

In all cases $I \models \bigvee_{t \in S_{F}} F_{3}[t]$.

Example

$$
\exists x \cdot \underbrace{3 x+1<10 \wedge 7 x-6>7}_{F[x]}
$$

Solving for x

$$
\exists x \cdot \underbrace{x<3 \wedge x>\frac{13}{7}}_{F_{3}[x]}
$$

Step 4:

$$
F_{4}: \bigvee_{t \in S_{F}} \underbrace{\left(t<3 \wedge t>\frac{13}{7}\right)}_{F_{3}[t]}
$$

Example contd.

$$
\begin{gathered}
S_{F}=\left\{-\infty,+\infty, 3, \frac{13}{7}, \frac{3+\frac{13}{7}}{2}\right\} . \\
F_{3}[x]=x<3 \wedge x>13 / 7 \\
F_{-\infty} \Leftrightarrow \top \wedge \perp \Leftrightarrow \perp \quad F_{+\infty} \Leftrightarrow \perp \wedge \top \Leftrightarrow \perp \\
F_{3}[3] \perp \wedge \top \Leftrightarrow \perp \quad F_{3}\left[\frac{13}{7}\right] \Leftrightarrow \top \wedge \perp \Leftrightarrow \perp \\
F_{3}\left[\frac{\frac{13}{7}+3}{2}\right]: \frac{\frac{13}{7}+3}{2}<3 \wedge \frac{\frac{13}{7}+3}{2}>\frac{13}{7} \Leftrightarrow \top
\end{gathered}
$$

Thus, $F_{4}: \bigvee_{t \in S_{F}} F_{3}[t] \Leftrightarrow T$ is $T_{\mathbb{Q}}$-equivalent to $\exists x . F[x]$, so $\exists x . F[x]$ is $T_{\mathbb{Q}^{-}}$-valid.

Example

$$
\exists x \cdot \underbrace{2 x>y \wedge 3 x<z}_{F[x]}
$$

Solving for x

$$
\exists x . \underbrace{x>\frac{y}{2} \wedge x<\frac{z}{3}}_{F_{3}[x]}
$$

Step 4: $F_{-\infty} \Leftrightarrow \perp, F_{+\infty} \Leftrightarrow \perp, F_{3}\left[\frac{y}{2}\right] \Leftrightarrow \perp$ and $F_{3}\left[\frac{z}{3}\right] \Leftrightarrow \perp$.

$$
F_{4}: \frac{\frac{y}{2}+\frac{z}{3}}{2}>\frac{y}{2} \wedge \frac{\frac{y}{2}+\frac{z}{3}}{2}<\frac{z}{3}
$$

which simplifies to:

$$
F_{4}: 2 z>3 y
$$

Quantifier Elimination for $T_{\mathbb{Z}}$

$\Sigma_{\mathbb{Z}}:\{\ldots,-2,-1,0,1,2, \ldots,-3 \cdot,-2 \cdot, 2 \cdot 3 \cdot, \ldots,+,-,=,<\}$
Consider the formula

$$
F: \exists x .2 x=y
$$

Which quantifier free formula $G[y]$ is equivalent to F ?
There is no such formula!

No QE for $T_{\mathbb{Z}}$

Lemma

Given quantifier-free $\Sigma_{\mathbb{Z}}$-formula F s.t. free $(F)=\{y\}$. Let

$$
S_{F}:\left\{n \in \mathbb{Z}: F\{y \mapsto n\} \text { is } T_{\mathbb{Z}} \text {-valid }\right\}
$$

Either $\mathbb{Z}^{+} \cap S_{F}$ or $\mathbb{Z}^{+} \backslash S_{F}$ is finite. where \mathbb{Z}^{+}is the set of positive integers

Proof (Structural Induction over F)

Base case: F is an atomic formula:
$\top, \perp, t_{1}=t_{2}, a \cdot y=t, t_{1}<t_{2}, a \cdot y<t$.

- $\mathbb{Z}^{+} \backslash S_{\top}=\mathbb{Z}^{+} \cap S_{\perp}=\emptyset$ is finite
- $S_{t_{1}=t_{2}}$ and $S_{t_{1}<t_{2}}$ are either S_{\top} or S_{\perp}.
- $\mathbb{Z}^{+} \cap S_{a \cdot y=t},(a \neq 0)$ has at most one element.
- $\mathbb{Z}^{+} \cap S_{a \cdot y<t}, a>0$ is finite.
- $\mathbb{Z}^{+} \backslash S_{a \cdot y<t}, a<0$ is finite.

No QE for $T_{\mathbb{Z}}$

Lemma

Given quantifier-free $\Sigma_{\mathbb{Z}}$-formula F s.t. free $(F)=\{y\}$. Let

$$
S_{F}:\left\{n \in \mathbb{Z}: F\{y \mapsto n\} \text { is } T_{\mathbb{Z}} \text {-valid }\right\}
$$

Either $\mathbb{Z}^{+} \cap S_{F}$ or $\mathbb{Z}^{+} \backslash S_{F}$ is finite. where \mathbb{Z}^{+}is the set of positive integers

Proof (Structural Induction over F)

Induction step: Assume property holds for F, G. Show it for $\neg F, F \wedge G, F \vee G, F \rightarrow G, F \leftrightarrow G$.

- $\neg F$: We have $\mathbb{Z}^{+} \cap S_{\neg F}=\mathbb{Z}^{+} \backslash S$ and $\mathbb{Z}^{+} \backslash S_{\neg F}=\mathbb{Z}^{+} \cap S$ and by ind.-hyp one of these sets is finite.
- $F \wedge G:$ We have $\mathbb{Z}^{+} \cap S_{F \wedge G}=\left(\mathbb{Z}^{+} \cap S_{F}\right) \cap\left(\mathbb{Z}^{+} \cap S_{G}\right)$ and $\mathbb{Z}^{+} \backslash S_{F \wedge G}=\left(\mathbb{Z}^{+} \backslash S_{F}\right) \cup\left(\mathbb{Z}^{+} \backslash S_{G}\right)$.
If the latter set is not finite then one of $\mathbb{Z}^{+} \cap S_{F}$ or $\mathbb{Z}^{+} \cap S_{G}$ is finite. In both cases $\mathbb{Z}^{+} \cap S_{F \wedge G}$ is finite.

No QE for $T_{\mathbb{Z}}$

Lemma

Given quantifier-free $\Sigma_{\mathbb{Z}}$-formula F s.t. free $(F)=\{y\}$. Let $S_{F}:\left\{n \in \mathbb{Z}: F\{y \mapsto n\}\right.$ is $T_{\mathbb{Z}}$-valid $\}$.
Either $\mathbb{Z}^{+} \cap S_{F}$ or $\mathbb{Z}^{+} \backslash S_{F}$ is finite. where \mathbb{Z}^{+}is the set of positive integers

Proof (Structural Induction over F)

Induction step: Assume property holds for F, G. Show it for $\neg F, F \wedge G, F \vee G, F \rightarrow G, F \leftrightarrow G$.

- $F \vee G$ follows from previous, since $S_{F \vee G}=S_{\neg(\neg F \wedge \neg G)}$.
- $F \rightarrow G$ follows from $S_{F \rightarrow G}=S_{(\neg F \vee G)}$.
- $F \leftrightarrow G$ follows from $S_{F \leftrightarrow G}=S_{(F \rightarrow G) \wedge(G \rightarrow F)}$.

No QE for $T_{\mathbb{Z}}$

Lemma

Given quantifier-free $\Sigma_{\mathbb{Z}}$-formula F s.t. free $(F)=\{y\}$. Let

$$
S_{F}:\left\{n \in \mathbb{Z}: F\{y \mapsto n\} \text { is } T_{\mathbb{Z}} \text {-valid }\right\} .
$$

Either $\mathbb{Z}^{+} \cap S_{F}$ or $\mathbb{Z}^{+} \backslash S_{F}$ is finite.
where \mathbb{Z}^{+}is the set of positive integers
$\Sigma_{\mathbb{Z}}$-formula $\quad F: \exists x .2 x=y$ (with quantifier)
S_{F} : even integers
$\mathbb{Z}^{+} \cap S_{F}$: positive even integers - infinite
$\mathbb{Z}^{+} \backslash S_{F}$: positive odd integers - infinite
Therefore, by the lemma, there is no quantifier-free $T_{\mathbb{Z}}$-formula that is $T_{\mathbb{Z}}$-equivalent to F.
Thus, $T_{\mathbb{Z}}$ does not admit QE .

Augmented theory $\widehat{T_{\mathbb{Z}}}$

$\widehat{\Sigma_{\mathbb{Z}}}: \Sigma_{\mathbb{Z}}$ with countable number of unary divisibility predicates

$$
\Sigma_{\mathbb{Z}} \cup\{1|\cdot, 2| \cdot, 3 \mid \cdot, \ldots\}
$$

Intended interpretations:
$k \mid x$ holds iff k divides x without any remainder
Axioms of $\widehat{T_{\mathbb{Z}}}$: axioms of $T_{\mathbb{Z}}$ with additional countable set of axioms

$$
\forall x . k \mid x \leftrightarrow \exists y . x=k y \quad \text { for } k \in \mathbb{Z}^{+}
$$

Example:

$$
x>1 \wedge y>1 \wedge 2 \mid x+y
$$

is satisfiable (choose $x=2, y=2$).
$\neg(2 \mid x) \wedge 4 \mid x$
is not satisfiable.

$\widehat{T_{\mathbb{Z}}}$ admits QE (Cooper's method)

Algorithm: Given $\widehat{\Sigma_{\mathbb{Z}}}$-formula $\exists x . F[x]$, where F is quantifier-free

(1) Put F[x] into Negation Normal Form (NNF).
(2) Normalize literals: $s<t, k \mid t$, or $\neg(k \mid t)$.
(3) Put x in $s<t$ on one side: $h x<t$ or $s<h x$.
(1) Replace $h x$ with x^{\prime} without a factor.
(5) Replace $F\left[x^{\prime}\right]$ by $\bigvee F[j]$ for finitely many j.

Cooper's Method: Step 1

Put $F[x]$ in NNF $F_{1}[x]$, that is, $\exists x . F_{1}[x]$ has negations only in literals (only \wedge, \vee) and $\widehat{T_{\mathbb{Z}}}$-equivalent to $\exists x . F[x]$

Example:

$$
\exists x . \neg(x-6<z-x \wedge 4 \mid 5 x+1 \rightarrow 3 x<y)
$$

is equivalent to

$$
\exists x . \neg(3 x<y) \wedge x-6<z-x \wedge 4 \mid 5 x+1
$$

Cooper's Method: Step 2

Replace (left to right)

$$
\begin{aligned}
s=t & \Leftrightarrow s<t+1 \wedge t<s+1 \\
\neg(s=t) & \Leftrightarrow s<t \vee t<s \\
\neg(s<t) & \Leftrightarrow t<s+1
\end{aligned}
$$

The output $\exists x . F_{2}[x]$ contains only literals of form

$$
s<t, \quad k \mid t, \quad \text { or } \quad \neg(k \mid t)
$$

where s, t are $\widehat{T_{\mathbb{Z}}}$-terms and $k \in \mathbb{Z}^{+}$.
Example:

$$
\exists x . \neg(3 x<y) \wedge x-6<z-x \wedge 4 \mid 5 x+1
$$

is equivalent to

$$
\exists x . y<3 x+1 \wedge x-6<z-x \wedge 4 \mid 5 x+1
$$

Cooper's Method: Step 3

Collect terms containing x so that literals have the form

$$
h x<t, \quad t<h x, \quad k \mid h x+t, \quad \text { or } \quad \neg(k \mid h x+t)
$$

where t is a term and $h, k \in \mathbb{Z}^{+}$. The output is the formula $\exists x . F_{3}[x]$, which is $\widehat{T_{\mathbb{Z}}}$-equivalent to $\exists x . F[x]$.

Example:

$$
\exists x . y<3 x+1 \wedge x-6<z-x \wedge 4 \mid 5 x+1
$$

is equivalent to

$$
\exists x . y-1<3 x \wedge 2 x<z+6 \wedge 4 \mid 5 x+1
$$

Cooper's Method: Step 4

Let

$$
\delta=\operatorname{lcm}\left\{h: h \text { is a coefficient of } x \text { in } F_{3}[x]\right\}
$$

where Icm is the least common multiple. Multiply atoms in $F_{3}[x]$ by constants so that δ is the coefficient of x everywhere:

$$
\begin{array}{rlrl}
h x<t & \Leftrightarrow \delta x<h^{\prime} t & \text { where } h^{\prime} h=\delta \\
t<h x & \Leftrightarrow h^{\prime} t<\delta x & \text { where } \quad h^{\prime} h=\delta \\
k \mid h x+t & \Leftrightarrow h^{\prime} k \mid \delta x+h^{\prime} t & \text { where } \quad h^{\prime} h=\delta \\
\neg(k \mid h x+t) & \Leftrightarrow \neg\left(h^{\prime} k \mid \delta x+h^{\prime} t\right) & \text { where } & h^{\prime} h=\delta
\end{array}
$$

The result $\exists x . F_{3}^{\prime}[x]$, in which all occurrences of x in $F_{3}^{\prime}[x]$ are in terms δx.
Replace δx terms in F_{3}^{\prime} with a fresh variable x^{\prime} to form

$$
F_{3}^{\prime \prime}: F_{3}\left\{\delta x \mapsto x^{\prime}\right\}
$$

Cooper's Method: Step 4 contd.

Finally, construct

$$
\exists x^{\prime} \cdot \underbrace{F_{3}^{\prime \prime}\left[x^{\prime}\right] \wedge \delta \mid x^{\prime}}_{F_{4}\left[x^{\prime}\right]}
$$

$\exists x^{\prime} . F_{4}\left[x^{\prime}\right]$ is equivalent to $\exists x . F[x]$ and each literal of $F_{4}\left[x^{\prime}\right]$ has one of the forms:
(A) $x^{\prime}<t$
(B) $t<x^{\prime}$
(C) $k \mid x^{\prime}+t$
(D) $\neg\left(k \mid x^{\prime}+t\right)$
where t is a term that does not contain x, and $k \in \mathbb{Z}^{+}$.

Cooper's Method: Step 4 (Example)

Example: $\widehat{T_{\mathbb{Z}}}$-formula

Collecting coefficients of x :

$$
\delta=\operatorname{lcm}(2,3,5)=30
$$

Multiply when necessary

$$
\exists x .30 x<15 z+90 \wedge 10 y-10<30 x \wedge 24 \mid 30 x+6
$$

Replacing $30 x$ with fresh x^{\prime}

$$
\exists x^{\prime} \cdot \underbrace{x^{\prime}<15 z+90 \wedge 10 y-10<x^{\prime} \wedge 24\left|x^{\prime}+6 \wedge 30\right| x^{\prime}}_{F_{4}\left[x^{\prime}\right]}
$$

$\exists x^{\prime} . F_{4}\left[x^{\prime}\right]$ is equivalent to $\exists x . F_{3}[x]$

Cooper's Method: Result of Step 4

$\exists x^{\prime} . F_{4}\left[x^{\prime}\right]$ is equivalent to $\exists x . F[x]$ and each literal of $F_{4}\left[x^{\prime}\right]$ has one of the forms:
(A) $x^{\prime}<t$
(B) $t<x^{\prime}$
(C) $k \mid x^{\prime}+t$
(D) $\neg\left(k \mid x^{\prime}+t\right)$
where t is a term that does not contain x, and $k \in \mathbb{Z}^{+}$.

Cooper's Method: Step 5

Construct

left infinite projection $F_{-\infty}\left[x^{\prime}\right]$
of $F_{4}\left[x^{\prime}\right]$ by
(A) replacing literals $x^{\prime}<t$ by \top
(B) replacing literals $t<x^{\prime}$ by \perp
idea: very small numbers satisfy (A) literals but not (B) literals
Let

$$
\delta=\operatorname{Icm}\left\{\begin{array}{l}
k \text { of }(C) \text { literals } k \mid x^{\prime}+t \\
k \text { of }(D) \text { literals } \neg\left(k \mid x^{\prime}+t\right)
\end{array}\right\}
$$

and B be the set of terms t appearing in (B) literals. Construct

$$
F_{5}: \bigvee_{j=1} F_{-\infty}[j] \vee \bigvee_{j=1} \bigvee_{t \in B} F_{4}[t+j]
$$

F_{5} is quantifier-free and $\widehat{T_{\mathbb{Z}}}$-equivalent to F.

Cooper's Method: Step 5 (Example)

$$
\exists x^{\prime} \cdot \underbrace{x^{\prime}<15 z+90 \wedge 10 y-10<x^{\prime} \wedge 24\left|x^{\prime}+6 \wedge 30\right| x^{\prime}}_{F_{4}\left[x^{\prime}\right]}
$$

Compute Icm: $\delta=\operatorname{Icm}(24,30)=120$
Then

$$
\begin{aligned}
F_{5}= & \bigvee_{j=1}^{120} \top \wedge \perp \wedge 24|j+6 \wedge 30| j \\
& \vee \bigvee_{j=1}^{120} 10 y-10+j<15 z+90 \wedge 10 y-10<10 y-10+j \\
& \wedge 24|10 y-10+j+6 \wedge 30| 10 y-10+j
\end{aligned}
$$

The formula can be simplified to:

$$
F_{5}=\bigvee_{j=1}^{120} 10 y-10+j<15 z+90 \wedge 24|10 y-10+j+6 \wedge 30| 10 y-10+j
$$

Correctness of Step 5

Theorem

Let F_{5} be the formula constructed from $\exists x^{\prime} . F_{4}\left[x^{\prime}\right]$ as in Step 5. Then $\exists x^{\prime} . F_{4}\left[x^{\prime}\right] \Leftrightarrow F_{5}$.

Lemma[Periodicity]: For all atoms $k \mid x^{\prime}+t$ in F_{4}, we have $k \mid \delta$.
Therefore, $k \mid x^{\prime}+t$ iff $k \mid x^{\prime}+\lambda \delta+t$ for all $\lambda \in \mathbb{Z}$.
Proof of Theorem
\Leftarrow If F_{5} is true, there are two cases: $F_{-\infty}[j]$ is true or $F_{4}[t+j]$ is true. If $F_{4}[t+j]$ is true, than obviously $\exists x^{\prime} . F_{4}\left[x^{\prime}\right]$ is true. If $F_{-\infty}[j]$ is true, then (due to periodicity) $F_{-\infty}[j+\lambda \cdot \delta]$ is true.
If $\lambda<t-1$ for all $t \in A \cup B$, then $j+\lambda \cdot \delta<\delta+(t-1) \delta=\delta t \leq t$. Thus,

$$
F_{-\infty}[j+\lambda \cdot \delta] \Leftrightarrow F_{4}[j+\lambda \cdot \delta] \Rightarrow \exists x^{\prime} . F_{4}\left[x^{\prime}\right] .
$$

Correctness of Step 5

\Rightarrow Assume for some $x^{\prime}, F_{4}\left[x^{\prime}\right]$ is true. If $\neg\left(t<x^{\prime}\right)$ for all $t \in B$, then choose $j_{x^{\prime}} \in\{1, \ldots, \delta\}$ such that $\delta \mid\left(j_{x^{\prime}}-x^{\prime}\right)$. $j_{x^{\prime}}$ will satisfy all (C) and (D) literals that x^{\prime} satisfies. x^{\prime} does not satisfy any (B) literal. Therefore if $F_{4}\left[x^{\prime}\right]$ is true, $F_{-\infty}[j]$ must be true. Therefore F_{5} is true. If $t<x^{\prime}$ for some $t \in B$, then let

$$
t_{x^{\prime}}=\max \left\{t \in B \mid t<x^{\prime}\right\}
$$

and choose $j_{x^{\prime}} \in\{1, \ldots, \delta\}$ such that $\delta \mid\left(t_{x^{\prime}}+j_{x^{\prime}}-x^{\prime}\right)$. We claim that $F_{4}\left[t_{x^{\prime}}+j_{x^{\prime}}\right]$ is true.
Since $x^{\prime}=t_{x^{\prime}}+j_{x^{\prime}}+\lambda \delta, x^{\prime}$ and $t_{x^{\prime}}+j_{x^{\prime}}$ satisfy the same (C) and (D) literals (due to periodicity).

Since $t_{x^{\prime}}+j_{x^{\prime}}>t_{x^{\prime}}=\max \left\{t \in B \mid t<x^{\prime}\right\}, t_{x^{\prime}}+j_{x^{\prime}}$ satisfies all (B) literals that are satisfied by x^{\prime}.

Since $t_{x^{\prime}}<x^{\prime}=t_{x^{\prime}}+j_{x^{\prime}}+\lambda \delta \leq t_{x^{\prime}}+(\lambda+1) \delta$, we conclude that $\lambda \geq 0$. Hence, $x^{\prime} \geq t_{x^{\prime}}+j_{x^{\prime}}$ and $t_{x^{\prime}}+j_{x^{\prime}}$ satisfies all (A) literals satisfied by x^{\prime}.
Thus $F_{4}\left[t_{x}+j_{x}^{\prime}\right]$ is true. Therefore, F_{5} is true.

Cooper's Method: Step 5

Construct

left infinite projection $F_{-\infty}\left[x^{\prime}\right]$
of $F_{4}\left[x^{\prime}\right]$ by
(A) replacing literals $x^{\prime}<t$ by \top
(B) replacing literals $t<x^{\prime}$ by \perp

Let

$$
\delta=\operatorname{Icm}\left\{\begin{array}{l}
k \text { of }(C) \text { literals } k \mid x^{\prime}+t \\
k \text { of (D) literals } \neg\left(k \mid x^{\prime}+t\right)
\end{array}\right\}
$$

and B be the set of terms t appearing in (B) literals. Construct

$$
F_{5}: \bigvee_{j=1}^{\delta} F_{-\infty}[j] \vee \bigvee_{j=1}^{\delta} \bigvee_{t \in B} F_{4}[t+j]
$$

F_{5} is quantifier-free and $\widehat{T_{\mathbb{Z}}}$-equivalent to F.

Symmetric Elimination

In step 5, if there are fewer
(A) literals $x^{\prime}<t$
than
(B) literals $t<x^{\prime}$.

Construct the right infinite projection $F_{+\infty}\left[x^{\prime}\right]$ from $F_{4}\left[x^{\prime}\right]$ by replacing each (A) literal $x^{\prime}<t$ by \perp
and

$$
\text { each (B) literal } t<x^{\prime} \text { by } T \text {. }
$$

Then right elimination.

$$
F_{5}: \bigvee_{j=1}^{\delta} F_{+\infty}[-j] \vee \bigvee_{j=1}^{\delta} \bigvee_{t \in A} F_{4}[t-j]
$$

Symmetric Elimination (Example)

$$
\exists x^{\prime} \cdot \underbrace{x^{\prime}<15 z+90 \wedge 10 y-10<x^{\prime} \wedge 24\left|x^{\prime}+6 \wedge 30\right| x^{\prime}}_{F_{4}\left[x^{\prime}\right]}
$$

Compute Icm: $\delta=\operatorname{Icm}(24,30)=120$
Then

$$
\begin{aligned}
F_{5}= & \bigvee_{j=1}^{120} \perp \wedge \top \wedge 24|-j+6 \wedge 30|-j \\
& \vee \bigvee_{j=1}^{120} 15 z+90-j<15 z+90 \wedge 10 y-10<15 z+90-j \\
& \wedge 24|15 z+90-j+6 \wedge 30| 15 z+90-j
\end{aligned}
$$

The formula can be simplified to:

$$
F_{5}=\bigvee_{j=1}^{120} 10 y-10<15 z+90-j \wedge 24|15 z+90-j+6 \wedge 30| 15 z+90-j
$$

Example

$$
\underbrace{\exists x \cdot(3 x+1<10 \vee 7 x-6>7) \wedge 2 \mid x}_{F[x]}
$$

Isolate x terms

$$
\exists x .(3 x<9 \vee 13<7 x) \wedge 2 \mid x
$$

so

$$
\delta=\operatorname{lcm}\{3,7\}=21
$$

After multiplying coefficients by proper constants,

$$
\exists x .(21 x<63 \vee 39<21 x) \wedge 42 \mid 21 x
$$

we replace $21 x$ by x^{\prime} :

$$
\exists x^{\prime} \cdot \underbrace{\left(x^{\prime}<63 \vee 39<x^{\prime}\right) \wedge 42\left|x^{\prime} \wedge 21\right| x^{\prime}}_{F_{4}\left[x^{\prime}\right]}
$$

Then

$$
F_{-\infty}\left[x^{\prime}\right]:(T \vee \perp) \wedge 42\left|x^{\prime} \wedge 21\right| x^{\prime}
$$

or, simplifying,

$$
F_{-\infty}\left[x^{\prime}\right]: 42\left|x^{\prime} \wedge 21\right| x^{\prime}
$$

Finally,

$$
\delta=\operatorname{lcm}\{21,42\}=42 \quad \text { and } \quad B=\{39\}
$$

so

$$
F_{5}: \quad \bigvee_{j=1}^{42}(42|j \wedge 21| j) \vee 742
$$

Since $42 \mid 42$ and $21 \mid 42$, the left main disjunct simplifies to T, so that F is $\widehat{T_{\mathbb{Z}}}$-equivalent to T. Thus, F is $\widehat{T_{\mathbb{Z}}}$-valid.

Decision Procedures for Quantifier-free Fragments

Quantifier elimination decides validity/satisfiable quantified formulae.
Can also be used for quantifier free formulae:
To decide satisfiability of $F\left[x_{1}, \ldots, x_{n}\right]$,
apply QE on $\exists x_{1}, \ldots, x_{n} . F\left[x_{1}, \ldots, x_{n}\right]$.
But high complexity (doubly exponential for $T_{\mathbb{Q}}$).
Therefore, we are looking for a fast procedure.

Quantifier-free Theory of Equality

The Theory of Equality T_{E}

$$
\Sigma_{E}:\{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}
$$

uninterpreted symbols:

- constants a, b, c, \ldots
- functions f, g, h, \ldots
- predicates p, q, r, \ldots

Axioms of T_{E}

(1) $\forall x \cdot x=x$ (reflexivity)
(2) $\forall x, y \cdot x=y \rightarrow y=x$
(3) $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
define $=$ to be an equivalence relation.
Axiom schema
(9) for each positive integer n and n-ary function symbol f,

$$
\begin{aligned}
\forall x_{1}, & \ldots, x_{n}, y_{1}, \ldots, y_{n} \cdot \bigwedge_{i} x_{i}=y_{i} \\
& \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

(0) for each positive integer n and n-ary predicate symbol p,

$$
\begin{array}{r}
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \cdot \bigwedge_{i} x_{i}=y_{i} \rightarrow \\
\left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)
\end{array}
$$

Congruence Closure Algorithm

$F: s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}$
The algorithm performs the following steps:
(1) Construct the congruence closure \sim of

$$
\left\{s_{1}=t_{1}, \ldots, s_{m}=t_{m}\right\}
$$

over the subterm set S_{F}. Then

$$
\sim \mid=s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m}
$$

(2) If for any $i \in\{m+1, \ldots, n\}, s_{i} \sim t_{i}$, return unsatisfiable.
(3) Otherwise, $\sim \models F$, so return satisfiable.

How do we actually construct the congruence closure in Step 1?

Congruence Closure Algorithm (Details)

Begin with the finest congruence relation \sim_{0} :

$$
\left\{\{s\}: s \in S_{F}\right\} .
$$

Each term of S_{F} is only congruent to itself.
Then, for each $i \in\{1, \ldots, m\}$, impose $s_{i}=t_{i}$ by merging

$$
\left[s_{i}\right]_{\sim_{i-1}} \quad \text { and } \quad\left[t_{i}\right]_{\sim_{i-1}}
$$

to form a new congruence relation \sim_{i}. To accomplish this merging,

- form the union of $\left[s_{i}\right]_{\sim_{i-1}}$ and $\left[t_{i}\right]_{\sim_{i-1}}$
- propagate any new congruences that arise within this union.

The new relation \sim_{i} is a congruence relation in which $s_{i} \sim t_{i}$.

Ingredients of Algorithm

Efficient data structure for computing the congruence closure.

- Directed Acyclic Graph (DAG) to represent terms.

- Union-Find data structure to represent equivalence classes:

Directed Acyclic Graph (DAG)

For every subterm of the Σ_{E}-formula F, create

- a node labelled with the function symbols.
- and edges to the argument nodes.

If two subterms are equal, only one node is created.

Union-Find Data Structure

Equivalence classes are connected by a tree structure, with arrows pointing to the root node.

Two operations are defined:

- FIND: Find the representative of an equivalence class by following the edges. $O(\log n)$
- UNION: Merge two classes by connecting the representatives. $O(1)$

Summary of idea

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Initial DAG

$f(a, b)=a \Rightarrow$
MERGE $f(a, b) a$

$f(a, b) \sim a, b \sim b \Rightarrow$ $f(f(a, b), b) \sim f(a, b)$ MERGE $f(f(a, b), b)$ $f(a, b)$

$$
\left.\begin{array}{r}
\text { FIND } f(f(a, b), b)=a=\text { FIND } a \\
f(f(a, b), b) \neq a
\end{array}\right\} \Rightarrow \text { Unsatisfiable }
$$

DAG representation

```
type node \(=\{\)
    id : id
        node's unique identification number
    fn : string
        constant or function name
    args : id list
        list of function arguments
    mutable find : id
        the edge to the representative
    mutable ccpar : id set
        if the node is the representative for its
        congruence class, then its ccpar
        (congruence closure parents) are all
        parents of nodes in its congruence class
```


DAG Representation of node 2

type node $=\{$

id	$:$ id	$\ldots 2$
fn	$:$	string

args : idlist $\ldots[3,4]$
mutable find : id ...3
mutable ccpar : idset ... \emptyset
\}

DAG Representation of node 3

$$
\begin{array}{lll}
\text { type node }=\{ & & \\
\quad \text { id } & : \text { id } & \ldots 3 \\
\text { fn } & : & \text { string } \\
\quad \ldots a \\
\text { args } & : & \text { idlist } \\
\text { mutable find } & : & \text { id } \\
\text { mutable ccpar } & : & \ldots 3 \\
\} & &
\end{array}
$$

The Implementation: FIND

FIND function

returns the representative of node's congruence class

$$
\begin{aligned}
& \text { let rec FIND } i= \\
& \text { let } n=\text { NODE } i \text { in } \\
& \text { if } n . f \text { ind }=i \text { then } i \text { else FIND n.find }
\end{aligned}
$$

Example: \quad FIND $2=$ FIND $3=3$
3 is the representative of 2 .

The Implementation: UNION

UNION function

$$
\begin{aligned}
& \text { let UNION } i_{1} i_{2}= \\
& \text { let } n_{1}=\text { NODE }\left(\text { FIND } i_{1}\right) \text { in } \\
& \text { let } \left.n_{2}=\text { NODE (FIND } i_{2}\right) \text { in } \\
& n_{1} . \text { find } \leftarrow n_{2} . \text { find; } \\
& n_{2} . \text { ccpar } \leftarrow n_{1} . \text { ccpar } \cup n_{2} . \text { ccpar } ; \\
& n_{1} . \text { ccpar }
\end{aligned} \leftarrow \emptyset \$
$$

n_{2} is the representative of the union class

Example


```
UNION 12 n
    1.find }\leftarrow
    3.ccpar }\leftarrow{1,2
    1.ccpar }\leftarrow
```


The Implementation: CONGRUENT

CCPAR function
Returns parents of all nodes in i's congruence class

$$
\begin{aligned}
& \text { let CCPAR } i= \\
& \quad(\text { NODE }(\operatorname{FIND} i)) . \text { ccpar }
\end{aligned}
$$

CONGRUENT predicate
Test whether i_{1} and i_{2} are congruent
let CONGRUENT $i_{1} i_{2}=$
let $n_{1}=$ NODE i_{1} in
let $n_{2}=$ NODE i_{2} in
$n_{1} . f n=n_{2} . f n$
$\wedge\left|n_{1} \cdot \operatorname{args}\right|=\left|n_{2} \cdot \operatorname{args}\right|$
$\wedge \forall i \in\left\{1, \ldots,\left|n_{1} \cdot \operatorname{args}\right|\right\}$. FIND $n_{1} \cdot \operatorname{args}[i]=$ FIND $n_{2} \cdot \operatorname{args}[i]$

Example

Are 1 and 2 congruent?
fn fields

- both f
\# of arguments
- same
left arguments $f(a, b)$ and a - both congruent to 3 right arguments b and b - both 4 (congruent)

Therefore 1 and 2 are congruent.

The Implementation: MERGE

MERGE function

```
let rec MERGE \(i_{1} i_{2}=\)
    if FIND \(i_{1} \neq\) FIND \(i_{2}\) then begin
        let \(P_{i_{1}}=\) CCPAR \(i_{1}\) in
        let \(P_{i_{2}}=\) CCPAR \(i_{2}\) in
        UNION \(i_{1} i_{2}\);
        foreach \(t_{1}, t_{2} \in P_{i_{1}} \times P_{i_{2}}\) do
            if FIND \(t_{1} \neq\) FIND \(t_{2} \wedge\) CONGRUENT \(t_{1} t_{2}\)
        then MERGE \(t_{1} t_{2}\)
        done
    end
```

$P_{i_{1}}$ and $P_{i_{2}}$ store the current values of CCPAR i_{1} and CCPAR i_{2}.

Decision Procedure: T_{E}-satisfiability

Given $\Sigma_{E \text {-formula }}$

$$
F: s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m} \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}
$$

with subterm set S_{F}, perform the following steps:
(1) Construct the initial DAG for the subterm set S_{F}.
(2) For $i \in\{1, \ldots, m\}$, MERGE $s_{i} t_{i}$.
(3) If FIND $s_{i}=$ FIND t_{i} for some $i \in\{m+1, \ldots, n\}$, return unsatisfiable.
(9) Otherwise (if FIND $s_{i} \neq$ FIND t_{i} for all $i \in\{m+1, \ldots, n\}$) return satisfiable.

Example $f(a, b)=a \wedge f(f(a, b), b) \neq a$

$$
f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

Initial DAG

MERGE 23
UNION 23
$P_{2}=\{1\}$
$P_{3}=\{2\}$
CONGRUENT 12

FIND $f(f(a, b), b)=a=$ FIND $a \Rightarrow$ Unsatisfiable

Given $\Sigma_{E-f o r m u l a}$

$$
F: f(a, b)=a \wedge f(f(a, b), b) \neq a
$$

The subterm set is

$$
S_{F}=\{a, b, f(a, b), f(f(a, b), b)\}
$$

resulting in the initial partition

$$
\text { (1) }\{\{a\},\{b\},\{f(a, b)\},\{f(f(a, b), b)\}\}
$$

in which each term is its own congruence class. Fig (1).
Final partition

$$
\text { (2) }\{\{a, f(a, b), f(f(a, b), b)\},\{b\}\}
$$

Does
(3) $\{\{a, f(a, b), f(f(a, b), b)\},\{b\}\} \vDash F$?

No, as $f(f(a, b), b) \sim a$, but F asserts that $f(f(a, b), b) \neq a$. Hence, F is T_{E}-unsatisfiable.

Example $f^{3}(a)=a \wedge f^{5}(a)=a \wedge f(a) \neq a$

$$
f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a
$$

Initial DAG

$$
\begin{aligned}
& f(f(f(a)))=a \Rightarrow \text { MERGE } 30 \quad P_{3}=\{4\} \quad P_{0}=\{1\} \\
& \Rightarrow \text { MERGE } 41 \quad P_{4}=\{5\} \quad P_{1}=\{2\} \\
& \Rightarrow \text { MERGE } 52 \quad P_{5}=\{ \} \quad P_{2}=\{3\} \\
& f(f(f(f(f(a)))))=a \Rightarrow \operatorname{MERGE} 50 \quad P_{5}=\{3\} \quad P_{0}=\{1,4\} \\
& \Rightarrow \text { merge } 31 \quad P_{3}=\{1,3,4\}, P_{1}=\{2,5\}
\end{aligned}
$$

FIND $f(a)=f(a)=$ FIND $a \Rightarrow$ Unsatisfiable

Given $\Sigma_{E \text {-formula }}$

$$
F: \quad f(f(f(a)))=a \wedge f(f(f(f(f(a)))))=a \wedge f(a) \neq a,
$$

which induces the initial partition
(1) $\left\{\{a\},\{f(a)\},\left\{f^{2}(a)\right\},\left\{f^{3}(a)\right\},\left\{f^{4}(a)\right\},\left\{f^{5}(a)\right\}\right\}$.

The equality $f^{3}(a)=a$ induces the partition
(2) $\left\{\left\{a, f^{3}(a)\right\},\left\{f(a), f^{4}(a)\right\},\left\{f^{2}(a), f^{5}(a)\right\}\right\}$.

The equality $f^{5}(a)=a$ induces the partition
(3) $\left\{\left\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\right\}\right\}$.

Now, does

$$
\left\{\left\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\right\}\right\} \models F ?
$$

No, as $f(a) \sim a$, but F asserts that $f(a) \neq a$. Hence, F is T_{E}-unsatisfiable.

Correctness of the Algorithm

Theorem (Sound and Complete)

Quantifier-free conjunctive Σ_{E}-formula F is $T_{E \text {-satisfiable iff the }}$ congruence closure algorithm returns satisfiable.

Proof:
\Rightarrow Let I be a satisfying interpretation.
By induction over the steps of the algorithm one can prove: Whenever the algorithm merges nodes t_{1} and $t_{2}, l \models t_{1}=t_{2}$ holds.

Since $I \models s_{i} \neq t_{i}$ for $i \in\{m+1, \ldots, n\}$ they cannot be merged.
Hence the algorithm returns satisfiable.

Correctness of the Algorithm (2)

Proof:

\Leftarrow Let S denote the nodes of the graph and Let $[t]:=\left\{t^{\prime} \mid t \sim t^{\prime}\right\}$ denote the congruence class of t and $S / \sim:=\{[t] \mid t \in S\}$ denote the set of congruence classes. Show that there is an interpretation I:

$$
\begin{aligned}
D_{l} & =S / \sim \cup\{\Omega\} \\
\alpha_{l}[f]\left(v_{1}, \ldots, v_{n}\right) & = \begin{cases}{\left[f\left(t_{1}, \ldots, t_{n}\right)\right]} & v_{1}=\left[t_{1}\right], \ldots, v_{n}=\left[t_{n}\right] \\
\Omega & f\left(t_{1}, \ldots, t_{n}\right) \in S\end{cases} \\
\alpha_{l}[=]\left(v_{1}, v_{2}\right) & =\top \text { iff } v_{1}=v_{2}
\end{aligned}
$$

I is well-defined!
$\alpha_{l}[=]$ is a congruence relation, $l \models F$.

Example: $f(a, b)=a \wedge f(f(a, b), b) \neq b$

$S=\{f(f(a, b), b), f(a, b), a, b\}$					
$S / \sim=\{\{f(f(a, b),$					
$\alpha_{l}[f]$	[a] [b]	Ω	$\alpha_{l}[=]$	[a] [b]	b] Ω
[a]	$\Omega \quad[\mathrm{a}]$	Ω	[a]		$\perp \perp$
[b]	$\Omega \quad \Omega$	Ω	[b]	$\perp \quad \top$	
Ω	$\Omega \quad \Omega$	Ω	Ω	$\perp \quad \perp$	\perp

How to handle predicates?

We can get rid of predicates by

- Introduce fresh constant - corresponding to T.
- Introduce a fresh function f_{p} for each predicate p.
- Replace $p\left(t_{1}, \ldots, t_{n}\right)$ with $f_{p}\left(t_{1}, \ldots, t_{n}\right)=\bullet$.

Compare the equivalence axiom for p with the congruence axiom for f_{p}.

- $\forall x_{1}, x_{2}, y_{1}, y_{2} . x_{1}=y_{1} \wedge x_{2}=y_{2} \rightarrow p\left(x_{1}, x_{2}\right) \leftrightarrow p\left(y_{1}, y_{2}\right)$
- $\forall x_{1}, x_{2}, y_{1}, y_{2} . x_{1}=y_{1} \wedge x_{2}=y_{2} \rightarrow f_{p}\left(x_{1}, x_{2}\right)=f_{p}\left(y_{1}, y_{2}\right)$

Example

$X=f(x) \wedge p(x, f(x)) \wedge p(f(x), z) \wedge \neg p(x, z)$
is rewritten to

$$
x=f(x) \wedge f_{p}(x, f(x))=\bullet \wedge f_{p}(f(x), z)=\bullet \wedge f_{p}(x, z) \neq \bullet
$$

$$
\begin{aligned}
& \text { FIND } f_{p}(x, z)=\bullet \\
& \text { FIND } \bullet=\bullet
\end{aligned}
$$

\Rightarrow Unsatisfiable

Theory of Lists

Theory of Lists $T_{\text {cons }}$

$\sum_{\text {cons }}:\{$ cons, car, cdr, atom, $=\}$

- constructor cons: cons (a, b) list constructed by prepending a to b
- left projector car: $\operatorname{car}(\operatorname{cons}(a, b))=a$
- right projector $\operatorname{cdr}: \operatorname{cdr}(\operatorname{cons}(a, b))=b$
- atom: unary predicate

Axioms of $T_{\text {cons }}$

- reflexivity, symmetry, transitivity
- congruence axioms:

$$
\begin{aligned}
& \forall x_{1}, x_{2}, y_{1}, y_{2} \cdot x_{1}=x_{2} \wedge y_{1}=y_{2} \rightarrow \operatorname{cons}\left(x_{1}, y_{1}\right)=\operatorname{cons}\left(x_{2}, y_{2}\right) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{car}(x)=\operatorname{car}(y) \\
& \forall x, y \cdot x=y \rightarrow \operatorname{cdr}(x)=\operatorname{cdr}(y)
\end{aligned}
$$

- equivalence axiom:

$$
\forall x, y \cdot x=y \rightarrow(\operatorname{atom}(x) \leftrightarrow \operatorname{atom}(y))
$$

- $\forall x, y \cdot \operatorname{car}(\operatorname{cons}(x, y))=x$
$\forall x, y \cdot \operatorname{cdr}(\operatorname{cons}(x, y))=y$
(left projection)
$\forall x . \neg \operatorname{atom}(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=x$ $\forall x, y . \neg \operatorname{atom}(\operatorname{cons}(x, y))$
(right projection)
(construction)
(atom)

Satisfiabilty of Quantifier-free $\Sigma_{\text {cons }} \cup \Sigma_{\mathrm{E}}$-formulae

First simplify the formula:

- Consider only conjunctive $\Sigma_{\text {cons }} \cup \Sigma_{\text {E-formulae }}$. Convert non-conjunctive formula to DNF and check each disjunct.
- \neg atom $\left(u_{i}\right)$ literals are removed:
replace $\neg \operatorname{atom}\left(u_{i}\right)$ with $u_{i}=\operatorname{cons}\left(u_{i}^{1}, u_{i}^{2}\right)$
by the (construction) axiom.
Result is a conjunctive $\Sigma_{\text {cons }} \cup \Sigma_{\mathrm{E}}$-formula with the literals:
- $s=t$
- $s \neq t$
- atom(u)
where s, t, u are $T_{\text {cons }} \cup T_{\mathrm{E}}$-terms.

Algorithm: $T_{\text {cons }}$-Satisfiability (the idea)

$$
\begin{array}{rl}
F: & \underbrace{s_{1}=t_{1} \wedge \cdots \wedge s_{m}=t_{m}}_{\text {generate congruence closure }} \\
& \wedge \underbrace{s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_{n} \neq t_{n}}_{\text {search for contradiction }}
\end{array} \underbrace{\text { atom }\left(u_{1}\right) \wedge \cdots \cdots \operatorname{com}^{\prime}\left(u_{\ell}\right)}_{\text {search for contradiction }})
$$

where s_{i}, t_{i}, and u_{i} are $T_{\text {cons }} \cup T_{\mathrm{E}}$-terms.

Algorithm: $T_{\text {cons }}$-Satisfiability

(1) Construct the initial DAG for S_{F}
(2) for each node n with $n . f n=$ cons

- add $\operatorname{car}(n)$ and MERGE $\operatorname{car}(n)$ n.args[1]
- add $\operatorname{cdr}(n)$ and MERGE $\operatorname{cdr}(n)$ n.args[2]
by axioms (left projection), (right projection)
(3) for $1 \leq i \leq m$, MERGE $s_{i} t_{i}$
(9) for $m+1 \leq i \leq n$, if FIND $s_{i}=$ FIND t_{i}, return unsatisfiable
(3) for $1 \leq i \leq \ell$, if $\exists v$. FIND $v=$ FIND $u_{i} \wedge v . f n=$ cons, return unsatisfiable
(0) Otherwise, return satisfiable

Example

Given $\left(\Sigma_{\text {cons }} \cup \Sigma_{\mathrm{E}}\right)$-formula

$$
F: \quad \begin{gathered}
\operatorname{car}(x)=\operatorname{car}(y) \wedge \operatorname{cdr}(x)=\operatorname{cdr}(y) \\
\quad \wedge \neg \operatorname{atom}(x) \wedge \neg \operatorname{atom}(y) \wedge f(x) \neq f(y)
\end{gathered}
$$

where the function symbol f is in Σ_{E}

$$
\begin{align*}
& \operatorname{car}(x)=\operatorname{car}(y) \tag{1}\\
& \operatorname{cdr}(x)=\operatorname{cdr}(y) \tag{2}\\
& F^{\prime}: \quad \tag{3}\\
& x=\operatorname{cons}\left(x_{1}, x_{2}\right) \tag{4}\\
& y=\operatorname{cons}\left(y_{1}, y_{2}\right) \tag{5}\\
& \\
& f(x) \neq f(y)
\end{align*}
$$

Example: $\operatorname{car}(x)=\operatorname{car}(y) \wedge \operatorname{cdr}(x)=\operatorname{cdr}(y) \wedge$ $x=\operatorname{cons}\left(x_{1}, x_{2}\right) \wedge y=\operatorname{cons}\left(y_{1}, y_{2}\right) \wedge f(x) \neq f(y)$

Step 1
Step 2
Step 3 :
MERGE $\operatorname{car}(x) \operatorname{car}(y)$
MERGE $\operatorname{cdr}(x) \operatorname{cdr}(y)$
MERGE $x \operatorname{cons}\left(x_{1}, x_{2}\right)$
MERGE $\operatorname{car}(x) \operatorname{car}\left(\operatorname{cons}\left(x_{1}, x_{2}\right)\right)$
MERGE $\operatorname{cdr}(x) \operatorname{cdr}\left(\operatorname{cons}\left(x_{1}, x_{2}\right)\right)$
MERGE $y \operatorname{cons}\left(y_{1}, y_{2}\right)$
MERGE $\operatorname{car}(y) \operatorname{car}\left(\operatorname{cons}\left(y_{1}, y_{2}\right)\right)$
MERGE $\operatorname{cdr}(y) \operatorname{cdr}\left(\operatorname{cons}\left(y_{1}, y_{2}\right)\right)$ MERGE cons $\left(x_{1}, x_{2}\right) \operatorname{cons}\left(y_{1}, y_{2}\right)$ MERGE $f(x) f(y)$
Step 4 :
FIND $f(x)=\operatorname{FIND} f(y)$
\Rightarrow unsatisfiable

Correctness of the Algorithm

Theorem (Sound and Complete)

Quantifier-free conjunctive $\Sigma_{\text {cons }}$-formula F is $T_{\text {cons-satisfiable }}$ iff the congruence closure algorithm for $T_{\text {cons }}$ returns satisfiable.

Proof:

\Rightarrow Let I be a satisfying interpretation.
By induction over the steps of the algorithm one can prove:
Whenever the algorithm merges nodes t_{1} and $t_{2}, l \models t_{1}=t_{2}$ holds.
Since $I \models s_{i} \neq t_{i}$ for $i \in\{m+1, \ldots, n\}$ they cannot be merged.
From $I \models \neg \operatorname{atom}\left(\operatorname{cons}\left(t_{1}, t_{2}\right)\right)$ and $I \models \operatorname{atom}\left(u_{i}\right)$
follows $I \models u_{i} \neq \operatorname{cons}\left(t_{1}, t_{2}\right)$ by equivalence axiom.
Thus u_{i} for $i \in\{1, \ldots, \ell\}$ cannot be merged with a cons node.
Hence the algorithm returns satisfiable.

Correctness of the Algorithm (2)

Proof:

\Leftarrow Let S denote the nodes of the graph and let S / \sim denote the congruence classes computed by the algorithm. Show that there is an interpretation I:
$D_{l}=\{$ binary trees with leaves labelled with $S / \sim\}$
$\backslash\left\{\right.$ trees with subtree ${ }_{\left[t_{1}\right]}^{\swarrow \searrow}{ }_{\left[t_{2}\right]}$ with $\left.\operatorname{cons}\left(t_{1}, t_{2}\right) \in S\right\}$

$$
\begin{aligned}
\operatorname{cons}_{l}\left(v_{1}, v_{2}\right) & = \begin{cases}{\left[\operatorname{cons}\left(t_{1}, t_{2}\right)\right]} & v_{1}=\left[t_{1}\right], v_{2}=\left[t_{2}\right], \operatorname{cons}\left(t_{1}, t_{2}\right) \in S \\
\swarrow \searrow v_{2} & \text { otherwise } \\
v_{1}\end{cases} \\
\operatorname{car}_{l}(v) & = \begin{cases}{[\operatorname{car}(t)]} & \text { if } v=[t], \operatorname{car}(t) \in S \\
v_{1} & \text { if } v=v_{v_{1}} \searrow_{v_{2}} \\
\text { arbitrary } & \text { otherwise }\end{cases}
\end{aligned}
$$

Correctness of the Algorithm (3)

$$
\begin{aligned}
\operatorname{cdr}_{l}(v) & = \begin{cases}{[c d r(t)]} & \text { if } v=[t], \operatorname{cdr}(t) \in S \\
v_{2} & \text { if } v=v_{1} \\
\text { arbitrary } & \text { otherwise }\end{cases} \\
\operatorname{atom}_{l}(v)= & \begin{cases}\text { false } & \text { if } v=\left[\operatorname{cons}\left(t_{1}, t_{2}\right)\right] \\
\text { false } & \text { if } v=v_{v_{1}} \\
\text { true } & \text { otherwise }\end{cases} \\
\alpha_{l}[=]\left(v_{1}, v_{2}\right) & =\text { true iff } v_{1}=v_{2}
\end{aligned}
$$

I is well-defined! $\quad \alpha_{I}[=]$ is obviously a congruence relation.
$\forall x, y \cdot \operatorname{car}(\operatorname{cons}(x, y))=x$
$\forall x, y \cdot \operatorname{cdr}(\operatorname{cons}(x, y))=y$
$\forall x$. \neg atom $(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x))=x$
$\forall x, y$. \neg atom $(\operatorname{cons}(x, y))$
(left projection)
(right projection)
(construction)
(atom)

Example: $\operatorname{car}(x)=\operatorname{car}(y) \wedge \operatorname{cdr}(x)=\operatorname{cdr}(y) \wedge$ $x=\operatorname{cons}\left(x_{1}, x_{2}\right) \wedge y=\operatorname{cons}\left(y_{1}, y_{2}\right)$

- - > congruence

Quantifier-free Rationals

Conjunctive Quantifier-free Fragment

In the next lectures, we consider conjunctive quantifier-free Σ-formulae, i.e., conjunctions of Σ-literals (Σ-atoms or negations of Σ-atoms).

Remark 1: From this an algorithm for arbitrary quantifier-free formulae can be built.
For given arbitrary quantifier-free Σ-formula F, convert it into DNF Σ-formula

$$
F_{1} \vee \ldots \vee F_{k}
$$

where each F_{i} conjunctive.
F is T-satisfiable iff at least one F_{i} is T-satisfiable.
Remark 2: One can also combine a decision procedure for conjunctive fragment with DPLL.

Conjunctive Quantifier-free Fragment of Rationals

For $T_{\mathbb{Q}}$ a formula in the conjunctive fragment looks like this:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
\wedge a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2} \\
\vdots \\
\wedge a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m} \\
\text { as vectors: } A \cdot \vec{x} \leq \vec{b}
\end{gathered}
$$

Note: $x=b$ can be expressed as $x \leq b \wedge-x \leq-b$.
$\neg(x \leq b)$ can be expressed as $-x<-b$.
$x<b$ requires some additional handling (later).

Dutertre-de Moura Algorithm

- Presented 2006 by B. Dutertre and L. de Moura
- Based on Simplex algorithm
- Simpler; it doesn't optimize.

Nonbasic and Basic Variables

The set of variables in the formula is called \mathcal{N} (set of non-basic variables).
Additionally we introduce basic variables \mathcal{B}, one variable for each linear term in the formula:

$$
y_{i}:=a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}
$$

The basic variables depend on the non-basic variables.
Note: The naming is counter-intuitive. Unfortunately it is the standard naming for Simplex algorithm.

We need to find a solution for $y_{1} \leq b_{1}, \ldots, y_{m} \leq b_{m}$

Computing Basic from Non-basic Variables

The basic variables can be computed by a simple Matrix computation:

$$
\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

One can also use tableaux notation:

	x_{1}	\ldots	x_{n}
y_{1}	a_{11}	\ldots	$a_{1 n}$
\vdots	\vdots		\vdots
y_{m}	$a_{m 1}$	\ldots	$a_{m n}$

We start by setting all non-basic to 0 and computing the basic variables, denoted as $\beta_{0}(x):=0$. The valuation β_{s} assigns values for the variables at step s.

Configuration

A configuration at step s of the algorithm consists of

- a partition of the variables into non-basic and basic variables

$$
\mathcal{N}_{s} \cup \mathcal{B}_{s}=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots y_{m}\right\}
$$

- a tableaux A (a $m \times n$ matrix) where the columns correspond to non-basic and rows correspond to basic variables,
- and a valuation β_{s}, that assigns
- $\beta_{s}\left(x_{i}\right)=0$ for $x_{i} \in \mathcal{N}_{s}$,
- $\beta_{s}\left(y_{i}\right)=b_{i}$ for $y_{i} \in \mathcal{N}_{s}$,
- $\beta_{s}\left(z_{i}\right)=\sum_{z_{j} \in \mathcal{N}_{s}} a_{i j} \beta\left(z_{j}\right)$ for $z_{i} \in \mathcal{B}_{s}$.
(Here z stands for either an x or a y variable.)

The initial configuration is:

$$
\mathcal{N}_{0}=\left\{x_{1}, \ldots, x_{n}\right\}, \mathcal{B}_{0}=\left\{y_{1}, \ldots, y_{m}\right\}, A_{0}=A, \beta_{0}\left(x_{i}\right)=0
$$

In later steps variables from \mathcal{N} and \mathcal{B} are swapped.

Pivoting aka. Exchanging Basic and Non-basic Variables

Suppose β_{s} is not a solution for $y_{1} \leq b_{1}, \ldots, y_{m} \leq b_{m}$.
Let y_{i} be a variable whose value $\beta_{s}\left(y_{i}\right)>b_{i}$.
Consider the row in the matrix:

$$
y_{i}=a_{i 1} z_{1}+a_{i 2} z_{2}+\cdots+a_{i n} z_{n}
$$

Idea: Choose a z_{j}, then solve z_{j} in the above equation.
Thus, z_{j} becomes non-basic variable, y_{i} becomes basic.
Then decrease $\beta\left(y_{i}\right)$ to b_{i}.
This will either decrease z_{j} (if $a_{i j}>0$)
or increase z_{j} (if $a_{i j}<0, z_{j}$ must be a x-variable).
Solving z_{j} in the above equation gives:

$$
z_{j}=\frac{a_{i 1}}{-a_{i j}} z_{1}+\frac{a_{i 2}}{-a_{i j}} z_{2}+\cdots+\frac{a_{i n}}{-a_{i j}} z_{n}+\frac{1}{a_{i j}} y_{i}
$$

Result of Pivoting

After pivoting y_{i} and z_{j} the matrix looks as follows:

$$
\begin{array}{ccc}
y_{1}= & \left(a_{11}-\frac{a_{1 j} a_{i 1}}{a_{i j}}\right) z_{1}+\cdots+\frac{a_{1 j}}{a_{i j}} y_{i}+\cdots+\left(a_{1 n}-\frac{a_{1 j} a_{i n}}{a_{i j}}\right) z_{n} \\
\vdots & \vdots & \vdots \\
z_{j}= & -\frac{a_{i 1}}{a_{i j}} z_{1}+\cdots+\frac{1}{a_{i j}} y_{i}+\cdots+ & -\frac{a_{i n}}{a_{i j}} z_{n} \\
\vdots & \vdots & \vdots \\
y_{m}= & \left(a_{m 1}-\frac{a_{m j} a_{i 1}}{a_{i j}}\right) z_{1}+\cdots+\frac{a_{m j}}{a_{i j}} y_{i}+\cdots+\left(a_{m n}-\frac{a_{m j} a_{i n}}{a_{i j}}\right) z_{n}
\end{array}
$$

Now, set $\beta_{s+1}\left(y_{i}\right)$ to b_{i} and recompute basic variables.

Detecting Conflicts

We may arrive at a configuration like:

$$
y_{i}=0 \cdot x_{1}+\cdots+a_{i j_{1}} y_{j_{1}}+\cdots+a_{i j_{k}} y_{j_{k}}+0 \cdot x_{n}
$$

where the non-basic y variables are set to their bound:

$$
\beta_{s}\left(y_{j_{1}}\right)=b_{j_{1}}, \ldots, \beta_{s}\left(y_{j_{k}}\right)=b_{j_{k}}
$$

coefficients of x variables are zero, coefficients $a_{i j_{1}}, \ldots, a_{i j_{k}} \leq 0$, and $\beta_{s}\left(y_{i}\right)>b_{i}$.

Then, we have a conflict:

$$
y_{j_{1}} \leq b_{j_{1}} \wedge \cdots \wedge y_{j_{k}} \leq b_{j_{k}} \rightarrow y_{i}>b_{i}
$$

The formula is not satisfiable.

Example

Consider the formula

$$
F: x_{1}+x_{2} \geq 4 \wedge x_{1}-x_{2} \leq 1
$$

We have two non-basic variables $\mathcal{N}=\left\{x_{1}, x_{2}\right\}$. Define basic variables $\mathcal{B}=\left\{y_{1}, y_{2}\right\}$:

$$
\begin{array}{ll}
y_{1}=-x_{1}-x_{2}, & y_{1} \leq-4 \\
y_{2}=x_{1}-x_{2}, & y_{2} \leq 1
\end{array}
$$

We write the equation as a tableaux:

	x_{1}	x_{2}
y_{1}	-1	-1
y_{2}	1	-1

Example (cont.)

Tableaux:		l	
	x_{1}	x_{2}	
y_{1}	-1	-1	
y_{2}	1	-1	
		$\rightarrow y_{1}=0>x_{2}=0$	

Pivot y_{1} against $x_{1}: x_{1}=-y_{1}-x_{2}$.

New		Tableaux:	
	y_{1}	x_{2}	
x_{1}	-1	-1	
y_{2}	-1	-2	

Example (cont.)

Tableaux:

	y_{1}	x_{2}
x_{1}	-1	-1
y_{2}	-1	-2

Values:

$$
\begin{aligned}
& y_{1}=-4, x_{2}=0 \\
& \rightarrow x_{1}=4 \\
& \rightarrow y_{2}=4>1(!)
\end{aligned}
$$

y_{2} cannot be pivoted with y_{1}, since -1 negative.
Pivot y_{2} and x_{2} :

New Tableaux:		
	y_{1}	y_{2}
x_{1}	-.5	.5
x_{2}	-.5	-.5

Example (cont.)

Tableaux:		
	y_{1}	y_{2}
x_{1}	-.5	.5
x_{2}	-.5	-.5

Values:

$$
\begin{aligned}
& y_{1}=-4, y_{2}=1 \\
& \rightarrow x_{1}=2.5 \\
& \rightarrow x_{2}=1.5
\end{aligned}
$$

We found a satisfying interpretation for:

$$
F: x_{1}+x_{2} \geq 4 \wedge x_{1}-x_{2} \leq 1
$$

Example

Now, consider the formula

$$
F^{\prime}: x_{1}+x_{2} \geq 4 \wedge x_{1}-x_{2} \leq 1 \wedge x_{2} \leq 1
$$

We have two non-basic variables $\mathcal{N}=\left\{x_{1}, x_{2}\right\}$.
Define basic variables $\mathcal{B}=\left\{y_{1}, y_{2}, y_{3}\right\}$:

$$
\begin{array}{ll}
y_{1}=-x_{1}-x_{2}, & y_{1} \leq-4 \\
y_{2}=x_{1}-x_{2}, & y_{2} \leq 1 \\
y_{3}=x_{2}, & y_{3} \leq 1
\end{array}
$$

We write the equation as tableaux:

	x_{1}	x_{2}
y_{1}	-1	-1
y_{2}	1	-1
y_{3}	0	1

Example (cont.)

The first two steps are identical: pivot y_{1} resp. y_{2} and x_{1} resp. x_{2}.

	y_{1}	y_{2}
x_{1}	-.5	.5
x_{2}	-.5	-.5
y_{3}	-.5	-.5

Example (cont.)

Tableaux:		
	y_{1}	y_{2}
x_{1}	-.5	.5
x_{2}	-.5	-.5
y_{3}	-.5	-.5

Values:

$$
\begin{aligned}
& y_{1}=-4, y_{2}=1 \\
& \rightarrow x_{1}=2.5 \\
& \rightarrow x_{2}=1.5 \\
& \rightarrow y_{3}=1.5>1!
\end{aligned}
$$

Now, y_{3} cannot pivot, since all coefficients in that row are negative. Conflict is $-x_{1}-x_{2} \leq-4 \wedge x_{1}-x_{2} \leq 1 \rightarrow x_{2}>1$. Formula F^{\prime} is unsatisfiable

Termination

To guarantee termination we need a fixed pivot selection rule.
The following rule works:
When choosing the basic variable (row) to pivot:

- Choose the y-variable with the smallest index, whose value exceeds the bound.
- If there is no such variable, return satisfiable

When choosing the non-basic variable (column) to pivot with:

- if possible, take a x-variable.
- Otherwise, take the y-variable with the smallest index, such that the corresponding coefficient in the matrix is positive.
- If there is no such variable, return unsatisfiable

Termination Proof

Assume we have an infinite computation of the algorithm.
Let y_{j} be the variable with the largest index, that is infinitely often pivoted. Look at the step where y_{j} is pivoted to a non-basic variable and where for $k>j, y_{k}$ is not pivoted any more. The (ordered) tableaux at the point of pivoting looks like this:

| | x | \cdots | x | y | \cdots | y | y_{j} | y | \cdots |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \vdots | | | | | | | | | |
| y_{i} | 0 | \cdots | 0 | $-/ 0$ | \cdots | $-/ 0$ | + | $\pm / 0$ | \cdots |

(+ denotes a positive coefficient, - a negative coefficient)
After pivoting the tableaux changes to:

| | x | \cdots | x | y | \cdots | y | y_{i} | y | \cdots |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \vdots | | | | | | | | | |
| y_{j} | 0 | \cdots | 0 | $+/ 0$ | \cdots | $+/ 0$ | + | $\mp / 0$ | \cdots |
| \vdots | | | | | | | | | |

Termination Proof (cont.)

After pivoting the tableaux changes to:

	x	\cdots	x	y	\cdots	y	y_{i}	y	\cdots
\vdots									
y_{j}	0	\cdots	0	$+/ 0$	\cdots	$+/ 0$	+	$\mp / 0$	\cdots
\vdots									

$$
\sum_{k<j, y_{k} \in \mathcal{N}_{s}} a_{k} b_{k}+\sum_{k>j, y_{k} \in \mathcal{N}_{s}} a_{k} b_{k}=\beta_{s}\left(y_{j}\right)<b_{j}, \text { where } a_{k} \geq 0 \text { for } k<j
$$

Now look at the step s^{\prime} where y_{j} is pivoted back.
By the pivoting rule: $\beta_{s^{\prime}}\left(y_{k}\right) \leq b_{k}$ for all $k<j$.
For $k>j$, the non-basic/basic variables do not change.
Therefore, the value of y_{j} can only get smaller.

$$
\beta_{s^{\prime}}\left(y_{j}\right)=\sum_{k<j, y_{k} \in \mathcal{N}_{s}} a_{k} \cdot \beta_{s^{\prime}}\left(y_{k}\right)+\sum_{k>j, y_{k} \in \mathcal{N}_{s}} a_{k} b_{k}<b_{j}
$$

This contradicts $\beta_{s^{\prime}}\left(y_{j}\right)>b_{j}$.
Therefore, assumption was wrong and algorithm terminates.

Strict Bounds

With strict bounds the formula looks like this:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
& \vdots \\
& \wedge a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n} \leq b_{i} \\
& \wedge a_{(i+1) 1} x_{1}+a_{(i+1) 2} x_{2}+\cdots+a_{(i+1) n} x_{n}<b_{i+1} \\
& \vdots \\
& \wedge a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}<b_{m}
\end{aligned}
$$

If the formula is satisfiable, then there is an $\varepsilon>0$ with:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
& \vdots \\
& \wedge a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n} \leq b_{i} \\
& \wedge a_{(i+1) 1} x_{1}+a_{(i+1) 2} x_{2}+\cdots+a_{(i+1) n} x_{n} \leq b_{i+1}-\varepsilon \\
& \vdots \\
& \wedge a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m}-\varepsilon
\end{aligned}
$$

Infinitesimal Numbers

We compute with ε symbolically. Our bounds are elements of

$$
\mathbb{Q}_{\varepsilon}:=\left\{a_{1}+a_{2} \varepsilon \mid a_{1}, a_{2} \in \mathbb{Q}\right\}
$$

The arithmetical operators and the ordering are defined as:

$$
\begin{aligned}
&\left(a_{1}+a_{2} \varepsilon\right)+\left(b_{1}+b_{2} \varepsilon\right)=\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right) \varepsilon \\
& a \cdot\left(b_{1}+b_{2} \varepsilon\right)=a b_{1}+a b_{2} \varepsilon \\
& a_{1}+a_{2} \varepsilon \leq b_{1}+b_{2} \varepsilon \text { iff } a_{1}<b_{1} \vee\left(a_{1}=b_{1} \wedge a_{2} \leq b_{2}\right)
\end{aligned}
$$

Note: \mathbb{Q}_{ε} is a two-dimensional vector space over \mathbb{Q}.
Changes to the configuration:

- β gives values for variables in \mathbb{Q}_{ε}.
- The tableaux does not contain ε. It is still a $\mathbb{Q}^{m \times n}$ matrix.

Example

$F_{1}: 3 x_{1}+2 x_{2}<5 \wedge 2 x_{1}+3 x_{2}<1 \wedge x_{1}+x_{2}>1$

Example F_{1}

Step 1:

	x_{1}	x_{2}	β	b_{i}	
β	0	0			
y_{1}	3	2	0	$5-\varepsilon$	
y_{2}	2	3	0	$1-\varepsilon$	
y_{3}	-1	-1	0	$-1-\varepsilon$	$(!)$

Step 2:

	y_{3}	x_{2}	β	b_{i}	
β	$-1-\varepsilon$	0			
y_{1}	-3	-1	$3+3 \varepsilon$	$5-\varepsilon$	
y_{2}	-2	1	$2+2 \varepsilon$	$1-\varepsilon$	$(!)$
x_{1}	-1	-1	$1+1 \varepsilon$		

Step 3:

	y_{3}	y_{2}	β	b_{i}
β	$-1-\varepsilon$	$1-\varepsilon$		
y_{1}	-5	-1	$4+6 \varepsilon$	$5-\varepsilon$
x_{2}	2	1	$-1-3 \varepsilon$	
x_{1}	-3	-1	$2+4 \varepsilon$	
$\beta\left(y_{1}\right)=4+6 \varepsilon \leq 5-\varepsilon($ for $0<\varepsilon \leq 1 / 7)$.				

Solution $(\varepsilon=0.1): x_{1}=2.4, x_{2}=-1.3$.

Example

$F_{2}: 3 x_{1}+2 x_{2}<5 \wedge 2 x_{1}-x_{2}>1 \wedge x_{1}+3 x_{2}>4$

Example F_{2}

Step 1:

	x_{1}	x_{2}	β	b_{i}
β	0	0		
y_{1}	3	2	0	$5-\varepsilon$
y_{2}	-2	1	0	$-1-\varepsilon$
y_{3}	-1	-3	0	$-4-\varepsilon$
	$(!)$			

Step 2:

	x_{1}	y_{2}	β	b_{i}	
β	0	$-1-\varepsilon$			
y_{1}	7	2	$-2-2 \varepsilon$	$5-\varepsilon$	
x_{2}	2	1	$-1-\varepsilon$		
y_{3}	-7	-3	$3+3 \varepsilon$	$-4-\varepsilon$	$(!)$

Step 3:

	y_{3}	y_{2}	β	b_{i}	
β	$-4-\varepsilon$	$-1-\varepsilon$			
y_{1}	-1	-1	$5+2 \varepsilon$	$5-\varepsilon$	$(!)$
x_{2}	$-2 / 7$	$1 / 7$	$1+1 / 7 \varepsilon$		
x_{1}	$-1 / 7$	$-3 / 7$	$1+4 / 7 \varepsilon$		

Now $5+2 \varepsilon>5-\varepsilon$ but all coefficients in first row negative.
Unsatisfiable.

Correctness of the Algorithm

Theorem (Sound and Complete)
Quantifier-free conjunctive $\Sigma_{\mathbb{Q}}$-formula F is $T_{\mathbb{Q}}$-satisfiable iff the Dutertre-de-Moura algorithm returns satisfiable.

Theory of Arrays

Arrays: Quantifier-free Fragment of T_{A}

$$
\Sigma_{\mathrm{A}}:\{\cdot[\cdot], \cdot\langle\cdot \triangleleft \cdot\rangle,=\},
$$

where

- $a[i]$ is a binary function representing read of array a at index i;
- $a\langle i \triangleleft v\rangle$ is a ternary function representing write of value v to index i of array a;
- = is a binary predicate. It is not used on arrays.

Axioms of T_{A} :
(1) axioms of (reflexivity), (symmetry), and (transitivity) of T_{E}
(2) $\forall a, i, j, i=j \rightarrow a[i]=a[j]$
(3) $\forall a, v, i, j . i=j \rightarrow a\langle i \triangleleft v\rangle[j]=v$
(array congruence)
(9) $\forall a, v, i, j . i \neq j \rightarrow a\langle i \triangleleft v\rangle[j]=a[j]$ (read-over-write 1)
(read-over-write 2)

Decision Procedure for T_{A}

Given quantifier-free conjunctive Σ_{A}-formula F. To decide the T_{A}-satisfiability of F :

Step 1

For every read-over-write term $a\langle i \triangleleft v\rangle[j]$ in F, replace F with the formula

$$
\begin{aligned}
& (i=j \wedge F\{a\langle i \triangleleft v\rangle[j] \mapsto v\}) \vee \\
& (i \neq j \wedge F\{a\langle i \triangleleft v\rangle[j] \mapsto a[j]\})
\end{aligned}
$$

Repeat until there are no more read-over-write terms.

Decision Procedure for T_{A} (cont)

Step 2
Associate array variables a with fresh function symbol f_{a}. Replace read terms $a[i]$ with $f_{a}(i)$.

Step 3

Now F is a T_{E}-Formula. Decide T_{E}-satisfiability using the congruence-closure algorithm for each of the disjuncts produced in Step 1.

Example: Consider Σ_{A}-formula

$$
F: i_{1}=j \wedge i_{1} \neq i_{2} \wedge a[j]=v_{1} \wedge a\left\langle i_{1} \triangleleft v_{1}\right\rangle\left\langle i_{2} \triangleleft v_{2}\right\rangle[j] \neq a[j] .
$$

F contains a read-over-write term,

$$
a\left\langle i_{1} \triangleleft v_{1}\right\rangle\left\langle i_{2} \triangleleft v_{2}\right\rangle[j] \neq a[j] .
$$

Rewrite it to $F_{1} \vee F_{2}$ with:

$$
\begin{aligned}
& F_{1}: i_{2}=j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge a[j]=v_{1} \wedge v_{2} \neq a[j] \\
& F_{2}: i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge a[j]=v_{1} \wedge a\left\langle i_{1} \triangleleft v_{1}\right\rangle[j] \neq a[j] .
\end{aligned}
$$

F_{1} does not contain any write terms, so rewrite it to

$$
F_{1}^{\prime}: i_{2}=j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge f_{a}(j)=v_{1} \wedge v_{2} \neq f_{a}(j) .
$$

The first two literals imply that $i_{1}=i_{2}$, contradicting the third literal, so F_{1}^{\prime} is T_{E}-unsatisfiable.

Now, we try the second case $\left(F_{2}\right)$:
F_{2} contains the read-over-write term $a\left\langle i_{1} \triangleleft v_{1}\right\rangle[j]$. Rewrite it to $F_{3} \vee F_{4}$ with

$$
\begin{aligned}
& F_{3}: i_{1}=j \wedge i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge a[j]=v_{1} \wedge v_{1} \neq a[j] \\
& F_{4}: i_{1} \neq j \wedge i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge a[j]=v_{1} \wedge a[j] \neq a[j] .
\end{aligned}
$$

Rewrite the array reads to

$$
\begin{aligned}
& F_{3}^{\prime}: i_{1}=j \wedge i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge f_{a}(j)=v_{1} \wedge v_{1} \neq f_{a}(j) \\
& F_{4}^{\prime}: i_{1} \neq j \wedge i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge f_{a}(j)=v_{1} \wedge f_{a}(j) \neq f_{a}(j) .
\end{aligned}
$$

In F_{3}^{\prime} there is a contradiction because of the final two terms. In F_{4}^{\prime}, there are two contradictions: the first and third literals contradict each other, and the final literal is contradictory. Since F is equisatisfiable to $F_{1}^{\prime} \vee F_{3}^{\prime} \vee F_{4}^{\prime}, F$ is T_{A}-unsatisfiable.
Suppose instead that F does not contain the literal $i_{1} \neq i_{2}$. Is this new formula T_{A}-satisfiable?

Complexity of Decision Procedure for T_{A}

Our algorithm has a big disadvantage. Step 1 doubles the size of the formula:

$$
\begin{aligned}
& (i=j \wedge F\{a\langle i \triangleleft v\rangle[j] \mapsto v\}) \vee \\
& (i \neq j \wedge F\{a\langle i \triangleleft v\rangle[j] \mapsto a[j]\})
\end{aligned}
$$

This can be avoided by introducing fresh variables $x_{a i j v}$:

$$
\begin{aligned}
& F\left\{a\langle i \triangleleft v\rangle[j] \mapsto x_{a i v}\right\} \wedge \\
& \left(\left(i=j \wedge x_{a i j v}=v\right) \vee\left(i \neq j \wedge x_{a i j v}=a[j]\right)\right)
\end{aligned}
$$

However, this is not in the conjunctive fragment of T_{E}.
There is no way around:
The conjunctive fragment of T_{A} is NP-complete.

Arrays and Quantifiers

In programming languages, one often needs to express the following concepts:

- Containment contains (a, ℓ, u, e) : the array a contains element e at some index between ℓ and u.

$$
\exists i . \ell \leq i \leq u \wedge a[i]=e
$$

- Sortedness sorted (a, ℓ, u) : the array a is sorted between index ℓ and index u.

$$
\forall i, j . \ell \leq i \leq j \leq u \Longrightarrow a[i] \leq a[j]
$$

- Partitioning partition $\left(a, \ell_{1}, u_{1}, \ell_{2}, u_{2}\right)$: The array elements between ℓ_{1} and u_{1} are smaller than all elements between ℓ_{2} and u_{2}.

$$
\forall i, j . \ell_{1} \leq i \leq u_{1} \wedge \ell_{2} \leq j \leq u_{2} \Longrightarrow a[i] \leq a[j]
$$

Decision Procedure for Arrays

These concepts can only be expressed as first-order formulae with quantifiers.

However: the general theory of arrays T_{A} with quantifier is not decidable.
Is there a decidable fragment of T_{A} that contains the above formulae?

Example

We want to prove validity for a formula, such as:

$$
\begin{aligned}
& \neg \text { contains }(a, \ell, u, e) \wedge e \neq f \rightarrow \neg \operatorname{contains}(a\langle j \triangleleft f\rangle, \ell, u, e) \\
& \neg(\exists i . \ell \leq i \leq u \wedge a[i]=e) \wedge e \neq f \\
& \quad \rightarrow \neg(\exists i . \ell \leq i \leq u \wedge a\langle j \triangleleft f\rangle[i] \neq e) .
\end{aligned}
$$

Check satisfiability of negated formula:
$\neg(\exists i . \ell \leq i \leq u \wedge a[i]=e) \wedge e \neq f \wedge(\exists i . \ell \leq i \leq u \wedge a\langle j \triangleleft f\rangle[i] \neq e)$.
Negation Normal Form:
$(\forall i . \ell>i \vee i>u \vee a[i] \neq e) \wedge e \neq f \wedge(\exists i . \ell \leq i \wedge i \leq u \wedge a\langle j \triangleleft f\rangle[i]=e)$.
or the equisatisfiable formula
$\forall i . \ell>i \vee i>u \vee a[i] \neq e \wedge e \neq f \wedge \ell \leq i_{2} \wedge i_{2} \leq u \wedge a\langle j \triangleleft f\rangle\left[i_{2}\right]=e$.
We need to handle satisfiability for universal quantifiers.

Array Property Fragment of T_{A}

Decidable fragment of T_{A} that includes \forall quantifiers
Array property
Σ_{A}-formula of form

$$
\forall \bar{i} . F[\bar{i}] \rightarrow G[\bar{i}],
$$

where \bar{i} is a list of variables.

- index guard $F[\bar{i}]$:

$$
\begin{aligned}
\text { iguard } & \rightarrow \text { iguard } \wedge \text { iguard } \mid \text { iguard } \vee \text { iguard } \mid \text { atom } \\
\text { atom } & \rightarrow \text { var }=\text { var } \mid \text { evar } \neq \text { var } \mid \text { var } \neq \text { evar } \mid \top \\
\text { var } & \rightarrow \text { evar } \mid \text { uvar }
\end{aligned}
$$

where uvar is any universally quantified index variable, and evar is any constant or unquantified variable.

- value constraint $G[\bar{i}]$: a universally quantified index can occur in a value constraint $G[\bar{i}]$ only in a read $a[i]$, where a is an array term.
The read cannot be nested; for example, $a[b[i]]$ is not allowed.
Array property Fragment: Boolean combinations of quantifier-free T_{A}-formulae and array properties

Example: Array Property Fragment

Is this formula in the array property fragment?

$$
F: \forall i . i \neq a[k] \rightarrow a[i]=a[k]
$$

The antecedent is not a legal index guard since $a[k]$ is not a variable (neither a uvar nor an evar); however, by simple manipulation

$$
F^{\prime}: v=a[k] \wedge \forall i . i \neq v \rightarrow a[i]=a[k]
$$

Here, $i \neq v$ is a legal index guard, and $a[i]=a[k]$ is a legal value constraint. F and F^{\prime} are equisatisfiable.
This trick works for every term that does not contain a uvar. However, no manipulation works for:

$$
G: \forall i . i \neq a[i] \rightarrow a[i]=a[k] .
$$

Thus, G is not in the array property fragment.

Example: Array Property Fragment (cont)

Is this formula in the array property fragment?

$$
F^{\prime}: \forall i j . i \neq j \rightarrow a[i] \neq a[j]
$$

No, the term uvar $\neq u v a r$ is not allowed in the index guard. There is no workaround.

Array property fragment and extensionality

Remark: Array property fragment allows expressing equality between arrays (extensionality): two arrays are equal precisely when their corresponding elements are equal.

For given formula

$$
F: \cdots \wedge a=b \wedge \cdots
$$

with array terms a and b, rewrite F as

$$
F^{\prime}: \cdots \wedge(\forall i . \top \rightarrow a[i]=b[i]) \wedge \cdots .
$$

F and F^{\prime} are equisatisfiable.
F^{\prime} is in array property fragment of T_{A}.

Decision Procedure for Array Property Fragment

Basic Idea: Similar to quantifier elimination.
Replace universal quantification

$$
\forall i . F[i]
$$

by finite conjunction

$$
F\left[t_{1}\right] \wedge \ldots \wedge F\left[t_{n}\right] .
$$

We call t_{1}, \ldots, t_{n} the index terms and they depend on the formula.

Example

Consider

$$
F: a\langle i \triangleleft v\rangle=a \wedge a[i] \neq v
$$

which expands to

$$
F^{\prime}: \forall j . a\langle i \triangleleft v\rangle[j]=a[j] \wedge a[i] \neq v
$$

Intuitively, only the index i is important:

$$
F^{\prime \prime}:\left(\bigwedge_{j \in\{i\}} a\langle i \triangleleft v\rangle[j]=a[j]\right) \wedge a[i] \neq v
$$

or simply

$$
a\langle i \triangleleft v\rangle[i]=a[i] \wedge a[i] \neq v .
$$

Simplifying,

$$
v=a[i] \wedge a[i] \neq v,
$$

it is clear that this formula, and thus F, is T_{A}-unsatisfiable.

Decision Procedure for Array Property Fragment

Given array property formula F, decide its T_{A}-satisfiability by the following steps:

Step 1

Put F in NNF, but do not rewrite inside a quantifier.

Step 2

Apply the following rule exhaustively to remove writes:
$\frac{F[a\langle i \triangleleft v\rangle]}{F\left[a^{\prime}\right] \wedge a^{\prime}[i]=v \wedge\left(\forall j . j \neq i \rightarrow a[j]=a^{\prime}[j]\right)}$ for fresh $a^{\prime} \quad$ (write)
After an application of the rule, the resulting formula contains at least one fewer write terms than the given formula.

Step 3

Apply the following rule exhaustively to remove existential quantification:

$$
\frac{F[\exists \bar{i} . G[\bar{i}]]}{F[G[\bar{j}]]} \text { for fresh } \bar{j} \quad \text { (exists) }
$$

Existential quantification can arise during Step 1 if the given formula has a negated array property.

Steps 4-6 accomplish the reduction of universal quantification to finite conjunction.
Main idea: select a set of symbolic index terms on which to instantiate all universal quantifiers. The set is sufficient for correctness.

Step 4

From the output F_{3} of Step 3, construct the index set \mathcal{I} :
$\{\lambda\}$
$\mathcal{I}=\cup\left\{t: \cdot[t] \in F_{3}\right.$ such that t is not a universally quantified variable $\}$
$\cup\{t: t$ occurs as an evar in the parsing of index guards $\}$
This index set is the finite set of indices that need to be examined. It includes

- all terms t that occur in some read $a[t]$ anywhere in F (unless it is a universally quantified variable)
- all terms t (constant or unquantified variable) that are compared to a universally quantified variable in some index guard.
- λ is a fresh constant that represents all other index positions that are not explicitly in \mathcal{I}.

Step 5 (Key step)
Apply the following rule exhaustively to remove universal quantification:

$$
\frac{H[\forall \bar{i} . F[\bar{i}] \rightarrow G[\bar{i}]]}{H\left[\bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])\right]} \quad \text { (forall) }
$$

where n is the number of quantified variables \bar{i}.

Step 6

From the output F_{5} of Step 5, construct

$$
F_{6}: F_{5} \wedge \bigwedge_{i \in \mathcal{I} \backslash\{\lambda\}} \lambda \neq i
$$

The new conjuncts assert that the variable λ introduced in Step 4 is indeed unique.

Step 7

Decide the $T_{\text {A-satisfiability of }} F_{6}$ using the decision procedure for the quantifier-free fragment.

Example

Is this $T_{\mathrm{A}}^{=}$-formula valid?

$$
F:(\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \rightarrow a\langle k \triangleleft v\rangle=b
$$

Check satisfiability of:

$$
\neg((\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \rightarrow(\forall i . a\langle k \triangleleft v\rangle[i]=b[i]))
$$

Step 1: NNF

$$
F_{1}:(\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \wedge(\exists i . a\langle k \triangleleft v\rangle[i] \neq b[i])
$$

Step 2: Remove array writes

$$
\begin{aligned}
F_{2}: & (\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \wedge\left(\exists i . a^{\prime}[i] \neq b[i]\right) \\
& \wedge a^{\prime}[k]=v \wedge\left(\forall i . i \neq k \rightarrow a^{\prime}[i]=a[i]\right)
\end{aligned}
$$

Step 3: Remove existential quantifier

$$
\begin{aligned}
F_{3}: & \forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \wedge a^{\prime}[j] \neq b[j] \\
& \wedge a^{\prime}[k]=v \wedge\left(\forall i . i \neq k \rightarrow a^{\prime}[i]=a[i]\right)
\end{aligned}
$$

Example (cont)

Step 4: Compute index set $\mathcal{I}=\{\lambda, k, j\}$
Step 5+6: Replace universal quantifier:

$$
\begin{aligned}
F_{6}: & (\lambda \neq k \rightarrow a[\lambda]=b[\lambda]) \\
& \wedge(k \neq k \rightarrow a[k]=b[k]) \\
& \wedge(j \neq k \rightarrow a[j]=b[j]) \\
& \wedge b[k]=v \wedge a^{\prime}[j] \neq b[j] \wedge a^{\prime}[k]=v \\
& \wedge\left(\lambda \neq k \rightarrow a^{\prime}[\lambda]=a[\lambda]\right) \\
& \wedge\left(k \neq k \rightarrow a^{\prime}[k]=a[k]\right) \\
& \wedge\left(j \neq k \rightarrow a^{\prime}[j]=a[j]\right) \\
& \wedge \lambda \neq k \wedge \lambda \neq j
\end{aligned}
$$

Case distinction on $j=k$ proves unsatisfiability of F_{6}.
Therefore F is valid

The importance of λ

Is this formula satisfiable?

$$
F:(\forall i . i \neq j \rightarrow a[i]=b[i]) \wedge(\forall i . i \neq k \rightarrow a[i] \neq b[i])
$$

The algorithm produces:

$$
\begin{aligned}
F_{6}: & \lambda \neq j \rightarrow a[\lambda]=b[\lambda] \\
& \wedge j \neq j \rightarrow a[j]=b[j] \\
& \wedge k \neq j \rightarrow a[k]=b[k] \\
& \wedge \lambda \neq k \rightarrow a[\lambda] \neq b[\lambda] \\
& \wedge j \neq k \rightarrow a[j \neq b[j] \\
& \wedge k \neq k \rightarrow a[k] \neq b[k] \\
& \wedge \lambda \neq j \wedge \lambda \neq k
\end{aligned}
$$

The first, fourth and last line give a contradiction!

The importance of λ (cont)

Without λ we had the formula:

$$
\begin{aligned}
F_{6}^{\prime}: j & \neq j \rightarrow a[j]=b[j] \\
& \wedge k \neq j \rightarrow a[k]=b[k] \\
& \wedge j \neq k \rightarrow a[j] \neq b[j] \\
& \wedge k \neq k \rightarrow a[k] \neq b[k]
\end{aligned}
$$

which simplifies to:

$$
j \neq k \rightarrow a[k]=b[k] \wedge a[j] \neq b[j] .
$$

This formula is satisfiable!

Correctness of Decision Procedure

Theorem

Consider a Σ_{A}-formula F from the array property fragment of T_{A}. The output F_{6} of Step 6 of the algorithm is T_{A}-equisatisfiable to F.

This also works when extending the Logic with an arbitrary theory T with signature Σ for the elements:

Theorem

Consider a $\Sigma_{\mathrm{A}} \cup \Sigma$-formula F from the array property fragment of $T_{\mathrm{A}} \cup T$. The output F_{6} of Step 6 of the algorithm is $T_{A} \cup T$-equisatisfiable to F.

Proof of Theorem

Proof: It is easy to see that steps $1-3$ do not change the satisfiability of formula.
For step 4-6 we need to show:
(1) $H[\forall \bar{i} \cdot(F[\bar{i}] \rightarrow G[\bar{i}])]$ is satisfiable iff.
(2) $H\left[\bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])\right] \wedge \bigwedge_{i \in \mathcal{I} \backslash\{\lambda\}} \lambda \neq i$ is satisfiable.

If the formula (1) is satisfied some Interpretation, then (2) holds in the same interpretation.

Proof of Theorem (cont)

If the formula (2) holds in some interpretation I, we construct an interpretation J as follows:

$$
\begin{aligned}
\operatorname{proj}_{\mathcal{I}}(j) & = \begin{cases}i & \text { if } i \in \mathcal{I} \wedge \alpha_{l}[j]=\alpha_{l}[i] \\
\lambda & \text { otherwise }\end{cases} \\
\alpha_{J}[a[j]] & =\alpha_{l}\left[a\left[\operatorname{proj}_{\mathcal{I}}(j)\right]\right] \\
\alpha_{J}[x] & =\alpha_{l}[x] \text { for every non-array variable and constant }
\end{aligned}
$$

J interprets the symbols occuring in formula (2) in the same way as I. Therefore, (2) holds in J.
To prove that formula (1) holds in J, it suffices to show:

$$
J \vDash \bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}]) \text { implies } J \models \forall \bar{i} .(F[\bar{i}] \rightarrow G[\bar{i}])
$$

Proof of Theorem (cont)

Assume $J \vDash \bigwedge_{i \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])$. Show:

$$
F[\bar{i}] \rightarrow F\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \rightarrow G\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \rightarrow G[\bar{i}]
$$

The first implication $F[\bar{i}] \rightarrow F\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right]$ can be shown by structural induction over F. Base cases:

- $\operatorname{var}_{1}=\operatorname{var}_{2} \rightarrow \operatorname{proj}_{\mathcal{I}}\left(\right.$ var $\left._{1}\right)=\operatorname{proj}_{\mathcal{I}}\left(\operatorname{var}_{2}\right):$ trivial.
- evar ${ }_{1} \neq$ var $_{2} \rightarrow \operatorname{proj}_{\mathcal{I}}\left(\right.$ evar $\left._{1}\right) \neq \operatorname{proj}_{\mathcal{I}}\left(\right.$ var $\left._{2}\right)$: By definition of \mathcal{I} : evar $r_{1} \in \mathcal{I} \backslash\{\lambda\}$. If evar ${ }_{1}=\operatorname{proj}_{\mathcal{I}}\left(e v a r_{1}\right)=\operatorname{proj}_{\mathcal{I}}\left(\operatorname{var}_{2}\right)$, then $\operatorname{var}_{2} \in \mathcal{I} \backslash\{\lambda\}$, hence evar ${ }_{1}=\operatorname{proj}_{\mathcal{I}}\left(\right.$ var $\left._{2}\right)=$ var $_{2}$
- var $_{1} \neq$ evar r_{2} analogously.

The induction step is trivial.
The second implication $F\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \rightarrow G\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right]$ holds by assumption. The third implication $G\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \Longrightarrow G[\bar{i}]$ holds because G contains variables i only in array reads $a[i]$. By definition of J : $\alpha_{J}[a[i]]=\alpha_{J}\left[a\left[\operatorname{proj}_{\mathcal{I}}(i)\right]\right]$.

Theory of Integer-Indexed Arrays

Theory of Integer-Indexed Arrays $T_{A}^{\mathbb{Z}}$

\leq enables reasoning about subarrays and properties such as subarray is sorted or partitioned.
signature of $T_{A}^{\mathbb{Z}}: \Sigma_{A}^{\mathbb{Z}}=\Sigma_{A} \cup \Sigma_{\mathbb{Z}}$
axioms of $T_{\mathrm{A}}^{\mathbb{Z}}$: both axioms of T_{A} and $T_{\mathbb{Z}}$

Array Property Fragment of $T_{A}^{\mathbb{Z}}$

Array property: $\Sigma_{A}^{\mathbb{Z}}$-formula of the form
$\forall \bar{i} . F[\bar{i}] \rightarrow G[\bar{i}]$,
where \bar{i} is a list of integer variables.

- $F[\bar{i}]$ index guard:

$$
\begin{aligned}
\text { iguard } & \rightarrow \text { iguard } \wedge \text { iguard } \mid \text { iguard } \vee \text { iguard } \mid \text { atom } \\
\text { atom } & \rightarrow \text { expr } \leq \text { expr } \mid \text { expr }=\text { expr } \\
\text { expr } & \rightarrow \text { uvar } \mid \text { pexpr } \\
\text { pexpr } & \rightarrow \text { pexpr } \\
\text { pexpr }^{\prime} & \rightarrow \mathbb{Z} \mid \mathbb{Z} \cdot \text { evar } \mid \text { pexpr }^{\prime}+\text { pexpr }^{\prime}
\end{aligned}
$$

where uvar is any universally quantified integer variable, and evar is any existentially quantified or free integer variable.

- $G[\bar{i}]$ value constraint:

Any occurrence of a quantified index variable i must be as a read into an array, $a[i]$, for array term a. Array reads may not be nested; e.g., $a[b[i]]$ is not allowed.
Array property fragment of $T_{A}^{\mathbb{Z}}$ consists of formulae that are Boolean combinations of quantifier-free $\Sigma_{A}^{\mathbb{Z}}$-formulae and array properties.

Application: array property fragments

- Array equality $a=b$ in T_{A} :

$$
\forall i . a[i]=b[i]
$$

- Bounded array equality $\operatorname{beq}(a, b, \ell, u)$ in $T_{\mathrm{A}}^{\mathbb{Z}}$:

$$
\forall i . \ell \leq i \leq u \rightarrow a[i]=b[i]
$$

- Universal properties $F[x]$ in T_{A} :
- Bounded universal properties $F[x]$ in $T_{\mathrm{A}}^{\mathbb{Z}}$:

$$
\forall i . \ell \leq i \leq u \rightarrow F[a[i]]
$$

- Bounded and unbounded sorted arrays sorted (a, ℓ, u) in $T_{\mathrm{A}}^{\mathbb{Z}} \cup T_{\mathbb{Z}}$ or $T_{\mathrm{A}}^{\mathbb{Z}} \cup T_{\mathbb{Q}}:$

$$
\forall i, j . \ell \leq i \leq j \leq u \rightarrow a[i] \leq a[j]
$$

- Partitioned arrays partitioned $\left(a, \ell_{1}, u_{1}, \ell_{2}, u_{2}\right)$ in $T_{\mathrm{A}}^{\mathbb{Z}} \cup T_{\mathbb{Z}}$ or $T_{\mathrm{A}}^{\mathbb{Z}} \cup T_{\mathbb{Q}}:$

The Decision Procedure (Step 1-2)

The idea again is to reduce universal quantification to finite conjunction. Given F from the array property fragment of $T_{\mathrm{A}}^{\mathbb{Z}}$, decide its $T_{\mathrm{A}}^{\mathbb{Z}}$-satisfiability as follows:

Step 1

Put F in NNF.

Step 2

Apply the following rule exhaustively to remove writes:

$$
\frac{F[a\langle i \triangleleft e\rangle]}{F\left[a^{\prime}\right] \wedge a^{\prime}[i]=e \wedge\left(\forall j . j \neq i \rightarrow a[j]=a^{\prime}[j]\right)} \text { for fresh } a^{\prime}
$$

To meet the syntactic requirements on an index guard, rewrite the third conjunct as

$$
\forall j . j \leq i-1 \vee i+1 \leq j \rightarrow a[j]=a^{\prime}[j] .
$$

The Decision Procedure (Step 3-4)

Step 3
Apply the following rule exhaustively to remove existential quantification:

$$
\frac{F[\exists \bar{i} . G[\bar{i}]]}{F[G[\bar{j}]]} \text { for fresh } \bar{j} \quad \text { (exists) }
$$

Existential quantification can arise during Step 1 if the given formula has a negated array property.

Step 4

From the output of Step 3, F_{3}, construct the index set \mathcal{I} :
$\mathcal{I}=\begin{aligned} & \left\{t: \cdot[t] \in F_{3} \text { such that } t \text { is not a universally quantified variable }\right\} \\ & \cup\{t: t \text { occurs as a pexpr in the parsing of index guards }\}\end{aligned}$
If $\mathcal{I}=\emptyset$, then let $\mathcal{I}=\{0\}$. The index set contains all relevant symbolic indices that occur in F_{3}.

The Decision Procedure (Step 5-6)

Step 5

Apply the following rule exhaustively to remove universal quantification:

$$
\frac{H[\forall \bar{i} . F[\bar{i}] \rightarrow G[\bar{i}]]}{H\left[\bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])\right]} \quad \text { (forall) }
$$

n is the size of the block of universal quantifiers over \bar{i}.
Step 6
F_{5} is quantifier-free in the combination theory $T_{\mathrm{A}} \cup T_{\mathbb{Z}}$. Decide the ($T_{\mathrm{A}} \cup T_{\mathbb{Z}}$)-satisfiability of the resulting formula.

Example

$\Sigma_{A}^{\mathbb{Z}}$-formula:
$F: \quad(\forall i . \ell \leq i \leq u \rightarrow a[i]=b[i])$

$$
\wedge \neg(\forall i . \ell \leq i \leq u+1 \rightarrow a\langle u+1 \triangleleft b[u+1]\rangle[i]=b[i])
$$

In NNF, we have

$$
\begin{aligned}
F_{1}: & (\forall i . \ell \leq i \leq u \rightarrow a[i]=b[i]) \\
& \wedge(\exists i . \ell \leq i \leq u+1 \wedge a\langle u+1 \triangleleft b[u+1]\rangle[i] \neq b[i])
\end{aligned}
$$

Step 2 produces

$$
\begin{aligned}
& \forall i \cdot \ell \leq i \leq u \rightarrow a[i]=b[i]) \\
F_{2}: & \wedge\left(\exists i \cdot \ell \leq i \leq u+1 \wedge a^{\prime}[i] \neq b[i]\right) \\
& \wedge a^{\prime}[u+1]=b[u+1] \\
& \wedge\left(\forall j \cdot j \leq u+1-1 \vee u+1+1 \leq j \rightarrow a[j]=a^{\prime}[j]\right)
\end{aligned}
$$

Step 3 removes the existential quantifier by introducing a fresh constant k :

$$
\begin{aligned}
& \forall i . \ell \leq i \leq u \rightarrow a[i]=b[i]) \\
F_{3}: & \wedge \ell \leq k \leq u+1 \wedge a^{\prime}[k] \neq b[k] \\
& \wedge a^{\prime}[u+1]=b[u+1] \\
& \wedge\left(\forall j . j \leq u+1-1 \vee u+1+1 \leq j \rightarrow a[j]=a^{\prime}[j]\right)
\end{aligned}
$$

Simplifying,

$$
\begin{aligned}
& (\forall i \cdot \ell \leq i \leq u \rightarrow a[i]=b[i]) \\
F_{3}^{\prime}: \quad & \wedge \ell \leq k \leq u+1 \wedge a^{\prime}[k] \neq b[k] \\
& \wedge a^{\prime}[u+1]=b[u+1] \\
& \wedge\left(\forall j . j \leq u \vee u+2 \leq j \rightarrow a[j]=a^{\prime}[j]\right)
\end{aligned}
$$

The index set is

$$
\mathcal{I}=\{k, u+1\} \cup\{\ell, u, u+2\},
$$

which includes the read terms k and $u+1$ and the terms ℓ, u, and $u+2$ that occur as pexprs in the index guards.

Step 5 rewrites universal quantification to finite conjunction over this set:

$$
\begin{aligned}
& \bigwedge_{i \in \mathcal{I}}(\ell \leq i \leq u \rightarrow a[i]=b[i]) \\
F_{5}: \quad & \wedge \ell \leq k \leq u+1 \wedge a^{\prime}[k] \neq b[k] \\
& \wedge a^{\prime}[u+1]=b[u+1] \\
& \wedge \bigwedge_{j \in \mathcal{I}}\left(j \leq u \vee u+2 \leq j \rightarrow a[j]=a^{\prime}[j]\right)
\end{aligned}
$$

Expanding the conjunctions according to the index set \mathcal{I} and simplifying according to trivially true or false antecedents (e.g., $\ell \leq u+1 \leq u$ simplifies to \perp, while $u \leq u \vee u+2 \leq u$ simplifies to T) produces:

$$
\begin{align*}
& (\ell \leq k \leq u \rightarrow a[k]=b[k]) \tag{1}\\
& \wedge(\ell \leq u \rightarrow a[\ell]=b[\ell] \wedge a[u]=b[u]) \tag{2}\\
& \wedge \ell \leq k \leq u+1 \tag{3}\\
F_{5}^{\prime}: & \wedge a^{\prime}[k] \neq b[k] \tag{4}\\
& \wedge a^{\prime}[u+1]=b[u+1] \tag{5}\\
& \wedge\left(k \leq u \vee u+2 \leq k \rightarrow a[k]=a^{\prime}[k]\right) \tag{6}\\
& \wedge\left(\ell \leq u \vee u+2 \leq \ell \rightarrow a[\ell]=a^{\prime}[\ell]\right) \tag{7}\\
& \wedge a[u]=a^{\prime}[u] \wedge a[u+2]=a^{\prime}[u+2] \tag{8}
\end{align*}
$$

($T_{\mathrm{A}} \cup T_{\mathbb{Z}}$)-unsatisfiability of this quantifier-free $\left(\Sigma_{\mathrm{A}} \cup \Sigma_{\mathbb{Z}}\right)$-formula can be decided using the techniques of Combination of Theories. Informally, $\ell \leq k \leq u+1$ (3)

- If $k \in[\ell, u]$ then $a[k]=b[k]$ (1). Since $k \leq u$ then $a[k]=a^{\prime}[k]$ (6), contradicting $a^{\prime}[k] \neq b[k]$ (4).
- if $k=u+1, a^{\prime}[k] \neq b[k]=b[u+1]=a^{\prime}[u+1]=a^{\prime}[k]$ by (4) and (5), a contradiction.
Hence, F is $T_{A}^{\mathbb{Z}}$-unsatisfiable.

Correctness of Decision Procedure

Theorem

Consider a $\Sigma_{A}^{\mathbb{Z}} \cup \Sigma$-formula F from the array property fragment of $T_{\mathrm{A}}^{\mathbb{Z}} \cup T$. The output F_{5} of Step 5 of the algorithm is $T_{\mathrm{A}}^{\mathbb{Z}} \cup T$-equisatisfiable to F.

Proof of Theorem

Proof: The proof proceeds using the same strategy as for T_{A}. It is easy to see that steps $1-3$ do not change the satisfiability of formula. For step 4-5 we need to show:
(1) $H[\forall \bar{i} .(F[\bar{i}] \rightarrow G[\bar{i}])]$ is satisfiable iff.
(2) $H\left[\bigwedge_{i \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])\right]$ is satisfiable.
\Rightarrow : Obviously formula (1) implies formula (2).

Proof of Theorem (cont)

If the formula (2) holds in some interpretation $I=\left(D_{I}, \alpha_{l}\right)$, we construcu an interpretation $J=\left(D_{J}, \alpha_{J}\right)$ with $D_{J}:=D_{l}$ and

$$
\begin{aligned}
\operatorname{proj}_{\mathcal{I}}(j) & = \begin{cases}\max \left\{\alpha_{l}[i] \mid i \in \mathcal{I} \wedge \alpha_{l}[i] \leq \alpha_{l}[j]\right\} & \text { if for some } i \in \mathcal{I}: \\
\min \left\{\alpha_{l}[i] \mid i \in \mathcal{I} \wedge \alpha_{l}[i] \geq \alpha_{l}[j]\right\} & \alpha_{l}[i] \leq \alpha_{l}[j]\end{cases} \\
\left.\alpha_{J}[a[j]]\right] & =\alpha_{l}\left[\operatorname{ath}\left[\operatorname{proj} j_{\mathcal{I}}(j)\right]\right] \\
\alpha_{J}[x] & =\alpha_{l}[x] \text { for every non-array variable and constant }
\end{aligned}
$$

J interprets the symbols occuring in formula (2) in the same way as I. Therefore, (2) holds in J.
To prove that formula (1) holds in J, it suffices to show:

$$
J \vDash \bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}]) \text { implies } J \vDash \forall \bar{i} .(F[\bar{i}] \rightarrow G[\bar{i}])
$$

Proof of Theorem (cont)

Assume $J \models \bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])$. Show:

$$
F[\bar{i}] \rightarrow F\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \rightarrow G\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \rightarrow G[\bar{i}]
$$

The first implication $F[\bar{i}] \rightarrow F\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right]$ can be shown by structural induction over F. Base cases:

- expr $r_{1} \leq$ expr r_{2} : see exercise.
- expr $1_{1}=$ expr r_{2} follows from first case since it is equivalent to

$$
\text { expr } r_{1} \leq \text { expr } r_{2} \wedge \text { expr } r_{2} \leq \text { expr } r_{1} .
$$

The induction step is trivial.
The second implication $F\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \rightarrow G\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right]$ holds by assumption. The third implication $G\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \Longrightarrow G[\bar{i}]$ holds because G contains variables i only in array reads $a[i]$. By definition of J : $\alpha_{J}[a[i]]=\alpha_{J}\left[a\left[\operatorname{proj}_{\mathcal{I}}(i)\right]\right]$.

Nelson-Oppen Theory Combination

Combining Decision Procedures: Nelson-Oppen Method

Motivation: How do we show that

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable?

Given

Multiple Theories T_{i} over signatures Σ_{i}
(constants, functions, predicates)
with corresponding decision procedures P_{i} for T_{i}-satisfiability.

Goal

Decide satisfiability of a sentence in theory $\cup_{i} T_{i}$.

Nelson-Oppen Combination Method (N-O Method)

$$
\Sigma_{1} \cap \Sigma_{2}=\{=\}
$$

Σ_{1}-theory T_{1}
P_{1} for T_{1}-satisfiability of quantifier-free Σ_{1}-formulae

P for $\left(T_{1} \cup T_{2}\right)$-satisfiability of quantifier-free $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formulae

We show how to get Procedure P from Procedures P_{1} and P_{2}.

Nelson-Oppen: Limitations

Given formula F in theory $T_{1} \cup T_{2}$.
(1) F must be quantifier-free.
(2) Signatures Σ_{i} of the combined theory only share $=$, i.e.,

$$
\Sigma_{1} \cap \Sigma_{2}=\{=\}
$$

(3) Theories must be stably infinite.

Note:

- Algorithm can be extended to combine arbitrary number of theories T_{i} - combine two, then combine with another, and so on.
- We restrict F to be conjunctive formula - otherwise convert to DNF and check each disjunct.

Stably Infinite Theories

Problem: The T_{1} / T_{2}-interpretations must have the same data domain; it turns out same cardinality, e.g. infinite, is enough.

Definition (stably infinite)
A Σ-theory T is stably infinite iff for every quantifier-free Σ-formula F :
if F is T-satisfiable
then there exists some infinite T-interpretation that satisfies F with infinite cardinality.

Example: Stably Infinite

- $T_{\mathbb{Z}}$: stably infinite (all T-interpretations are infinite).
- $T_{\mathbb{Q}}$: stably infinite (all T-interpretations are infinite).
- T_{E} : stably infinite (one can add infinitely many fresh and distinct values).
- Σ-theory T with $\Sigma:\{a, b,=\}$ and axiom $\forall x . x=a \vee x=b$: not stable infinite, since every T-interpretation has at most two elements.

Example: Σ_{E} and $\Sigma_{\mathbb{Z}}$

Consider quantifier-free conjunctive $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

The signatures of T_{E} and $T_{\mathbb{Z}}$ only share $=$. Also, both theories are stably infinite. Hence, the NO combination of the decision procedures for T_{E} and $T_{\mathbb{Z}}$ decides the $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-satisfiability of F.
F is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable:
The first two literals imply $x=1 \vee x=2$ so that $f(x)=f(1) \vee f(x)=f(2)$. This contradicts last two literals.

N-O Overview

Phase 1: Variable Abstraction

- Given conjunction Γ in theory $T_{1} \cup T_{2}$.
- Convert to conjunction $\Gamma_{1} \cup \Gamma_{2}$ s.t.
- Γ_{i} in theory T_{i}
- $\Gamma_{1} \cup \Gamma_{2}$ satisfiable iff Γ satisfiable.

Phase 2: Check

- If there is some set S of equalities and disequalities between the shared variables of Γ_{1} and Γ_{2} shared $\left(\Gamma_{1}, \Gamma_{2}\right)=$ free $\left(\Gamma_{1}\right) \cap$ free $\left(\Gamma_{2}\right)$ s.t. $S \cup \Gamma_{i}$ are T_{i}-satisfiable for all i, then Γ is satisfiable.
- Otherwise, unsatisfiable.

Nelson-Oppen Method: Overview

Consider quantifier-free conjunctive $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F.
Two versions:

- nondeterministic - simple to present, but high complexity
- deterministic - efficient

Nelson-Oppen ($\mathrm{N}-\mathrm{O}$) method proceeds in two steps:

- Phase 1 (variable abstraction)
- same for both versions
- Phase 2
nondeterministic: guess equalities/disequalities and check deterministic: generate equalities/disequalities by equality propagation

Phase 1: Variable abstraction

Given quantifier-free conjunctive $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F. Transform F into two quantifier-free conjunctive formulae

$$
\Sigma_{1} \text {-formula } F_{1} \quad \text { and } \quad \Sigma_{2} \text {-formula } F_{2}
$$

s.t. F is $\left(T_{1} \cup T_{2}\right)$-satisfiable iff $F_{1} \wedge F_{2}$ is $\left(T_{1} \cup T_{2}\right)$-satisfiable F_{1} and F_{2} are linked via a set of shared variables.

For term t, let $h d(t)$ be the root symbol, e.g. $h d(f(x))=f$.

Generation of F_{1} and F_{2}

For $i, j \in\{1,2\}$ and $i \neq j$, repeat the transformations
(1) if function $f \in \Sigma_{i}$ and $h d(t) \in \Sigma_{j}$,

$$
F\left[f\left(t_{1}, \ldots, t, \ldots, t_{n}\right)\right] \quad \text { eqsat. } \quad F\left[f\left(t_{1}, \ldots, w, \ldots, t_{n}\right)\right] \wedge w=t
$$

(2) if predicate $p \in \Sigma_{i}$ and $\operatorname{hd}(t) \in \Sigma_{j}$,

$$
F\left[p\left(t_{1}, \ldots, t, \ldots, t_{n}\right)\right] \quad \text { eqsat. } \quad F\left[p\left(t_{1}, \ldots, w, \ldots, t_{n}\right)\right] \wedge w=t
$$

(3) if $h d(s) \in \Sigma_{i}$ and $\operatorname{hd}(t) \in \Sigma_{j}$,

$$
F[s=t] \quad \text { eqsat. } \quad F[\top] \wedge w=s \wedge w=t
$$

(1) if $h d(s) \in \Sigma_{i}$ and $\operatorname{hd}(t) \in \Sigma_{j}$,

$$
F[s \neq t] \quad \text { eqsat. } \quad F\left[w_{1} \neq w_{2}\right] \wedge w_{1}=s \wedge w_{2}=t
$$

where w, w_{1}, and w_{2} are fresh variables.

Example: Phase 1

Consider $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

According to transformation 1 , since $f \in \Sigma_{E}$ and $1 \in \Sigma_{\mathbb{Z}}$, replace $f(1)$ by $f\left(w_{1}\right)$ and add $w_{1}=1$. Similarly, replace $f(2)$ by $f\left(w_{2}\right)$ and add $w_{2}=2$. Now, the literals

$$
\Gamma_{\mathbb{Z}}:\left\{1 \leq x, x \leq 2, w_{1}=1, w_{2}=2\right\}
$$

are $T_{\mathbb{Z}}$-literals, while the literals

$$
\Gamma_{E}:\left\{f(x) \neq f\left(w_{1}\right), f(x) \neq f\left(w_{2}\right)\right\}
$$

are T_{E}-literals. Hence, construct the $\Sigma_{\mathbb{Z}}$-formula

$$
F_{1}: 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
$$

and the Σ_{E}-formula

$$
F_{2}: \quad f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right) .
$$

F_{1} and F_{2} share the variables $\left\{x, w_{1}, w_{2}\right\}$. $F_{1} \wedge F_{2}$ is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-equisatisfiable to F.

Example: Phase 1

Consider $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula
$F: f(x)=x+y \wedge x \leq y+z \wedge x+z \leq y \wedge y=1 \wedge f(x) \neq f(2)$.
In the first literal, $\operatorname{hd}(f(x))=f \in \Sigma_{\mathrm{E}}$ and $\operatorname{hd}(x+y)=+\in \Sigma_{\mathbb{Z}}$; thus, by (3), replace the literal with

$$
w_{1}=f(x) \wedge w_{1}=x+y
$$

In the final literal, $f \in \Sigma_{E}$ but $2 \in \Sigma_{\mathbb{Z}}$, so by (1), replace it with

$$
f(x) \neq f\left(w_{2}\right) \wedge w_{2}=2
$$

Now, separating the literals results in two formulae:

$$
F_{1}: w_{1}=x+y \wedge x \leq y+z \wedge x+z \leq y \wedge y=1 \wedge w_{2}=2
$$

is a $\Sigma_{\mathbb{Z}^{-}}$-formula, and

$$
F_{2}: \quad w_{1}=f(x) \wedge f(x) \neq f\left(w_{2}\right)
$$

is a $\Sigma_{E-f o r m u l a . ~}$
The conjunction $F_{1} \wedge F_{2}$ is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-equisatisfiable to F.

Phase 2: Guess and Check (Nondeterministic)

- Phase 1 separated $\left(\Sigma_{1} \cup \Sigma_{2}\right)$-formula F into two formulae:
Σ_{1}-formula F_{1} and Σ_{2}-formula F_{2}
- F_{1} and F_{2} are linked by a set of shared variables:
$V=\operatorname{shared}\left(F_{1}, F_{2}\right)=\operatorname{free}\left(F_{1}\right) \cap \operatorname{free}\left(F_{2}\right)$
- Let E be an equivalence relation over V.
- The arrangement $\alpha(V, E)$ of V induced by E is:

$$
\alpha(V, E): \bigwedge_{u, v \in V . u E v} u=v \wedge \bigwedge_{u, v \in V . \neg(u E v)}
$$

Correctness of Phase 2

Lemma

The original formula F is $\left(T_{1} \cup T_{2}\right)$-satisfiable iff there exists an equivalence relation E of V s.t.
(1) $F_{1} \wedge \alpha(V, E)$ is T_{1}-satisfiable, and
(2) $F_{2} \wedge \alpha(V, E)$ is T_{2}-satisfiable.

Proof:

\Rightarrow If F is $\left(T_{1} \cup T_{2}\right)$-satisfiable, then $F_{1} \wedge F_{2}$ is $\left(T_{1} \cup T_{2}\right)$-satisfiable, hence there is a $T_{1} \cup T_{2}$-Interpretation I with $I \models F_{1} \wedge F_{2}$.

Define $E \subseteq V \times V$ with $u E v$ iff $I \models u=v$.
Then E is a equivalence relation.
By definition of E and $\alpha(V, E), I \models \alpha(V, E)$.
Hence $I \models F_{1} \wedge \alpha(V, E)$ and $I \models F_{2} \wedge \alpha(V, E)$.
Thus, these formulae are T_{1} - and T_{2}-satisfiable, respectively.
\Leftarrow Let I_{1} and I_{2} be T_{1} - and T_{2}-interpretations, respectively, with

$$
I_{1} \models F_{1} \wedge \alpha(V, E) \text { and } I_{2} \models F_{2} \wedge \alpha(V, E)
$$

W.I.o.g. assume that $\alpha_{l_{1}}[=](v, w)$ iff $v=w$ iff $\alpha_{l_{2}}[=](v, w)$. (Otherwise, replace $D_{l_{i}}$ with $D_{l_{i}} / \alpha_{l_{i}}[=]$)
Since T_{1} and T_{2} are stably infinite, we can assume that $D_{l_{1}}$ and $D_{l_{2}}$ are of the same cardinality.
Since $I_{1} \models \alpha(V, E)$ and $I_{2} \models \alpha(V, E)$, for $x, y \in V$:

$$
\alpha_{l_{1}}[x]=\alpha_{l_{1}}[y] \text { iff } \alpha_{l_{2}}[x]=\alpha_{l_{2}}[y] .
$$

Construct bijective function $g: D_{l_{1}} \rightarrow D_{l_{2}}$ with $g\left(\alpha_{l_{1}}[x]\right)=\alpha_{l_{2}}[x]$ for all $x \in V$. Define I as follows: $D_{I}=D_{l_{2}}$,
$\alpha_{l}[x]=\alpha_{l_{2}}[x]\left(=g\left(\alpha_{l_{1}}[x]\right)\right)$ for $x \in V$,
$\alpha_{l}[=](v, w)$ iff $v=w$,
$\alpha_{I}\left[f_{2}\right]=\alpha_{l_{2}}\left[f_{2}\right]$ for $f_{2} \in \Sigma_{2}$,
$\alpha_{l}\left[f_{1}\right]\left(v_{1}, \ldots, v_{n}\right)=g\left(\alpha_{1_{1}}\left[f_{1}\right]\left(g^{-1}\left(v_{1}\right), \ldots, g^{-1}\left(v_{n}\right)\right)\right)$ for $f_{1} \in \Sigma_{1}$.
Then I is a $T_{1} \cup T_{2}$-interpretation, and satisfies $F_{1} \wedge F_{2}$. Hence F is $T_{1} \cup T_{2}$-satisfiable.

Example: Phase 2

Consider $\left(\Sigma_{E} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: 1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)
$$

Phase 1 separates this formula into the $\Sigma_{\mathbb{Z}}$-formula

$$
F_{1}: 1 \leq x \wedge x \leq 2 \wedge w_{1}=1 \wedge w_{2}=2
$$

and the $\Sigma_{E^{-}}$formula

$$
F_{2}: f(x) \neq f\left(w_{1}\right) \wedge f(x) \neq f\left(w_{2}\right)
$$

with

$$
V=\operatorname{shared}\left(F_{1}, F_{2}\right)=\left\{x, w_{1}, w_{2}\right\}
$$

There are 5 equivalence relations to consider, which we list by stating the partitions:

Example: Phase 2 (cont)

(1) $\left\{\left\{x, w_{1}, w_{2}\right\}\right\}$, i.e., $x=w_{1}=w_{2}$:
$x=w_{1}$ and $f(x) \neq f\left(w_{1}\right) \Rightarrow F_{2} \wedge \alpha(V, E)$ is T_{E}-unsatisfiable.
(2) $\left\{\left\{x, w_{1}\right\},\left\{w_{2}\right\}\right\}$, i.e., $x=w_{1}, x \neq w_{2}$: $x=w_{1}$ and $f(x) \neq f\left(w_{1}\right) \Rightarrow F_{2} \wedge \alpha(V, E)$ is T_{E}-unsatisfiable.
(3) $\left\{\left\{x, w_{2}\right\},\left\{w_{1}\right\}\right\}$, i.e., $x=w_{2}, x \neq w_{1}$: $x=w_{2}$ and $f(x) \neq f\left(w_{2}\right) \Rightarrow F_{2} \wedge \alpha(V, E)$ is T_{E}-unsatisfiable.
(9) $\left\{\{x\},\left\{w_{1}, w_{2}\right\}\right\}$, i.e., $x \neq w_{1}, w_{1}=w_{2}$:
$w_{1}=w_{2}$ and $w_{1}=1 \wedge w_{2}=2$
$\Rightarrow F_{1} \wedge \alpha(V, E)$ is $T_{\mathbb{Z}}$-unsatisfiable.
(5) $\left\{\{x\},\left\{w_{1}\right\},\left\{w_{2}\right\}\right\}$, i.e., $x \neq w_{1}, x \neq w_{2}, w_{1} \neq w_{2}$:
$x \neq w_{1} \wedge x \neq w_{2}$ and $x=w_{1}=1 \vee x=w_{2}=2$
(since $1 \leq x \leq 2$ implies that $x=1 \vee x=2$ in $T_{\mathbb{Z}}$)
$\Rightarrow F_{1} \wedge \alpha(V, E)$ is $T_{\mathbb{Z}}$-unsatisfiable.
Hence, F is $\left(T_{E} \cup T_{\mathbb{Z}}\right)$-unsatisfiable.

Example: Phase 2 (cont)

Consider the $\left(\Sigma_{\text {cons }} \cup \Sigma_{\mathbb{Z}}\right)$-formula

$$
F: \operatorname{car}(x)+\operatorname{car}(y)=z \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z)
$$

After two applications of (1), Phase 1 separates F into the $\Sigma_{\text {cons- }}$-formula

$$
F_{1}: w_{1}=\operatorname{car}(x) \wedge w_{2}=\operatorname{car}(y) \wedge \operatorname{cons}(x, z) \neq \operatorname{cons}(y, z)
$$

and the $\Sigma_{\mathbb{Z}}$-formula

$$
F_{2}: w_{1}+w_{2}=z
$$

with

$$
V=\operatorname{shared}\left(F_{1}, F_{2}\right)=\left\{z, w_{1}, w_{2}\right\}
$$

Consider the equivalence relation E given by the partition

$$
\left\{\{z\},\left\{w_{1}\right\},\left\{w_{2}\right\}\right\} .
$$

The arrangement

$$
\alpha(V, E): \quad z \neq w_{1} \wedge z \neq w_{2} \wedge w_{1} \neq w_{2}
$$

satisfies both F_{1} and F_{2} : $F_{1} \wedge \alpha(V, E)$ is $T_{\text {cons }}$-satisfiable, and $F_{2} \wedge \alpha(V, E)$ is $T_{\mathbb{Z}}$-satisfiable. Hence, F is $\left(T_{\text {cons }} \cup T_{\mathbb{Z}}\right)$-satisfiable.

Practical Efficiency

Phase 2 was formulated as "guess and check":
First, guess an equivalence relation E, then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the \# of shared variables. It is given by Bell numbers.
e.g., 12 shared variables \Rightarrow over four million equivalence relations.

Solution: Deterministic Version

Deterministic Version

Phase 1 as before
Phase 2 asks the decision procedures P_{1} and P_{2} to propagate new equalities.
Example 1:

Real linear arithmethic $T_{\mathbb{R}}$

$P_{\mathbb{R}}$
Theory of equality T_{E} P_{E}
$F: \quad f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z$

Phase 1: Variable Abstraction

$$
F: f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge 0 \leq z
$$

$$
f(x) \Rightarrow u \quad f(y) \Rightarrow v \quad u-v \Rightarrow w
$$

$$
\Gamma_{E}: \quad\{f(w) \neq f(z), u=f(x), v=f(y)\} \quad \ldots T_{E} \text {-formula }
$$

$$
\Gamma_{\mathbb{R}}: \quad\{x \leq y, y+z \leq x, 0 \leq z, w=u-v\} \quad \ldots T_{\mathbb{R}} \text {-formula }
$$

$$
\operatorname{shared}\left(\Gamma_{\mathbb{R}}, \Gamma_{E}\right)=\{x, y, z, u, v, w\}
$$

Nondeterministic version - over 200 Es!
Let's try the deterministic version.

Phase 2: Equality Propagation

$P_{\mathbb{R}}$

$$
s_{0}:\left\langle\Gamma_{\mathbb{R}}, \Gamma_{E},\{ \}\right\rangle
$$

$\Gamma_{\mathbb{R}} \models x=y$

$$
\Gamma_{E} \cup\{x=y\} \models u=v
$$

$$
s_{2}:\left\langle\Gamma_{\mathbb{R}}, \Gamma_{E},\{x=y, u=v\}\right\rangle
$$

$\Gamma_{\mathbb{R}} \cup\{u=v\} \vDash z=w$

$$
\begin{aligned}
& s_{3}:\left\langle\Gamma_{\mathbb{R}}, \Gamma_{E},\{x=y, u=v, z=w\}\right\rangle \\
& \Gamma_{E} \cup\{z=w\} \models \text { false }
\end{aligned}
$$

s_{4} : false

Contradiction. Thus, F is $\left(T_{\mathbb{R}} \cup T_{E}\right)$-unsatisfiable.
If there were no contradiction, F would be $\left(T_{\mathbb{R}} \cup T_{E}\right)$-satisfiable.

Convex Theories

Definition (convex theory)

A Σ-theory T is convex iff
for every quantifier-free conjunction Σ-formula F
and for every disjunction $\bigvee\left(u_{i}=v_{i}\right)$
$i=1$

$$
\begin{aligned}
& \text { if } F \models \bigvee_{i=1}^{n}\left(u_{i}=v_{i}\right) \\
& \text { then } F \stackrel{\models}{\models} u_{i}=v_{i}, \text { for some } i \in\{1, \ldots, n\}
\end{aligned}
$$

Claim

Equality propagation is a decision procedure for convex theories.

Convex Theories

- $T_{E}, T_{\mathbb{R}}, T_{\mathbb{Q}}, T_{\text {cons }}$ are convex
- $T_{\mathbb{Z}}, T_{\mathrm{A}}$ are not convex

Example: $T_{\mathbb{Z}}$ is not convex
Consider quantifier-free conjunctive

$$
F: \quad 1 \leq z \wedge z \leq 2 \wedge u=1 \wedge v=2
$$

Then

$$
F \vDash z=u \vee z=v
$$

but

$$
\begin{aligned}
& F \not \vDash z=u \\
& F \not \vDash z=v
\end{aligned}
$$

Example:

The theory of arrays T_{A} is not convex.
Consider the quantifier-free conjunctive Σ_{A}-formula

$$
F: \quad a\langle i \triangleleft v\rangle[j]=v .
$$

Then

$$
F \Rightarrow i=j \vee a[j]=v,
$$

but

$$
\begin{aligned}
& F \nRightarrow i=j \\
& F \nRightarrow a[j]=v .
\end{aligned}
$$

What if T is Not Convex?

Case split when:

$$
\Gamma \models \bigvee_{i=1}^{n}\left(u_{i}=v_{i}\right)
$$

but

$$
\Gamma \not \vDash u_{i}=v_{i} \quad \text { for all } i=1, \ldots, n
$$

- For each $i=1, \ldots, n$, construct a branch on which $u_{i}=v_{i}$ is assumed.
- If all branches are contradictory, then unsatisfiable. Otherwise, satisfiable.

Example 2: Non-Convex Theory

$T_{\mathbb{Z}}$ not convex!
$P_{\mathbb{Z}}$
T_{E} convex

$$
P_{E}
$$

$$
\Gamma:\left\{\begin{array}{ll}
1 \leq x, & x \leq 2 \\
f(x) \neq f(1), & f(x) \neq f(2)
\end{array}\right\} \quad \text { in } T_{\mathbb{Z}} \cup T_{E}
$$

- Replace $f(1)$ by $f\left(w_{1}\right)$, and add $w_{1}=1$.
- Replace $f(2)$ by $f\left(w_{2}\right)$, and add $w_{2}=2$.

Result:

$$
\Gamma_{\mathbb{Z}}=\left\{\begin{array}{l}
1 \leq x, \\
x \leq 2, \\
w_{1}=1, \\
w_{2}=2
\end{array}\right\} \quad \text { and } \quad \Gamma_{E}=\left\{\begin{array}{l}
f(x) \neq f\left(w_{1}\right), \\
f(x) \neq f\left(w_{2}\right)
\end{array}\right\}
$$

$\operatorname{shared}\left(\Gamma_{\mathbb{Z}}, \Gamma_{E}\right)=\left\{x, w_{1}, w_{2}\right\}$

Example 2: Non-Convex Theory

$s_{1}:\left\langle\Gamma_{\mathbb{Z}}, \Gamma_{E},\left\{x=w_{1}\right\}\right\rangle$
$s_{3}:\left\langle\Gamma_{\mathbb{Z}}, \Gamma_{E},\left\{x=w_{2}\right\}\right\rangle$
$\Gamma_{E} \cup\left\{x=w_{1}\right\} \models \perp$
$\Gamma_{E} \cup\left\{x=w_{2}\right\} \models \perp$

All leaves are labeled with $\perp \Rightarrow \Gamma$ is $\left(T_{\mathbb{Z}} \cup T_{E}\right)$-unsatisfiable.

Example 3: Non-Convex Theory

$$
\Gamma:\left\{\begin{array}{c}
1 \leq x, \quad x \leq 3, \\
f(x) \neq f(1), f(x) \neq f(3), f(1) \neq f(2)
\end{array}\right\} \quad \text { in } T_{\mathbb{Z}} \cup T_{E}
$$

- Replace $f(1)$ by $f\left(w_{1}\right)$, and add $w_{1}=1$.
- Replace $f(2)$ by $f\left(w_{2}\right)$, and add $w_{2}=2$.
- Replace $f(3)$ by $f\left(w_{3}\right)$, and add $w_{3}=3$.

Result:

$$
\Gamma_{\mathbb{Z}}=\left\{\begin{array}{l}
1 \leq x, \\
x \leq 3, \\
w_{1}=1, \\
w_{2}=2, \\
w_{2}=3
\end{array}\right\} \quad \text { and } \quad \Gamma_{E}=\left\{\begin{array}{l}
f(x) \neq f\left(w_{1}\right), \\
f(x) \neq f\left(w_{3}\right), \\
f\left(w_{1}\right) \neq f\left(w_{2}\right)
\end{array}\right\}
$$

$$
\operatorname{shared}\left(\Gamma_{\mathbb{Z}}, \Gamma_{E}\right)=\left\{x, w_{1}, w_{2}, w_{3}\right\}
$$

Example 3: Non-Convex Theory

$$
\begin{gathered}
s_{1}:\left\langle\Gamma_{\mathbb{Z}}, \Gamma_{E},\left\{x=w_{1}\right\}\right\rangle s_{3}:\left\langle\Gamma_{\mathbb{Z}}, \Gamma_{E},\left\{x=w_{2}\right\}\right\rangle s_{4}:\left\langle\Gamma_{\mathbb{Z}}, \Gamma_{E},\left\{x=w_{3}\right\}\right\rangle \\
\Gamma_{E} \cup\left\{x=w_{1}\right\} \models \perp \\
\Gamma_{E} \cup\left\{x=w_{3}\right\} \models \perp \\
s_{2}: \perp
\end{gathered}
$$

No more equations on middle leaf $\Rightarrow \Gamma$ is $\left(T_{\mathbb{Z}} \cup T_{E}\right)$-satisfiable.

DPLL(T)

Satisfiability and Conjunctive Theories

Suppose we have a $T_{\mathbb{Q}}$-formulae that is not conjunctive:
$(x \geq 0 \rightarrow y>z) \wedge(x+y \geq z \rightarrow y \leq z) \wedge(y \geq 0 \rightarrow x \geq 0) \wedge x+y \geq z$
Our approach so far: Converting to DNF.
Yields in 8 conjuncts that have to be checked separately.
Is there a more efficient way to prove unsatisfiability?

CNF and Propositional Core

Suppose we have the following $T_{\mathbb{Q}}$-formulae:
$(x \geq 0 \rightarrow y>z) \wedge(x+y \geq z \rightarrow y \leq z) \wedge(y \geq 0 \rightarrow x \geq 0) \wedge x+y \geq z$
Converting to CNF and restricting to \leq :

$$
\begin{aligned}
(\neg(0 \leq x) \vee & \neg(y \leq z)) \wedge(\neg(z \leq x+y) \vee(y \leq z)) \\
& \wedge(\neg(0 \leq y) \vee(0 \leq x)) \wedge(z \leq x+y)
\end{aligned}
$$

Now, introduce boolean variables for each atom:

$$
\begin{array}{ll}
P_{1}: 0 \leq x & P_{2}: y \leq z \\
P_{3}: z \leq x+y & P_{4}: 0 \leq y
\end{array}
$$

Gives a propositional formula:

$$
\left(\neg P_{1} \vee \neg P_{2}\right) \wedge\left(\neg P_{3} \vee P_{2}\right) \wedge\left(\neg P_{4} \vee P_{1}\right) \wedge P_{3}
$$

DPLL-Algorithm

The core feature of the DPLL-algorithm is Unit Propagation.

$$
\left(\neg P_{1} \vee \neg P_{2}\right) \wedge\left(\neg P_{3} \vee P_{2}\right) \wedge\left(\neg P_{4} \vee P_{1}\right) \wedge P_{3}
$$

The clause P_{3} is a unit clause; set P_{3} to T.
Then $\neg P_{3} \vee P_{2}$ is a unit clause; set P_{2} to T.
Then $\neg P_{1} \vee \neg P_{2}$ is a unit clause; set P_{1} to \perp.
Then $\neg P_{4} \vee P_{1}$ is a unit clause; set P_{4} to \perp.
Only solution is $P_{3} \wedge P_{2} \wedge \neg P_{1} \wedge \neg P_{4}$.

DPLL-Algorithm

Only solution is $P_{3} \wedge P_{2} \wedge \neg P_{1} \wedge \neg P_{4}$.

$$
\begin{array}{ll}
P_{1}: 0 \leq x & P_{2}: y \leq z \\
P_{3}: z \leq x+y & P_{4}: 0 \leq y
\end{array}
$$

This gives the conjunctive $T_{\mathbb{Q}^{-}}$-formula

$$
z \leq x+y \wedge y \leq z \wedge x<0 \wedge y<0
$$

DPLL(T) with Learning (CDCL)

We describe DPLL(T) by a set of rules modifying a configuration.
A configuration is a triple

$$
\langle M, F, C\rangle,
$$

where

- M (model) is a sequence of literals (that are currently set to true) interspersed with backtracking points denoted by \square.
- F (formula) is a formula in CNF, i. e., a set of clauses where each clause is a set of literals.
- C (conflict) is either T or a conflict clause (a set of literals). A conflict clause C is a clause with $F \Rightarrow C$ and $M \not \vDash C$. Thus, a conflict clause shows $M \not \vDash F$.

Rule Based Description

We describe the algorithm by a set of rules, which each describe a set of transitions between configurations, e.g.,
Explain $\frac{\langle M, F, C \cup\{\ell\}\rangle}{\left\langle M, F, C \cup\left\{\ell_{1}, \ldots, \ell_{k}\right\}\right\rangle}$
where $\ell \notin C,\left\{\ell_{1}, \ldots, \ell_{k}, \bar{\ell}\right\} \in F$, and $\bar{\ell}_{1}, \ldots, \bar{\ell}_{k} \prec \bar{\ell}$ in M.

Here, $\bar{\ell}_{1}, \ldots, \bar{\ell}_{k} \prec \ell$ in M means the literals $\overline{\ell_{1}}, \ldots, \bar{\ell}_{k}$ occur in the sequence M before the literal ℓ (and all literals appear in M).

Example: for $M=P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F=\left\{\left\{P_{1}\right\},\left\{P_{3}, \bar{P}_{4}\right\}\right\}$, and $C=\left\{P_{2}\right\}$ the transition

$$
\left\langle M, F,\left\{P_{2}, P_{4}\right\}\right\rangle \longrightarrow\left\langle M, F,\left\{P_{2}, P_{3}\right\}\right\rangle
$$

is possible.

Rules for CDCL (Conflict Driven Clause Learning)

Decide $\frac{\langle M, F, T\rangle}{\langle M \cdot \square \cdot \ell, F, T\rangle}$
Propagate $\frac{\langle M, F, T\rangle}{\langle M \cdot \ell, F, T\rangle}$
Conflict $\frac{\langle M, F, T\rangle}{\left\langle M, F,\left\{\ell_{1}, \ldots, \ell_{k}\right\}\right\rangle}$
Explain $\frac{\langle M, F, C \cup\{\ell\}\rangle}{\left\langle M, F, C \cup\left\{\ell_{1}, \ldots, \ell_{k}\right\}\right\rangle}$

Back $\frac{\left\langle M, F,\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\}\right\rangle}{\left\langle M^{\prime} \cdot \ell, F, T\right\rangle}$
where $\left\{\ell_{1}, \ldots, \ell_{k}\right\} \in F$ and $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in M.
where $\ell \notin C,\left\{\ell_{1}, \ldots, \ell_{k}, \bar{\ell}\right\} \in F$, and $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}} \prec \bar{\ell}$ in M.
where $C \neq T, C \notin F$.
where $\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\} \in F$,
where $\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\} \in F$
and $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in $M, \ell, \bar{\ell}$ in M. $M=M^{\prime} \cdot \square \cdots \bar{\ell} \cdots$,
and $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in M^{\prime}.

Example: DPLL with Learning

$$
P_{1} \wedge\left(\neg P_{2} \vee P_{3}\right) \wedge\left(\neg P_{4} \vee P_{3}\right) \wedge\left(P_{2} \vee P_{4}\right) \wedge\left(\neg P_{1} \vee \neg P_{4} \vee \neg P_{3}\right) \wedge\left(P_{4} \vee \neg P_{3}\right)
$$

The algorithm starts with $M=\epsilon, C=\top$ and $F=\left\{\left\{P_{1}\right\},\left\{\bar{P}_{2}, P_{3}\right\},\left\{\bar{P}_{4}, P_{3}\right\},\left\{P_{2}, P_{4}\right\},\left\{\bar{P}_{1}, \bar{P}_{4}, \bar{P}_{3}\right\},\left\{P_{4}, \bar{P}_{3}\right\}\right\}$.
$\langle\epsilon, F, T\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1}, F, T\right\rangle \xrightarrow{\text { Decide }}\left\langle P_{1} \square \bar{P}_{2}, F, T\right\rangle \xrightarrow{\text { Propagate }}$ $\left\langle P_{1} \square \bar{P}_{2} P_{4}, F, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1} \square \bar{P}_{2} P_{4} P_{3}, F, T\right\rangle \xrightarrow{\text { Conflict }}$ $\left\langle P_{1} \square \bar{P}_{2} P_{4} P_{3}, F,\left\{\bar{P}_{1}, \bar{P}_{4}, \bar{P}_{3}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \square \bar{P}_{2} P_{4} P_{3}, F,\left\{\bar{P}_{1}, \bar{P}_{4}\right\}\right\rangle \xrightarrow{\text { Learn }}$ $\left\langle P_{1} \square \bar{P}_{2} P_{4} P_{3}, F^{\prime},\left\{\bar{P}_{1}, \bar{P}_{4}\right\}\right\rangle \xrightarrow{\text { Back }}\left\langle P_{1} \bar{P}_{4}, F^{\prime}, T\right\rangle \xrightarrow{\text { Propagate }}$
$\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime}, T\right\rangle \xrightarrow{\text { Conflict }}\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime},\left\{P_{4}, \overline{P_{3}}\right\}\right\rangle \xrightarrow{\text { Explain }}$
$\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime},\left\{P_{4}, \bar{P}_{2}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime},\left\{P_{4}\right\}\right\rangle \xrightarrow{\text { Explain }}$
$\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime},\left\{\bar{P}_{1}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime}, \emptyset\right\rangle \xrightarrow{\text { Learn }}$
$\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime} \cup\{\emptyset\}, \emptyset\right\rangle$
where $F^{\prime}=F \cup\left\{\left\{\bar{P}_{1}, \bar{P}_{4}\right\}\right\}$.

DPLL(T): DPLL Modulo Theory

The DPLL/CDCL algorithm is combined with a Decision Procedures for a Theory

DPLL engine	Truth Assignment	Theory, e.g., $T_{\mathbb{Q}}$
	Unsatisfiable Core	

DPLL takes the propositional core of a formula, assigns truth-values to atoms.
Theory takes a conjunctive formula (conjunction of literals), returns a minimal unsatisfiable core.

Minimal Unsatisfiable Core

Suppose we have a decision procedure for a conjunctive theory, e.g., Simplex Algorithm for $T_{\mathbb{Q}}$.

Given an unsatisfiable conjunction of literals $\ell_{1} \wedge \cdots \wedge \ell_{n}$. Find a subset UnsatCore $=\left\{\ell_{i_{1}}, \ldots, \ell_{i_{m}}\right\}$, such that

- $\ell_{i_{1}} \wedge \ldots \wedge \ell_{i_{m}}$ is unsatisfiable.
- For each subset of UnsatCore the conjunction is satisfiable.

Possible approach: check for each literal whether it can be omitted.
$\longrightarrow n$ calls to decision procedure.
Most decision procedures can give small unsatisfiable cores for free.

Unsatisfiable Core and Conflict Clause

Theory returns an unsatisfiable core:

- a conjunction of literals from current truth assignment
- that is unsatisfible.

DPLL learns conflict clauses, a disjunction of literals

- that are implied by the formula
- and in conflict to current truth assignment.

Thus the negation of an unsatisfiable core is a conflict clause.

The DPLL part only needs one new rule:
TConflict $\frac{\langle M, F, T\rangle}{\langle M, F, C\rangle} \quad \begin{aligned} & \text { where } M \text { is unsatisfiable in the theory } \\ & \text { and } \neg C \text { an unsatisfiable core of } M \text {. }\end{aligned}$

Example: DPLL(T)

$$
F: y \geq 1 \wedge(x \geq 0 \rightarrow y \leq 0) \wedge(x \leq 1 \rightarrow y \leq 0)
$$

Atomic propositions:

$$
\begin{array}{ll}
P_{1}: y \geq 1 & P_{2}: x \geq 0 \\
P_{3}: y \leq 0 & P_{4}: x \leq 1
\end{array}
$$

Propositional core of F in CNF:

$$
F_{0}:\left(P_{1}\right) \wedge\left(\neg P_{2} \vee P_{3}\right) \wedge\left(\neg P_{4} \vee P_{3}\right)
$$

Running DPLL(T)

$$
\begin{aligned}
& F_{0}:\left\{\left\{P_{1}\right\},\left\{\bar{P}_{2}, P_{3}\right\},\left\{\bar{P}_{4}, P_{3}\right\}\right\} \\
& P_{1}: y \geq 1 \quad P_{2}: x \geq 0 \quad P_{3}: y \leq 0 \quad P_{4}: x \leq 1 \\
& \left\langle\epsilon, F_{0}, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1}, F_{0}, T\right\rangle \xrightarrow{\text { Decide }}\left\langle P_{1} \square P_{3}, F_{0}, T\right\rangle \xrightarrow{\text { TConflict }} \\
& \left\langle P_{1} \square P_{3}, F_{0},\left\{\bar{P}_{1}, \bar{P}_{3}\right\}\right\rangle \xrightarrow{\text { Learn }}\left\langle P_{1} \square P_{3}, F_{1},\left\{\bar{P}_{1}, \bar{P}_{3}\right\}\right\rangle \xrightarrow{\text { Back }} \\
& \left\langle P_{1} \bar{P}_{3}, F_{1}, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1} \bar{P}_{3} \bar{P}_{2}, F_{1}, T\right\rangle \xrightarrow{\text { Propagate }} \\
& \left\langle P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F_{1}, T\right\rangle \xrightarrow{\text { TConflict }}\left\langle P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F_{1},\left\{P_{2}, P_{4}\right\}\right\rangle \xrightarrow{\text { Explain }} \\
& \left\langle P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F_{1},\left\{P_{2}, P_{3}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F_{1},\left\{P_{3}\right\}\right\rangle \xrightarrow{\text { Explain }} \\
& \left\langle P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F_{1},\left\{\bar{P}_{1}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F_{1}, \emptyset\right\rangle \xrightarrow{\text { Learn }} \\
& \left\langle P_{1} \overline{P_{3}} \overline{P_{2}} \bar{P}_{4}, F_{1} \cup\{\emptyset\}, \emptyset\right\rangle \\
& \text { where } F_{1}:=F_{0} \cup\left\{\left\{\bar{P}_{1}, \bar{P}_{3}\right\}\right\}
\end{aligned}
$$

No further step is possible; the formula F is unsatisfiable.

Correctness of DPLL(T)

Theorem (Correctness of DPLL(T))

Let F be a \sum-formula and F^{\prime} its propositional core. Let

$$
\left\langle\epsilon, F^{\prime}, T\right\rangle=\left\langle M_{0}, F_{0}, C_{0}\right\rangle \longrightarrow \ldots \longrightarrow\left\langle M_{n}, F_{n}, C_{n}\right\rangle
$$

be a maximal sequence of rule application of $\operatorname{DPLL}(T)$.
Then F is T-satisfiable iff C_{n} is T.
Before proving the theorem, we note some important invariants:

- M_{i} never contains a literal more than once.
- M_{i} never contains ℓ and $\bar{\ell}$.
- Every \square in M_{i} is followed immediately by a literal.
- If $C_{i}=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$ then $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in M.
- C_{i} is always implied by F_{i} (or the theory).
- F is equivalent to F_{i} for all steps i of the computation.
- If a literal ℓ in M is not immediately preceded by \square, then F contains a clause $\left\{\ell, \ell_{1}, \ldots, \ell_{k}\right\}$ and $\bar{\ell}_{1}, \ldots, \bar{\ell}_{k} \prec \ell$ in M.

Correctness proof

Proof: If the sequence ends with $\left\langle M_{n}, F_{n}, T\right\rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_{n} appear in M_{n} either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_{n} positively.
- Since TConflict is not applicable, the conjunction of truth assignments of M_{n} is satisfiable by a model I.
Thus, I is a model for F_{n}, which is equivalent to F.
If the sequence ends with $\left\langle M_{n}, F_{n}, C_{n}\right\rangle$ with $C_{n} \neq \mathrm{T}$.
Assume $C_{n}=\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\} \neq \emptyset$. W.I.o.g., $\overline{\ell_{1}}, \ldots, \bar{\ell}_{k} \prec \bar{\ell}$. Then:
- Since Learn is not applicable, $C_{n} \in F_{n}$.
- Since Explain is not applicable $\bar{\ell}$ must be immediately preceded by \square.
- However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and $C_{n}=\emptyset(=\perp)$.
Since F implies C_{n}, F is not satisfiable.

Total Correctness of DPLL with Learning

Theorem (Termination of DPLL)
Let F be a propositional formula. Then every sequence

$$
\langle\epsilon, F, \top\rangle=\left\langle M_{0}, F_{0}, C_{0}\right\rangle \longrightarrow\left\langle M_{1}, F_{1}, C_{1}\right\rangle \longrightarrow \ldots
$$

terminates.

Proof of Total Correctness

We define some well-ordering on the domains:

- We define $M \prec M^{\prime}$ if $M \square \square$ comes lexicographically before $M^{\prime} \square \square$, where every literal is considered to be smaller than \square.
Example: $\ell_{1} \ell_{2}(\square \square) \preccurlyeq \ell_{1} \square \bar{\ell}_{2} \ell_{3}(\square \square) \prec \ell_{1} \square \bar{\ell}_{2}(\square \square) \prec \ell_{1}(\square \square)$
- For a sequence $M=\bar{\ell}_{1} \ldots \bar{\ell}_{n}$, the conflict clauses are ordered by:
$C \prec_{M} C^{\prime}$, iff $C \neq \top, C^{\prime}=\top$ or for some $k \leq n$: $C \cap\left\{\ell_{k+1}, \ldots, \ell_{n}\right\}=C^{\prime} \cap\left\{\ell_{k+1}, \ldots \ell_{n}\right\}$ and $\ell_{k} \notin C, \ell_{k} \in C^{\prime}$.
Example: $\emptyset \prec_{\overline{\ell_{1}} \overline{V_{2}} \overline{\ell_{3}}}\left\{\ell_{2}\right\} \prec_{\overline{\ell_{1}} \overline{\bar{L}_{2}} \overline{\bar{U}_{3}}}\left\{\ell_{1}, \ell_{3}\right\} \prec_{\overline{\ell_{1}} \overline{\ell_{2}} \overline{\ell_{3}}}\left\{\ell_{2}, \ell_{3}\right\} \prec_{\overline{\ell_{1} \overline{\ell_{2}} \overline{\ell_{3}}}} \top$ These are well-orderings, because the domains are finite.

Termination Proof: Every rule application decreases the value of $\left\langle M_{i}, F_{i}, C_{i}\right\rangle$ according to the well-ordering:

$$
\langle M, F, C\rangle \prec\left\langle M^{\prime}, F^{\prime}, C^{\prime}\right\rangle \text {, iff }\left\{\begin{array}{l}
M \prec M^{\prime}, \\
\text { or } M=M^{\prime}, C \prec_{M} C^{\prime}, \\
\text { or } M=M^{\prime}, C=C^{\prime}, C \in F, C \notin F^{\prime} .
\end{array}\right.
$$

Program Correctness

Road Map

- So far: decision procedures to decide validity in theories
- In the next lectures: the "practical" part
- Application of decision procedures to program verification

The programming language pi

- pi is an imperative programming language.
- built-in program annotations in first order logic
- annotation F at location L asserts that F is true whenever program control reaches L

Program 1: LinearSearch

```
@pre 0 \leq \ell ^u< |a|
@post rv\leftrightarrow\existsi.\ell\leqi\lequ^a[i]=e
bool LinearSearch(int[] a, int \ell, int u, int e) {
        for
            @L: \ell \leq i^(\forallj.\ell \leq j<i->a[j]\not=e)
            (int i:=\ell;i\lequ;i:=i+1){
            if (a[i] = e) return true;
        }
    return false;
}
```


Proving Partial Correctness

A function f is partially correct if when f 's precondition is satisfied on entry and f terminates, then f 's postcondition is satisfied.

- A function + annotation is reduced to finite set of verification conditions (VCs), FOL formulae
- If all VCs are valid, then the function obeys its specification (partially correct)

Loops

Loop invariants

- Each loop needs an annotation ©L called loop invariant
- while loop: L must hold
- at the beginning of each iteration before the loop condition is evaluated
- for loop: L must hold
- after the loop initialization, and
- before the loop condition is evaluated

Basic Paths: Loops

To handle loops, we break the function into basic paths.
@ \leftarrow precondition or loop invariant
finite sequence of instructions
(with no loop invariants)
@ \leftarrow loop invariant, assertion, or postcondition

Basic Paths: Loops

A basic path:

- begins at the function pre condition or a loop invariant,
- ends at an assertion, e.g., the loop invariant or the function post,
- does not contain the loop invariant inside the sequence,
- conditional branches are replaced by assume statements.

Assume statement c

- Remainder of basic path is executed only if c holds
- Guards with condition c split the path (assume (c) and assume $(\neg c)$)

Example: Basic Paths of LinearSearch

Visualization of basic paths of LinearSearch

Example: Basic Paths of LinearSearch

(1)

$$
\begin{aligned}
& \text { @pre } 0 \leq \ell \wedge u<|a| \\
& i:=\ell ; \\
& @ L: \quad \ell \leq i \wedge \forall j \cdot \ell \leq j<i \rightarrow a[j] \neq e
\end{aligned}
$$

$$
\begin{equation*}
@ L: \quad \ell \leq i \wedge \forall j . \ell \leq j<i \rightarrow a[j] \neq e \tag{2}
\end{equation*}
$$

assume $i \leq u$;
assume $a[i]=e$;
$r v:=$ true;
@post $r v \leftrightarrow \exists j . \ell \leq j \leq u \wedge a[j]=e$

Example: Basic Paths of LinearSearch

(3)

$$
@ L: \ell \leq i \wedge \forall j . \ell \leq j<i \rightarrow a[j] \neq e
$$

assume $i \leq u$;
assume $a[i] \neq e$;
$i:=i+1$;
$@ L: \ell \leq i \wedge \forall j . \ell \leq j<i \rightarrow a[j] \neq e$
(4)
$@ L: \ell \leq i \wedge \forall j . \ell \leq j<i \rightarrow a[j] \neq e$
assume $i>u$;
$r v:=f a l s e ;$
@post $r v \leftrightarrow \exists j . \ell \leq j \leq u \wedge a[j]=e$

Proving Partial Correctness

Goal

- Prove that annotated function f agrees with annotations
- Therefore: Reduce f to finite set of verification conditions VC
- Validity of VC implies that function behaviour agrees with annotations

Weakest precondition $\operatorname{wp}(F, S)$

- Informally: What must hold before executing statement S to ensure that formula F holds afterwards?
- $\operatorname{wp}(F, S)=$ weakest formula such that executing S results in formula that satisfies F
- For all states s such that $s \models \mathrm{wp}(F, S)$: successor state $s^{\prime} \models F$.

Proving Partial Correctness

Computing weakest preconditions

- $\operatorname{wp}(F$, assume $c) \Leftrightarrow c \rightarrow F$
- $\operatorname{wp}(F[v], v:=e) \Leftrightarrow F[e]$ ("substitute v with $e^{\prime \prime}$)
- For $S_{1} ; \ldots ; S_{n}$,
$\mathrm{wp}\left(F, S_{1} ; \ldots ; S_{n}\right) \Leftrightarrow \mathrm{wp}\left(\mathrm{wp}\left(F, S_{n}\right), S_{1} ; \ldots ; S_{n-1}\right)$
Verification Condition of basic path
© F
S_{1};
$S_{n} ;$
© G
is

$$
F \rightarrow \operatorname{wp}\left(G, S_{1} ; \ldots ; S_{n}\right)
$$

Proving Partial Correctness

Proving partial correctness for programs with loops

- Input: Annotated program
- Produce all basic paths $P=\left\{p_{1}, \ldots, p_{n}\right\}$
- For all $p \in P$: generate verification condition $V C(p)$
- Check validity of $\bigwedge_{p \in P} V C(p)$

Theorem
If $\bigwedge_{p \in P} V C(p)$ is valid, then each function agrees with its annotation.

VC of basic path

$$
\begin{aligned}
& @ F: x \geq 0 \\
& S_{1}: x:=x+1 ; \\
& \text { @ G: } x \geq 1
\end{aligned}
$$

The VC is

$$
F \rightarrow \operatorname{wp}\left(G, S_{1}\right)
$$

That is,

$$
\begin{aligned}
& \operatorname{wp}\left(G, S_{1}\right) \\
& \Leftrightarrow \operatorname{wp}(x \geq 1, x:=x+1) \\
& \Leftrightarrow(x \geq 1)\{x \mapsto x+1\} \\
& \Leftrightarrow x+1 \geq 1 \\
& \Leftrightarrow x \geq 0
\end{aligned}
$$

Therefore the VC of path (1)

$$
x \geq 0 \rightarrow x \geq 0
$$

which is $T_{\mathbb{Z}}$-valid.

Program 1: VC of basic path (2) of LinearSearch

$@ L: F: \ell \leq i \wedge \forall j . \ell \leq j<i \rightarrow a[j] \neq e$
S_{1} : assume $i \leq u$;
S_{2} : assume a[i]=e;
$S_{3}: r v:=$ true;

$$
\text { @post } G: r v \leftrightarrow \exists j . \ell \leq j \leq u \wedge a[j]=e
$$

The VC is: $F \rightarrow \operatorname{wp}\left(G, S_{1} ; S_{2} ; S_{3}\right)$
That is,

$$
\begin{aligned}
& \operatorname{wp}\left(G, S_{1} ; S_{2} ; S_{3}\right) \\
& \Leftrightarrow \operatorname{wp}\left(\operatorname{wp}(r v \leftrightarrow \exists j \cdot \ell \leq j \leq u \wedge a[j]=e, r v:=\operatorname{true}), S_{1} ; S_{2}\right) \\
& \Leftrightarrow \operatorname{wp}\left(\operatorname{true} \leftrightarrow \exists j \cdot \ell \leq j \leq u \wedge a[j]=e, S_{1} ; S_{2}\right) \\
& \Leftrightarrow \operatorname{wp}\left(\exists j \cdot \ell \leq j \leq u \wedge a[j]=e, S_{1} ; S_{2}\right) \\
& \Leftrightarrow \operatorname{wp}\left(\operatorname{wp}(\exists j \cdot \ell \leq j \leq u \wedge a[j]=e, \text { assume } a[i]=e), S_{1}\right) \\
& \Leftrightarrow \operatorname{wp}\left(a[i]=e \rightarrow \exists j \cdot \ell \leq j \leq u \wedge a[j]=e, S_{1}\right) \\
& \Leftrightarrow \operatorname{wp}(a[i]=e \rightarrow \exists j \cdot \ell \leq j \leq u \wedge a[j]=e, \text { assume } i \leq u) \\
& \Leftrightarrow i \leq u \rightarrow(a[i]=e \rightarrow \exists j \cdot \ell \leq j \leq u \wedge a[j]=e)
\end{aligned}
$$

Program 1: VC of basic path (2) of LinearSearch

Therefore the VC of path (2)

$$
\begin{align*}
& \ell \leq i \wedge(\forall j \cdot \ell \leq j<i \rightarrow a[j] \neq e) \tag{1}\\
& \rightarrow(i \leq u \rightarrow(a[i]=e \rightarrow \exists j \cdot \ell \leq j \leq u \wedge a[j]=e))
\end{align*}
$$

or, equivalently,

$$
\begin{align*}
& \ell \leq i \wedge(\forall j \cdot \ell \leq j<i \rightarrow a[j] \neq e) \wedge i \leq u \wedge a[i]=e \tag{2}\\
& \rightarrow \exists j . \ell \leq j \leq u \wedge a[j]=e
\end{align*}
$$

according to the equivalence

$$
F_{1} \wedge F_{2} \rightarrow\left(F_{3} \rightarrow\left(F_{4} \rightarrow F_{5}\right)\right) \Leftrightarrow\left(F_{1} \wedge F_{2} \wedge F_{3} \wedge F_{4}\right) \rightarrow F_{5}
$$

This formula (2) is $\left(T_{\mathbb{Z}} \cup T_{\mathrm{A}}\right)$-valid.

Tool Demo: PiVC

- Verifies pi programs
- Available at http://cs.stanford.edu/people/jasonaue/pivc/

Example 2: BinarySearch

The recursive function BinarySearch searches subarray of sorted array a of integers for specified value e.
sorted: weakly increasing order, i.e.

$$
\operatorname{sorted}(a, \ell, u) \Leftrightarrow \forall i, j . \ell \leq i \leq j \leq u \rightarrow a[i] \leq a[j]
$$

Defined in the combined theory of integers and arrays, $T_{\mathbb{Z} \cup A}$

Function specifications

- Function postcondition (@post) It returns true iff a contains the value e in the range $[\ell, u]$
- Function precondition (@pre)

It behaves correctly only if $0 \leq \ell$ and $u<|a|$

Program 2: BinarySearch

```
@pre 0 \leq \ell^u< |a|^ sorted (a,\ell,u)
@post rv\leftrightarrow\existsi.\ell \leqi\lequ^a[i] =e
bool BinarySearch(int[] a, int \ell, int u, int e) {
    if ( }\ell>u)\mathrm{ return false;
    else {
    int m:=(\ell+u) div 2;
    if (a[m]=e) return true;
    else if (a[m]<e) return BinarySearch(a,m+1,u,e);
    else return BinarySearch(a,\ell,m-1,e);
    }
}
```


Example: Binary Search with Function Call Assertions

```
@pre \(0 \leq \ell \wedge u<|a| \wedge \operatorname{sorted}(a, \ell, u)\)
@post \(r v \leftrightarrow \exists i . \ell \leq i \leq u \wedge a[i]=e\)
bool BinarySearch(int[] a, int \(\ell\), int \(u\), int e) \(\{\)
    if \((\ell>u)\) return false;
    else \{
        int \(m:=(\ell+u)\) div 2 ;
        if \((a[m]=e)\) return true;
        else if \((a[m]<e)\{\)
            @pre \(0 \leq m+1 \wedge u<|a| \wedge \operatorname{sorted}(a, m+1, u)\);
            bool tmp := BinarySearch \((a, m+1, u, e)\);
            @post \(t m p \leftrightarrow \exists i . m+1 \leq i \leq u \wedge a[i]=e\); return tmp;
        \} else \{
            @pre \(0 \leq \ell \wedge m-1<|a| \wedge \operatorname{sorted}(a, \ell, m-1)\);
            bool tmp \(:=\operatorname{BinarySearch}(a, \ell, m-1, e)\);
            @post \(t m p \leftrightarrow \exists i . \ell \leq i \leq m-1 \wedge a[i]=e\);
            return tmp;
        \}
    \}
\}
```


Program 3: BubbleSort

```
@pre T
@post sorted (rv, 0, \(|r v|-1)\)
int[] BubbleSort(int[] \(a_{0}\) ) \{
    int[] a \(:=a_{0}\);
    for © T
            (int \(i:=|a|-1 ; i>0 ; i:=i-1)\{\)
            for © \(\top\)
                (int \(j:=0 ; j<i ; j:=j+1)\{\)
                if \((a[j]>a[j+1])\) \{
                    int \(t:=a[j]\);
                \(a[j]:=a[j+1]\);
                \(a[j+1]:=t ;\)
            \}
        \}
    \}
    return \(a ;\)
\}
```


Example 3: BubbleSort

Function BubbleSort sorts integer array a
a: unsorted sorted
by "bubbling" the largest element of the left unsorted region of a toward the sorted region on the right.

Each iteration of the outer loop expands the sorted region by one cell.

Sample execution of BubbleSort


```
@pre T
@post T
int[] BubbleSort(int[] a0) {
    int[] a := a0;
    for @ T
            (int i:= |a| - 1; i>0; i:=i-1) {
        for @ T
            (int j:= 0; j<i; j:=j+1) {
            @ 0 \leqj< |a|^0\leqj+1< |a|;
            if (a[j]>a[j+1]) {
                    int t:=a[j];
                    a[j] := a[j+1];
                        a[j+1]:=t;
                }
            }
        }
    return a;
}
```

BubbleSort with loop invariants

$$
\begin{aligned}
& \text { @pre } T \\
& \text { @post sorted(} r v, 0,|r v|-1) \\
& \text { int[] BubbleSort(int[] } \left.a_{0}\right)\{ \\
& \text { int[] } a:=a_{0} ; \\
& \text { for } \\
& \qquad \begin{array}{l}
\text { @ } L_{1}:\left[\begin{array}{l}
-1 \leq i<|a| \\
\wedge \operatorname{partitioned}(a, 0, i, i+1,|a|-1) \\
\wedge \operatorname{sorted}(a, i,|a|-1)
\end{array}\right] \\
\qquad(\text { int } i:=|a|-1 ; i>0 ; i:=i-1)\{
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \\
& @ L_{2}:\left[\begin{array}{l}
1 \leq i<|a| \wedge 0 \leq j \leq i \\
\wedge \operatorname{partitioned}(a, 0, i, i+1,|a|-1) \\
\wedge \operatorname{partitioned}(a, 0, j-1, j, j) \\
\wedge \operatorname{sorted}(a, i,|a|-1)
\end{array}\right] \\
& \text { (int } j:=0 ; j<i ; j:=j+1 \text {) }\{ \\
& \text { if }(a[j]>a[j+1]) \text { \{ } \\
& \text { int } t:=a[j] \text {; } \\
& a[j]:=a[j+1] ; \\
& a[j+1]:=t ; \\
& \text { \} } \\
& \text { \} } \\
& \text { \} } \\
& \text { return a; } \\
& \text { \} }
\end{aligned}
$$

Partition

$$
\begin{aligned}
& \text { partitioned }\left(a, \ell_{1}, u_{1}, \ell_{2}, u_{2}\right) \\
& \qquad \Leftrightarrow \forall i, j . \ell_{1} \leq i \leq u_{1}<\ell_{2} \leq j \leq u_{2} \rightarrow a[i] \leq a[j]
\end{aligned}
$$

in $T_{\mathbb{Z}} \cup T_{\mathrm{A}}$.
That is, each element of a in the range $\left[\ell_{1}, u_{1}\right]$ is \leq each element in the range $\left[\ell_{2}, u_{2}\right]$.

Basic Paths of BubbleSort

$$
\begin{aligned}
& \text { @pre } \top \text {; } \\
& a:=a_{0} ; \\
& i:=|a|-1 ; \\
& @ L_{1}:-1 \leq i<|a| \wedge \operatorname{partitioned}(a, 0, i, i+1,|a|-1) \\
& \quad \\
& \quad \wedge \operatorname{sorted}(a, i,|a|-1)
\end{aligned}
$$

$$
\begin{aligned}
@ L_{1} & :-1 \leq i<|a| \wedge \operatorname{partitioned}(a, 0, i, i+1,|a|-1) \\
& \wedge \operatorname{sorted}(a, i,|a|-1)
\end{aligned}
$$

$$
\text { assume } i>0 ;
$$

$$
j:=0
$$

$$
@ L_{2}:\left[\begin{array}{l}
1 \leq i<|a| \wedge 0 \leq j \leq i \wedge \operatorname{partitioned}(a, 0, i, i+1,|a|-1) \\
\wedge \operatorname{partitioned}(a, 0, j-1, j, j) \wedge \operatorname{sorted}(a, i,|a|-1)
\end{array}\right]
$$

(3)

$@ L_{2}:\left[\begin{array}{l}1 \leq i<|a| \wedge 0 \leq j \leq i \wedge \operatorname{partitioned}(a, 0, i, i+1,|a|-1) \\ \wedge \operatorname{partitioned}(a, 0, j-1, j, j) \wedge \operatorname{sorted}(a, i,|a|-1)\end{array}\right]$ assume $j<i$;
assume $a[j]>a[j+1]$;
$t:=a[j]$;
$a[j]:=a[j+1] ;$
$a[j+1]:=t ;$
$j:=j+1$;
$@ L_{2}:\left[\begin{array}{l}1 \leq i<|a| \wedge 0 \leq j \leq i \wedge \operatorname{partitioned}(a, 0, i, i+1,|a|-1) \\ \wedge \operatorname{partitioned}(a, 0, j-1, j, j) \wedge \operatorname{sorted}(a, i,|a|-1)\end{array}\right]$

$$
@ L_{2}:\left[\begin{array}{l}
1 \leq i<|a| \wedge 0 \leq j \leq i \wedge \operatorname{partitioned}(a, 0, i, i+1,|a|-1) \\
\wedge \operatorname{partitioned}(a, 0, j-1, j, j) \wedge \operatorname{sorted}(a, i,|a|-1)
\end{array}\right]
$$ assume $j<i$;

assume $a[j] \leq a[j+1]$;
$j:=j+1$;
$@ L_{2}:\left[\begin{array}{l}1 \leq i<|a| \wedge 0 \leq j \leq i \wedge \operatorname{partitioned}(a, 0, i, i+1,|a|-1) \\ \wedge \operatorname{partitioned}(a, 0, j-1, j, j) \wedge \operatorname{sorted}(a, i,|a|-1)\end{array}\right]$
(5)
$@ L_{2}:\left[\begin{array}{l}1 \leq i<|a| \wedge 0 \leq j \leq i \wedge \operatorname{partitioned}(a, 0, i, i+1,|a|-1) \\ \wedge \operatorname{partitioned}(a, 0, j-1, j, j) \wedge \operatorname{sorted}(a, i,|a|-1)\end{array}\right]$
assume $j \geq i$;
$i:=i-1$;
$@ L_{1}:-1 \leq i<|a| \wedge \operatorname{partitioned}(a, 0, i, i+1,|a|-1)$
$\wedge \operatorname{sorted}(a, i,|a|-1)$

$$
\begin{aligned}
& @ L_{1}:-1 \leq i<|a| \wedge \operatorname{partitioned}(a, 0, i, i+1,|a|-1) \wedge \\
& \quad \text { sorted }(a, i,|a|-1) \\
& \text { assume } i \leq 0 ; \\
& r v:=a ; \\
& \text { @post sorted }(r v, 0,|r v|-1) \\
& \hline
\end{aligned}
$$

Visualization of basic paths of BubbleSort

Proving Partial Correctness

A function is partially correct if when the function's precondition is satisfied on entry, its postcondition is satisfied when the function halts.

- A function + annotation is reduced to finite set of verification conditions (VCs), FOL formulae
- If all VCs are valid, then the function obeys its specification (partially correct)

Total Correctness

Given that the input satisfies the function precondition, the function eventually halts and produces output that satisfies the function postcondition.

Total Correctness $=$ Partial Correctness + Termination
In the following, we focus on proving function termination. Therefore, we need the notion of well-founded relations and ranking functions.

Well-founded relation

Definition

For a set S, a binary relation \prec is a well-founded relation iff there is no infinite sequence $s_{1}, s_{2}, s_{3} \ldots$ of elements of S such that
$s_{1} \succ s_{2} \succ s_{3} \succ \cdots$, where $s \prec t$ iff $t \succ s$.
Example
$<$ is well-founded over \mathbb{N}. Decreasing sequences w.r.t. < are always finite.
$123>98>42>11>7>2>0$
$<$ is not well-founded over \mathbb{Q}.
$1>\frac{1}{2}>\frac{1}{3}>\frac{1}{4}>\cdots$.

Proving function termination

- Choose set S with well-founded relation \prec Usually set of n-tuples of natural numbers with the lexicographic ordering.
- Find function δ such that
- δ maps program states to S, and
- δ decreases according to \prec along every basic path.

Such a function δ is called a ranking function.
Since \prec is well-founded, there cannot exist an infinite sequence of program states.

Proving function termination: Example

Example: Ackermann function - recursive calls
Choose ($\mathbb{N}^{2},<2$) as well-founded set

```
@pre \(x \geq 0 \wedge y \geq 0\)
@post \(r v \geq 0\)
\(\#(x, y) \quad \ldots\) ranking function \(\delta:(x, y) \mapsto(x, y)\)
int Ack(int \(x\), int \(y)\{\)
    if \((x=0)\) \{
        return \(y+1\);
    \}
    else if \((y=0)\) \{
        return \(\operatorname{Ack}(x-1,1)\);
        \}
        else \{
            int \(z:=\operatorname{Ack}(x, y-1)\);
            return \(\operatorname{Ack}(x-1, z)\);
    \}
\}
```


Proving function termination: Example

To prove function termination:

- Show $\delta:(x, y)$ maps into \mathbb{N}^{2}, i.e., $x \geq 0$ and $y \geq 0$ are invariants
- Show δ : (x, y) decreases from function entry to each recursive call.

The relevant basic paths are:
(1)
@pre $x \geq 0 \wedge y \geq 0$
\# (x, y)
assume $x \neq 0$;
assume $y=0$;
$\#(x-1,1)$

Proving function termination: Example

(2)

$$
\text { @pre } x \geq 0 \wedge y \geq 0
$$

\# (x, y)
assume $x \neq 0$;
assume $y \neq 0$;
$\#(x, y-1)$
(3)

$$
\text { @pre } x \geq 0 \wedge y \geq 0
$$

\# (x, y)
assume $x \neq 0$;
assume $y \neq 0$;
assume $v_{1} \geq 0$;
$z:=v_{1}$;
$\#(x-1, z)$

Proving function termination: Verification Condition

Showing decrease of ranking function
Basic path with ranking function:

$$
\begin{aligned}
& \text { @ } F \\
& \# \delta[\bar{x}] \\
& S_{1} ; \\
& \vdots \\
& S_{n} ; \\
& \# \kappa[\bar{x}]
\end{aligned}
$$

We must prove that
the value of κ after executing $S_{1} ; \cdots ; S_{n}$
is less than
the value of δ before executing the statements
Thus, we show the verification condition

$$
F \rightarrow \operatorname{wp}\left(\kappa \prec \delta\left[\bar{x}_{0}\right], S_{1} ; \cdots ; S_{n}\right)\left\{\bar{x}_{0} \mapsto \bar{x}\right\}
$$

Proving function termination: Verification Condition

Example: Ackermann function - verification condition for basic path (3)

$$
\begin{aligned}
& \text { Qpre } x \geq 0 \wedge y \geq 0 \\
& \#(x, y) \\
& \text { assume } x \neq 0 ; \\
& \text { assume } y \neq 0 ; \\
& \text { assume } v_{1} \geq 0 ; \\
& z:=v_{1} ; \\
& \#(x-1, z)
\end{aligned}
$$

Verification condition:

$$
\begin{aligned}
& x \geq 0 \wedge y \geq 0 \rightarrow \\
& \mathrm{wp}\left((x-1, z)<2\left(x_{0}, y_{0}\right)\right. \\
& \left.\quad, \text { assume } x \neq 0 ; \text { assume } y \neq 0 ; \text { assume } v_{1} \geq 0 ; z:=v_{1}\right)
\end{aligned}
$$

Proving function termination: Verification Condition

Computing the weakest precondition

$$
\begin{aligned}
& \mathrm{wp}\left((x-1, z)<_{2}\left(x_{0}, y_{0}\right)\right. \\
& \left.\quad, \text { assume } x \neq 0 ; \text { assume } y \neq 0 ; \text { assume } v_{1} \geq 0 ; z:=v_{1}\right) \\
& \Leftrightarrow \mathrm{wp}\left(\left(x-1, v_{1}\right)<_{2}\left(x_{0}, y_{0}\right)\right. \\
& \left.\quad, \text { assume } x \neq 0 ; \text { assume } y \neq 0 ; \text { assume } v_{1} \geq 0\right) \\
& \Leftrightarrow x \neq 0 \wedge y \neq 0 \wedge v_{1} \geq 0 \rightarrow\left(x-1, v_{1}\right)<_{2}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

Renaming x_{0} and y_{0} to x and y, respectively, gives

$$
x \neq 0 \wedge y \neq 0 \wedge v_{1} \geq 0 \rightarrow\left(x-1, v_{1}\right)<_{2}(x, y)
$$

We finally obtain the verification condition
$x \geq 0 \wedge y \geq 0 \wedge x \neq 0 \wedge y \neq 0 \wedge v_{1} \geq 0 \rightarrow\left(x-1, v_{1}\right)<_{2}(x, y)$.

Proving function termination: Verification Condition

Verification conditions for the three basic paths
(1) $x \geq 0 \wedge y \geq 0 \wedge x \neq 0 \wedge y=0 \rightarrow(x-1,1)<_{2}(x, y)$
(2) $x \geq 0 \wedge y \geq 0 \wedge x \neq 0 \wedge y \neq 0 \rightarrow(x, y-1)<_{2}(x, y)$
(3) $x \geq 0 \wedge y \geq 0 \wedge x \neq 0 \wedge y \neq 0 \wedge v_{1} \geq 0 \rightarrow\left(x-1, v_{1}\right)<2(x, y)$

Proving function termination: Example

BubbleSort - program with loops
Choose $\left(\mathbb{N}^{2},<2\right)$ as well-founded set

$$
\begin{aligned}
& \text { @pre } \top \\
& \text { @post } \top \\
& \text { int[] BubbleSort }\left(\operatorname{int}[] a_{0}\right)\{ \\
& \text { int[] } a:=a_{0} ; \\
& \text { for } \\
& \quad \text { @ } L_{1}: i+1 \geq 0 \\
& \quad \#(i+1, i+1) \\
& \quad(\text { int } i:=|a|-1 ; i>0 ; \quad i:=i-1)\{
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { for } \\
\quad \text { © } L_{2}: i+1 \geq 0 \wedge i-j \geq 0 \\
\quad \#(i+1, i-j) \quad \ldots \text { ranking function } \delta_{2} \\
\quad \text { (int } j:=0 ; j<i ; j:=j+1)\{ \\
\quad \text { if }(a[j]>a[j+1])\{ \\
\quad \text { int } t:=a[j] ; \\
a[j]:=a[j+1] ; \\
\quad a[j+1]:=t ; \\
\quad\}
\end{array}\right\}
$$

We have to prove that

- program is partially correct
- function decreases along each basic path.

The relevant basic paths

$$
\begin{align*}
& @ L_{1}: i+1 \geq 0 \tag{1}\\
& \# L_{1}:(i+1, i+1) \\
& \text { assume } i>0 ; \\
& j:=0 ; \\
& \# L_{2}:(i+1, i-j) \\
& \hline
\end{align*}
$$

$$
@ L_{2}: i+1 \geq 0 \wedge i-j \geq 0
$$

$$
\# L_{2}:(i+1, i-j)
$$

assume $j<i$;
$j:=j+1$;

$$
\# L_{2}:(i+1, i-j)
$$

$@ L_{2}: \quad i+1 \geq 0 \wedge i-j \geq 0$
$\# L_{2}:(i+1, i-j)$
assume $j \geq i$;
$i:=i-1$;
$\# L_{1}:(i+1, i+1)$

Verification conditions

Path (1)

$$
i+1 \geq 0 \wedge i>0 \rightarrow(i+1, i-0)<_{2}(i+1, i+1)
$$

Paths (2) and (3)
$i+1 \geq 0 \wedge i-j \geq 0 \wedge j<i \rightarrow(i+1, i-(j+1))<2(i+1, i-j)$,
Path (4)
$i+1 \geq 0 \wedge i-j \geq 0 \wedge j \geq i \rightarrow((i-1)+1,(i-1)+1)<2(i+1, i-j)$,
which are valid. Hence, BubbleSort always halts.

Summary

Specification and verification of sequential programs

- Programming language pi and the PiVC verifier
- Program specification
- Program annotations as assertions
- Including function preconditions, postconditions, loop invariants, ...
- Partial correctness
- @pre + termination \Rightarrow @post
- Notion of weakest preconditions and verification conditions
- Total correctness
- Additionally guarantees function termination
- Notion of well-founded relations and ranking functions

Craig Interpolation

Introduction

Given an unsatisfiable formula of the form:

$$
F \wedge G
$$

Can we find a "smaller" formula that explains the conflict?
I.e., a formula implied by F that is inconsistent with G ?

Under certain conditions, there is an interpolant I with

- $F \Rightarrow I$.
- $I \wedge G$ is unsatisfiable.
- I contains only symbols common to F and G.

Craig Interpolation

A craig interpolant l for an unsatisfiable formula $F \wedge G$ is

- $F \Rightarrow I$.
- $I \wedge G$ is unsatisfiable.
- I contains only symbols common to F and G.

Craig interpolants exists in many theories and fragments:

- First-order logic.
- Quantifier-free FOL.
- Quantifier-free fragment of T_{E}.
- Quantifier-free fragment of $T_{\mathbb{Q}}$.
- Quantifier-free fragment of $\widehat{T_{\mathbb{Z}}}$ (augmented with divisibility). However, QF fragment of $T_{\mathbb{Z}}$ does not allow Craig interpolation.

Program correctness

Consider this path through LinearSearch:

Single Static Assingment (SSA) replaces assignments by assumes:

$$
\begin{aligned}
& \text { @pre } 0 \leq \ell \wedge u<|a| \\
& i:=\ell \\
& \text { assume } i \leq u \\
& \text { assume } a[i] \neq e \\
& i:=i+1 \\
& \text { assume } i \leq u \\
& \text { @ } 0 \leq i \wedge i<|a|
\end{aligned}
$$

@pre $0 \leq \ell \wedge u<|a|$
assume $i_{1}=\ell$
assume $i_{1} \leq u$
assume $a\left[i_{1}\right] \neq e$
assume $i_{2}=i_{1}+1$
assume $i_{2} \leq u$
@ $0 \leq i_{2} \wedge i_{2}<|a|$

Program correctness and Interpolants

If program contains only assumes, the VC looks like

$$
V C: P \rightarrow\left(F_{1} \rightarrow\left(F_{2} \rightarrow\left(F_{3} \rightarrow \ldots\left(F_{n} \rightarrow Q\right) \ldots\right)\right)\right)
$$

Using $\neg(F \rightarrow G) \Leftrightarrow F \wedge \neg G$ compute negation:

$$
\neg V C: P \wedge F_{1} \wedge F_{2} \wedge F_{3} \wedge \cdots \wedge F_{n} \wedge \neg Q
$$

If verification condition is valid $\neg V C$ is unsatisfiable. We can compute interpolants for any program point, e.g. for

$$
P \wedge F_{1} \wedge F_{2} \wedge F_{3} \wedge \cdots \wedge F_{n} \wedge \neg Q
$$

Verification Condition and Interpolants

Consider the path through LinearSearch:

$$
\begin{aligned}
& \text { @pre } 0 \leq \ell \wedge u<|a| \\
& \text { assume } i_{1}=\ell \\
& \text { assume } i_{1} \leq u \\
& \text { assume } a\left[i_{1}\right] \neq e \\
& \text { assume } i_{2}=i_{1}+1 \\
& \text { assume } i_{2} \leq u \\
& \text { @ } 0 \leq i_{2} \wedge i_{2}<|a|
\end{aligned}
$$

The negated VC is unsatisfiable: 缓

$$
\begin{aligned}
& 0 \leq \ell \wedge u<|a| \wedge i_{1}=\ell \\
& \wedge i_{1} \leq u \wedge a\left[i_{1}\right] \neq e \wedge i_{2}=i_{1}+1 \\
& \wedge i_{2} \leq u \wedge\left(0>i_{2} \vee i_{2} \geq|a|\right)
\end{aligned}
$$

The interpolant I for the red and blue part is

$$
i_{1} \geq 0 \wedge u<|a|
$$

This is actually the loop invariant needed to prove the assertion.

Computing Interpolants

Suppose $F_{1} \wedge F_{n} \wedge G_{1} \wedge G_{n}$ How can we compute an interpolant?

- The algorithm is dependent on the theory and the fragment.
- We will show an algorithm for
- Quantifier-free conjunctive fragment of T_{E}.
- Quantifier-free conjunctive fragment of $T_{\mathbb{Q}}$.

Computing Interpolants for T_{E}

$$
F_{1} \wedge \cdots \wedge F_{n} \wedge G_{1} \wedge \cdots \wedge G_{n} \text { is unsat }
$$

Let us first consider the case without function symbols.
The congruence closure algorithm returns unsat. Hence,

- there is a disequality $v \neq w$ and
- v, w have the same representative.

Example:
$v \neq w \wedge x=y \wedge y=z \wedge z=u \wedge w=s \wedge t=z \wedge s=t \wedge v=x$

The Interpolant "summarizes" the red edges: $l: v \neq s \wedge x=t$

Computing Interpolants for T_{E}

Given conjunctive formula:

$$
F_{1} \wedge \cdots \wedge F_{n} \wedge G_{1} \wedge \cdots \wedge G_{m}
$$

The following algorithm can be used unless there is a congruence edge:

- Build the congruence closure graph. Edges F_{i} are colored red, Edges G_{j} are colored blue.
- Add (colored) disequality edge. Find circle and remove all other edges.
- Combine maximal red paths, remove blue paths.
- The F paths start and end at shared symbols. Interpolant is the conjunction of the corresponding equalities.

Handling Congruence Edges (Case 1)

Both side of the congruence edge belong to G.

$$
i_{3}=i_{2} \wedge e \neq f \wedge a\left(i_{1}\right)=e \wedge a\left(i_{4}\right)=f \wedge i_{1}=i_{2} \wedge i_{3}=i_{4}
$$

- Follow the path that connects the arguments.
- Also add summarized edges for that path.
- Treat the congruence edge as blue edge (ignore it).
- Interpolant is conjunction of all summarized paths.
Interpolant:
$i_{2}=i_{3} \wedge e \neq f$

Handling Congruence Edges (Case 2)

Both side of the congruence edge belong to different formulas.

$$
a\left(i_{1}\right)=e \wedge i_{2}=i_{1} \wedge i_{3}=i_{2} \wedge a\left(i_{3}\right) \neq e
$$

- Function symbol a must be shared.
- Follow the path that connects the arguments.
- Find first change from red to blue.
- Lift function application on that term.
- Summarize $e=a\left(i_{1}\right) \wedge i_{1}=i_{2}$ by $e=a\left(i_{2}\right)$.
- Compute remaining interpolant as usual.

Interpolant: $e=a\left(i_{2}\right)$.

Handling Congruence Edges (Case 3)

Both side of the congruence edge belong to F.

$$
a\left(i_{1}\right)=e \wedge a\left(i_{4}\right)=f \wedge i_{1}=i_{2} \wedge i_{3}=i_{4} \wedge i_{3}=i_{2} \wedge e \neq f
$$

Interpolant:
$i_{2}=i_{3} \rightarrow e=f$

- Follow the path that connects the arguments.
- Find the first and last terms i_{2}, i_{3} where color changes.
- Treat congruence edge as red edge and summarize path.
- The summary only holds under $i_{2}=i_{3}$,i.e., add $i_{2}=i_{3} \rightarrow e=f$ to interpolants.
- Summarize remaining path segments as usual.

Computing Interpolants for $T_{\mathbb{Q}}$

First apply Dutertre/de Moura algorithm.

- Non-basic variables x_{1}, \ldots, x_{n}.
- Basic variables y_{1}, \ldots, y_{m}.
- $y_{i}=\sum a_{i j} x_{j}$
- Conjunctive formula

$$
y_{1} \leq b_{1} \ldots y_{m^{\prime}} \leq b_{m^{\prime}} \wedge y_{m^{\prime}+1} \leq b_{m^{\prime}+1} \ldots y_{m} \leq b_{m}
$$

The algorithm returns unsatisfiable if and only if there is a line:

	x	\cdots	x	y	\cdots	y	y	\cdots	y
\vdots									
y_{i} / y_{i}	0	\cdots	0	-10	\cdots	$-/ 0$	$-/ 0$	\cdots	$-/ 0$
\vdots									
$y_{i}=\sum-a_{k}^{\prime} y_{k}$,	$a_{k}^{\prime} \geq 0$ and $\sum-a_{k}^{\prime} b_{k}>$	b_{i}							
(the constraint $y_{i} \leq b_{i}$ is not satisfied)									

Computing Interpolants for $T_{\mathbb{Q}}$

The conflict is:

$$
b_{i} \geq y_{i}=\sum-a_{k}^{\prime} y_{k} \geq \sum-a_{k}^{\prime} b_{k}>b_{i}
$$

or

$$
0=y_{i}+\sum a_{k}^{\prime} y_{k} \leq b_{i}+\sum a_{k}^{\prime} b_{k}<0
$$

We split the y variables into blue and red ones:

$$
0=\sum_{k=1}^{m^{\prime}} a_{i k} y_{k}+\sum_{k=m^{\prime}+1}^{m} a_{i k} y_{k} \leq \sum_{k=1}^{m^{\prime}} a_{i k} b_{k}+\sum_{k=m^{\prime}+1}^{m} a_{i k} b_{k}<0
$$

where $a_{k}^{\prime} \geq 0,\left(a_{i}^{\prime}=1\right)$. The interpolant l is the red part:

$$
\sum_{k=1}^{m^{\prime}} a_{i k} y_{k} \leq \sum_{k=1}^{m^{\prime}} a_{i k} b_{k}
$$

where the basic variables y_{k} are replaced by their definition.

Example

$$
\begin{aligned}
& x_{1}+x_{2} \leq 3 \wedge x_{1}-x_{2} \leq 1 \wedge x_{3}-x_{1} \leq 1 \wedge x_{3} \geq 4 \\
y_{1}:=x_{1}+x_{2} & b_{1}:=3 \\
y_{2}:=x_{1}-x_{2} & b_{1}:=1
\end{aligned} \quad y_{3}:=-x_{1}+x_{3} \quad y_{4}:=-x_{3} \quad b_{3}:=10 \quad b_{4}:=-4.4 .
$$

		1	1	-4	
		y_{2}	y_{3}	y_{4}	β
	y_{1}	-1	-2	-2	5
	x_{1}	0	-1	-1	3
x_{2}	-1	-1	-1	2	
	x_{3}	0	0	-1	4

Conflict is $0=y_{1}+y_{2}+2 y_{3}+2 y_{4} \leq 3+1+2-8=-2$. Interpolant is: $y_{1}+y_{2} \leq 3+1$ or (substituting non-basic vars): $2 x_{1} \leq 4$.

Correctness

$F_{k}: y_{k}:=\sum_{j=0}^{n} a_{k j} x_{j} \leq b_{k},(k=1, \ldots, m) \quad G_{k}: y_{k}:=\sum_{j=0}^{n} a_{k j} x_{j} \leq b_{k},\left(k=m^{\prime}, \ldots, m\right)$
Conflict is $0=\sum_{k=1}^{m^{\prime}} a_{k}^{\prime} y_{k}+\sum_{k=m^{\prime}+1}^{m} a_{k}^{\prime} y_{k} \leq \sum_{k=1}^{m^{\prime}} a_{k}^{\prime} b_{k}+\sum_{k=m^{\prime}+1}^{m} a_{k}^{\prime} b_{k}<0$
After substitution the red part $\sum_{k=1}^{m^{\prime}} a_{k}^{\prime} y_{k} \leq \sum_{k=1}^{m^{\prime}} a_{k}^{\prime} b_{k}$ becomes

$$
\text { I: } \sum_{j=1}^{n}\left(\sum_{k=1}^{m^{\prime}} a_{k}^{\prime} a_{k j}\right) x_{j} \leq \sum_{k=1}^{m^{\prime}} a_{k}^{\prime} b_{k}
$$

- $F \Rightarrow I$ (sum up the inequalities in F with factors a_{k}^{\prime}).
- $I \wedge G \Rightarrow \perp$ (sum up I and G with factors a_{k}^{\prime} to get $\left.0 \leq \sum_{k=1}^{m} a_{k}^{\prime} b_{k}<0\right)$.
- Only shared symbols in I: $0=\sum_{k=1}^{m^{\prime}} a_{k j} a_{k}^{\prime} x_{j}+\sum_{k=m^{\prime}+1}^{m} a_{k j} a_{k}^{\prime} x_{j}$.

If the left sum is not zero, the right sum is not zero and x_{j} appears in F and G.

Computing Interpolants for DPLL(T)

A proof of unsatisfiability is a resolution tree:

where each node is generated by the rule

$$
\frac{\ell \vee C_{1} \quad \bar{\ell} \vee C_{2}}{C_{1} \vee C_{2}}
$$

- The leaves are (trivial) consequences of $F \wedge G$.
- Therefore, every node is a consequence.
- Therefore, the root node \perp is a consequence.

Interpolants for Conflict Clauses

Key Idea: Compute Interpolants for conflict clauses: Split C into C_{F} and C_{G} (if literal appear in F and G put it in C_{G}).

The conflict clause follows from the original formula:

$$
F \wedge G \Rightarrow C_{F} \vee C_{G}
$$

Hence, the following formula is unsatisfiable.

$$
F \wedge \neg C_{F} \wedge G \wedge \neg C_{G}
$$

An interpolant I_{C} for C is the interpolant of the above formula. I_{C} contains only symbols shared between F and G.

McMillan's algorithm

Assign all literals to either F or G.

Compute interpolants for the leaves.
Then, for every resolution step compute interpolant as

$$
\frac{\bar{\ell}_{F} \wedge \overline{C_{1}}: I_{1} \ell_{F} \wedge \overline{C_{2}}: I_{2}}{\overline{C_{1}} \wedge \overline{C_{2}}: I_{1} \vee I_{2}} \quad \frac{\bar{\ell}_{G} \wedge \overline{C_{1}}: I_{1}}{\overline{C_{1}} \wedge \overline{C_{2}}: I_{G} \wedge I_{2}}
$$

Computing Interpolants for Conflict Clauses

There are several points where conflict clauses are returned:

- Conflict clauses is returned by TCHECK. Then theory must give an interpolant.
- Conflict clauses comes from F. Then $F \Rightarrow C_{F} \vee C_{G}$. Hence, $\left(F \wedge \neg C_{F}\right) \Rightarrow C_{G}$. Also, $C_{G} \wedge G \wedge \neg C_{G}$ is unsatisfiable Interpolant is C_{G}.
- Conflict clauses comes from G.

Then $C_{G}=C, G \Rightarrow C_{G}$. Hence, $\left(G \wedge \neg C_{G}\right)$ is unsatisfiable. Interpolant is T.

- Conflict clause comes from resolution on ℓ.

Then there is a unit clause $U=\ell \vee U^{\prime}$ with interpolant I_{U} and conflict clause $C=\neg \ell \vee C^{\prime}$ with interpolant I_{C}.

If $\ell \in F$, set $I_{U^{\prime} \vee C^{\prime}}=I_{U} \vee I_{C}$
If $\ell \in G$, set $I_{U^{\prime} \vee C^{\prime}}=I_{U} \wedge I_{C}$

Computing Interpolants for DPLL(T)

The previous algorithm can compute interpolant for each conflict clause. The final conflict clause returned is \perp. I_{\perp} is an interpolant of $F \wedge G$.

Computing Interpolants for Theory Combinations

Unfortunately, it is not that easy...
... because equalities shared by Nelson-Oppen can contain red and blue symbols simultaneously.

Example:

$$
\begin{aligned}
& F: t \leq 2 a \wedge 2 a \leq s \wedge f(a)=q \\
& G: s \leq 2 b \wedge 2 b \leq t \wedge f(b) \neq q
\end{aligned}
$$

Nelson-Oppen proof

Purifying the example gives:

$$
\begin{aligned}
& \Gamma_{E}: f(a)=q \wedge f(b) \neq q \\
& \Gamma_{\mathbb{Q}}: t \leq 2 a \wedge 2 a \leq s \wedge s \leq 2 b \wedge 2 b \leq t
\end{aligned}
$$

Shared variables $V=\{a, b\}$
Nelson-Oppen proceeds as follows
(1) $\Gamma_{\mathbb{Q}}$ propagates $a=b$.
(2) $\Gamma_{E} \cup a=b$ is unsatisfiable.

Conflicts

$$
\begin{aligned}
& \Gamma_{E}: f(a)=q \wedge f(b) \neq q \\
& \Gamma_{\mathbb{Q}}: t \leq 2 a \wedge 2 a \leq s \wedge s \leq 2 b \wedge 2 b \leq t
\end{aligned}
$$

N-O introduces three literals: $a=b, a \leq b, a \geq b$. Theory conflicts:

$$
\begin{aligned}
& 2 b \leq t \wedge t \leq 2 a \wedge \neg(b \leq a) \\
& 2 a \leq s \wedge s \leq 2 b \wedge \neg(a \leq b) \\
& a \leq b \wedge b \leq a \wedge a \neq b \\
& a=b \wedge f(a)=q \wedge f(b) \neq q
\end{aligned}
$$

How can we compute interpolants for the conflicts?

Interpolant with $a=b$

What is an interpolant of $a=b \wedge f(a)=q \wedge f(b) \neq q$?
Key Idea: Split

$$
a=b
$$

into

$$
a=x_{1} \wedge x_{1}=b \text { where } x_{1} \text { shared }
$$

$$
\begin{aligned}
& a=x_{1} \wedge f(a)=q \wedge \\
& x_{1}=b \wedge f(b) \neq q \\
& \text { Interpolant: } f\left(x_{1}\right)=q
\end{aligned}
$$

Interpolant with $a \neq b$

What is an interpolant of $a \neq b \wedge a=s \wedge b=s$?
Key Idea: Split

$$
a \neq b
$$

into
$e q\left(x_{1}, a\right) \wedge \neg e q\left(x_{1}, b\right)$ where x_{1} shared, eq a predicate

Resolving on $a=b$

Consider the resolution step

$$
\frac{a=b \vee a \neq s \vee b \neq s \quad a \neq b \vee f(a) \neq q \vee f(b)=q}{f(a) \neq q \vee f(b)=q \vee a \neq s \vee b \neq s}
$$

How to combine the interpolants $e q\left(x_{1}, s\right)$ and $f\left(x_{1}\right)=q$?

$$
f(a)=q \wedge a=s \wedge
$$

$$
f(b) \neq q \wedge s=b
$$

Interpolant: $f(s)=q$ $e q\left(x_{1}, s\right)$ indicates that x_{1} should be replaced by s.

Resolution rule for $a=b$

The interpolation rule is

$$
\frac{a=b \vee C_{1}: I_{1}\left[e q\left(x, s_{1}\right)\right] \ldots\left[e q\left(x, s_{n}\right)\right] \quad a \neq b \vee C_{2}: I_{2}(x)}{C_{1} \vee C_{2}: I_{1}\left[I_{2}\left(s_{1}\right)\right] \ldots\left[I_{2}\left(s_{n}\right)\right]}
$$

In our example

$$
\begin{gathered}
\neg(a \neq b \wedge a=s \wedge b=s): e q\left(x_{1}, s\right) \\
\neg(a=b \wedge f(a)=q \wedge f(b) \neq q): q=f\left(x_{1}\right) \\
\neg(f(a)=q \wedge f(b) \neq q \wedge a=s \wedge b=s): q=f(s)
\end{gathered}
$$

Example

$$
a=f(f(a)) \wedge a=x \wedge p(f(a)) \wedge b=\wedge(b)=f(b)
$$

Example: Proof Lemmas

$$
a=f(f(a)) \wedge a=x \wedge p(f(a)) \wedge b=x \wedge f(b)=f(f(b)) \wedge \neg p(b)
$$

Prove using the following lemmas:

$$
\begin{array}{cc}
F_{1}: & a=x \wedge x=b \rightarrow f(a)=_{x_{1}} f(b): e q\left(x_{1}, f(x)\right) \\
F_{2}: & f(a)=_{x_{1}} f(b) \rightarrow f(f(a))=_{x_{2}} f(f(b)): e q\left(x_{2}, f\left(x_{1}\right)\right) \\
F_{3}: & f(a)=x_{x_{1}} f(b)=f(f(b))=x_{x_{2}} \\
& f(f(a))=a=x=b \rightarrow f(a)==_{x_{3}} b: e q\left(x_{3}, x_{1}\right) \wedge x_{2}=x \\
F_{4}: & f(a)==_{x_{3}} b \wedge p(f(a)) \rightarrow p(b): p\left(x_{3}\right)
\end{array}
$$

Example: Annotating Proof with Interpolants

$$
\begin{aligned}
& F_{1} \text { : } \\
& a=x \wedge x=b \rightarrow f(a)==_{x_{1}} f(b): e q\left(x_{1}, f(x)\right) \\
& F_{2} \text { : } \\
& f(a)={x_{x_{1}}}^{f(b) \rightarrow f(f(a))=x_{x_{2}} f(f(b)): e q\left(x_{2}, f\left(x_{1}\right)\right), ~(b), ~} \\
& F_{3}: \quad f(a)=x_{x_{1}} f(b)=f(f(b))=x_{x_{2}} \\
& f(f(a))=a=x=b \rightarrow f(a)=x_{x_{3}} b: e q\left(x_{3}, x_{1}\right) \wedge x_{2}=x \\
& F_{4}: \\
& f(a)={ }_{x_{3}} b \wedge p(f(a)) \rightarrow p(b): p\left(x_{3}\right) \\
& F_{2}: e q\left(x_{2}, f\left(x_{1}\right)\right) \quad F_{3}: e q\left(x_{3}, x_{1}\right) \wedge x_{2}=x \\
& F_{1}: e q\left(x_{1}, f(x)\right) \\
& e q\left(x_{3}, x_{1}\right) \wedge f\left(x_{1}\right)=x \\
& e q\left(x_{3}, f(x)\right) \wedge \underbrace{f(f(x))=x \quad F_{4}: p\left(x_{3}\right)}_{p(f(x)) \wedge f(f(x))=x}
\end{aligned}
$$

Example: Checking Interpolants

$$
a=f(f(a)) \wedge a=x \wedge p(f(a)) \wedge b=x \wedge f(b)=f(f(b)) \wedge \neg p(b)
$$

Interpolant: $p(f(x)) \wedge f(f(x))=x$

- $F \rightarrow I$: Substitute $a=x$ into other atoms.
- $I \wedge G \rightarrow \perp: b=x \wedge f(f(x))=x \wedge \neg p(b)$ implies $\neg p(f(f(x)))$. With $b=x, f(b)=f(f(b))$ this implies $\neg p(f(x))$.
This contradicts $p(f(x))$.
- Symbol condition: p, f, x are shared.

Back to the Nelson-Oppen Example

$$
\begin{aligned}
& \Gamma_{E}: f(a)=q \wedge f(b) \neq q \\
& \Gamma_{\mathbb{Q}}: t \leq 2 a \wedge 2 a \leq s \wedge s \leq 2 b \wedge 2 b \leq t
\end{aligned}
$$

Theory conflicts:

$$
\begin{aligned}
& 2 b \leq t \wedge t \leq 2 a \wedge \neg(b \leq a) \\
& 2 a \leq s \wedge s \leq 2 b \wedge \neg(a \leq b) \\
& a \leq b \wedge b \leq a \wedge a \neq b \\
& a=b \wedge f(a)=q \wedge f(b) \neq q
\end{aligned}
$$

How can we compute interpolants for the conflicts?

Interpolant with $a>b$

What is an interpolant of $2 a \leq s \wedge s \leq 2 b \wedge a>b$
Split

$$
a>b
$$

into

$$
\begin{array}{rlrl}
a & \geq x_{1} \wedge x_{1}>a \text { where } x_{1} \text { shared } \\
& & \\
2 a-s & \leq 0 & \cdot 1 & \\
s-2 b & \leq 0 & \cdot 1 & 2 a-s \leq 0 \\
x_{1}-a & \leq 0 & \cdot 2 & x_{1}-a \leq 0 \\
b-x_{1} & <0 & \cdot 2 \\
\hline 0 & & 00 &
\end{array}
$$

Interpolant: $2 x_{1}-s \leq 0$.
We need the term $2 x_{1}-s$ later; we write interpolant as:

$$
L A\left(2 x_{1}-s, 2 x_{1}-s \leq 0\right)
$$

Interpolant with $a<b$

What is an interpolant of $t \leq 2 a \wedge 2 b \leq t \wedge a<b$
Split

$$
a<b
$$

into

$$
\begin{array}{rlrl}
a & \leq x_{2} \wedge x_{2}<b \text { where } x_{2} \text { shared } & \\
t-2 a & \leq 0 & \cdot 1 & \\
2 b-t \leq 0 & \cdot 1 & t-2 a \leq 0 & \cdot 1 \\
a-x_{2} & \leq 0 & \cdot 2 & a-x_{2} \leq 0 \\
x_{2}-b & <0 & \cdot 2 \\
\hline 0 & <0 & &
\end{array}
$$

Interpolant: $t-2 x_{2} \leq 0$.
We need the term $t-2 x_{2}$ later; we write interpolant as:

$$
L A\left(t-2 x_{2}, t-2 x_{2} \leq 0\right)
$$

Interpolant of Trichotomy

What is an interpolant of $a \leq b \wedge b \leq a \wedge a \neq b$

$$
a \leq x_{1} \wedge x_{2} \leq a \wedge e q\left(x_{3}, a\right) \wedge x_{1} \leq b \wedge b \leq x_{2} \wedge \neg e q\left(x_{3}, b\right)
$$

Manually we find the interpolant

$$
x_{2}-x_{1}<0 \vee\left(x_{2}-x_{1} \leq 0 \wedge e q\left(x_{3}, x_{2}\right)\right)
$$

Here $x_{2}-x_{1}$ is the "critical term"; Interpolant:

$$
\operatorname{LA}\left(x_{2}-x_{1}, x_{2}-x_{1}<0 \vee\left(x_{2}-x_{1} \leq 0 \wedge e q\left(x_{3}, x_{2}\right)\right)\right)
$$

Combining Interpolants

Magic rule:

$$
\frac{a \leq b \vee C_{1}: L A\left(s_{1}+c_{1} x_{1}, F_{1}\left(x_{1}\right)\right) \quad a>b \vee C_{2}: L A\left(s_{2}-c_{2} x_{1}, F_{2}\left(x_{2}\right)\right)}{C_{1} \vee C_{2}: L A\left(c_{2} s_{1}+c_{1} s_{2}, c_{2} s_{1}+c_{1} s_{2}<0 \vee\left(F_{1}\left(s_{2} / c_{2}\right) \wedge F_{2}\left(s_{2} / c_{2}\right)\right)\right)}
$$

Example:

$$
\begin{gathered}
a \leq b \vee 2 a>s \vee s>2 b: L A\left(2 x_{1}-s, 2 x_{1}-s \leq 0\right) \\
a>b \vee a<b \vee a=b: \begin{array}{l}
L A\left(x_{2}-x_{1}, x_{2}-x_{1}<0 \vee\right. \\
\left.\quad\left(x_{2}-x_{1} \leq 0 \wedge e q\left(x_{3}, x_{2}\right)\right)\right)
\end{array} \\
\hline a<b \vee a=b \vee 2 a>s \vee s>2 b: I_{3} \\
I_{3}: \operatorname{LA}\left(2 x_{2}-s, 2 x_{2}-s<0 \vee\left(2 x_{2}-s \leq 0 \wedge e q\left(x_{3}, x_{2}\right)\right)\right)^{،} \\
\text { (simplifying } x_{2}<x_{2} \text { to } \perp \text { and } x_{2} \leq x_{2} \text { to } \top \text {). }
\end{gathered}
$$

Example continued

Magic rule:

$$
\begin{gathered}
\frac{a \leq b \vee C_{1}: \operatorname{LA}\left(s_{1}+c_{1} x_{1}, F_{1}\left(x_{1}\right)\right) \quad a>b \vee C_{2}: \operatorname{LA}\left(s_{2}-c_{2} x_{1}, F_{2}\left(x_{2}\right)\right)}{C_{1} \vee C_{2}: \operatorname{LA}\left(c_{2} s_{1}+c_{1} s_{2}, c_{2} s_{1}+c_{1} s_{2}<0 \vee\left(F_{1}\left(s_{2} / c_{2}\right) \wedge F_{2}\left(s_{2} / c_{2}\right)\right)\right)} \\
a<b \vee a=b \vee 2 a>s \vee s>2 b: \operatorname{LA}\left(2 x_{2}-s, 2 x_{2}-s<0 \vee\right. \\
\left.\left(2 x_{2}-s \leq 0 \wedge e q\left(x_{3}, x_{2}\right)\right)\right) \\
a \geq b \vee t<2 a \vee 2 b<s: \operatorname{LA}\left(t-2 x_{1}, t-2 x_{1} \leq 0\right) \\
a=b \vee 2 a>s \vee s>2 b \\
\vee t>2 a \vee t>2 b: I_{4} \\
I_{4}: \operatorname{LA}\left(t-s, t-s<0 \vee\left(t-s \leq 0 \wedge e q\left(x_{3}, t / 2\right)\right)\right)
\end{gathered}
$$

The critical term $t-s$ does not contain an auxiliary and can be removed.

$$
I_{4}: t-s<0 \vee\left(t-s \leq 0 \wedge e q\left(x_{3}, t / 2\right)\right)
$$

Example continued (with equality)

$$
\begin{aligned}
a=b \vee 2 a>s \vee s>2 b \\
\vee t>2 a \vee t>2 b
\end{aligned}: \begin{aligned}
& t-s<0 \vee \\
& a \neq b \vee f(a) \neq q \vee f(b)=q
\end{aligned} \quad\left\{\begin{array}{l}
q=f\left(x_{3}\right) \\
\hline 2 a>s \vee s>2 b \\
\vee t>2 a \vee t>2 b
\end{array}: \begin{array}{l}
t-s<0 \vee \\
\vee f(a) \neq q \vee f(b)=q
\end{array} \quad(t-s \leq 0 \wedge q=f(t / 2))\right)
$$

The interpolant of

$$
2 a \leq s \wedge t \leq 2 a \wedge f(a)=q \wedge s \leq 2 b \wedge 2 b \leq t \wedge f(b) \neq q
$$

is

$$
t-s<0 \vee(t-s \leq 0 \wedge q=f(t / 2))
$$

Conclusion

Topics

Topics
Propositional Logic
First-Order Logic
First-Order Theories
Quantifier Elimination for $T_{\mathbb{Z}}$ and $T_{\mathbb{Q}}$
Congruence Closure Algorithm $\left(T_{\mathrm{E}}, T_{\text {cons }}, T_{\mathrm{A}}\right)$
Dutertre-de Moura Algorithm $\left(T_{\mathbb{Q}}\right)$
DP for Array Property Fragment
Nelson-Oppen
DPLL(T) with Learning
Program Correctness
Interpolation

Logics

PL Propostional Logic FOL First-Order Logic
 $T_{x} \quad$ Theories

Theories and their DPs

Theory	Full	Array Prop.	Quant. free	Conj. quant. free
T_{E}	x	-	\checkmark (19-20)	\checkmark (13)
$T_{\text {PA }}$	x	-	x	x
$T_{\mathbb{Z}}$	$\checkmark(10)$	-	\checkmark	\checkmark
$T_{\mathbb{Q}}$	$\checkmark(9)$	-	\checkmark (19-20)	$\checkmark(11-12)$
$T_{\mathbb{R}}$	$\checkmark(-)$	-	\checkmark	\checkmark
$T_{\text {A }}$	x	$\checkmark(15-16)$	\checkmark	\checkmark (15)
T_{A}^{Z}	x	$\checkmark(15-16)$	\checkmark	\checkmark
$T_{\text {RDS }}$	x	(15-16)	\checkmark	\checkmark
$T_{\text {cons }}$	x	-	\checkmark	\checkmark (14)
$T_{1} \cup T_{2}$	-	-	$\checkmark(-)$	\checkmark (17-18)

Propositional Logic

- What is an atom, a literal, a formula.
- What is an interpretation?
- What does $/ \models F$ mean, how do we compute it.
- What is satisfiability, validity.
- What is the duality between satisfiable and valid?
- What is the semantic argument?
- Write down the proof rules.
- How can we prove $P \wedge Q \rightarrow P \vee \neg Q$?
- What is \Leftrightarrow (equivalent) and \Rightarrow (implies).
- What Normal Forms do you know (NNF, DNF, CNF)?
- How to convert formulae into normal form.

DPLL for Propositional Logic

- What is a Decision Procedure?
- What is equisatisfiability; why is it useful?
- How to convert to CNF with polynomial time complexity?
- What is a clause?
- What does DPLL stand for?
- What is Boolean Constraint Propagation (BCP) (aka. Unit Propagation).
- What is Pure Literal Propagation (PL).
- Why is the DPLL algorithm correct?
- What is the worst case time complexity of DPLL?

First-Order Logic

- What is a variable, a constant, a function (symbol), a predicate (symbol), a term, an atom, a literal, a formula?
- How do first-order logic and predicate logic relate?
- What is an interpretation in FOL?
- Why is D_{l} non-empty?
- What does α_{l} assign?
- What is an x-variant of an interpretation?
- How do we compute whether $I \models F$?
- What is satisfiability, validity?
- What are the additional rules in the Semantic Argument (version of lecture 4)?
- Soundness and Completeness of semantic argument.
- What is a Hintikka set?
- Normal forms. What is PNF (prenex normal form)?
- Is validity for FOL decidable?

First-Order Theories

- What is a theory?
- What is a signature Σ ?
- What do T-valid and emph T-satisfiable mean?
- What is T-equivalent?
- What is a decision procedure for a theory?
- What is a fragment of a theory?
- What are the most common fragments (quantifier-free, conjunctive)?
- What theories do you know?
- What are their axioms?
- What fragments of these theories are decidable?
- Bonus Question: Is there any closed formulae in $T_{\text {PA }}$ that is satisfiable but not valid? What about $T_{\mathbb{Z}}, T_{\mathbb{Q}}$?

Quantifier Elimination

- What is Quantifier Elimination?
- Does $T_{\mathbb{Z}}$ admit quantifier elimination? What does it mean?
- Why is it enough to eliminate one existential quantifiers over a quantifier-free formula?
- How can we eliminate more than one quantifier?
- What is $\widehat{T_{\mathbb{Z}}}$?
- What is Cooper's method?
- What is Ferrante and Rackoff's method $\left(T_{\mathbb{Q}}\right)$?
- What is the Array Property Fragment?
- What do all quantifier elimination methods of the lecture have in common?
- What is the complexity of quantifier elimination?
- Why is quantifier elimination a decision procedure?

Simplex Based Algorithm

- Which theory does the Algorithm of Dutertre and de Moura decide?
- How does the algorithm work?
- How can we convert an arbitrary formula to the required format for the algorithm?
- What is the tableaux?
- What is a pivot step?
- Does the algorithm terminate?
- What is the complexity?

Congruence Closure Algorithm

- What is the congruence closure algorithm?
- How does it work for T_{E} ?
- What are the data structures; what are the operations?
- What complexity does the algorithm have?
- What are the extensions for $T_{\text {cons }}$?
- What is the complexity?
- How did we prove correctness of the decision procedure?

Decision Procedure for T_{A}

- How does the DP for quantifier-free fragment of T_{A} work?
- What is the complexity?
- What is $T_{\mathrm{A}}^{=}$?

Array Property Fragment

- What is the Array Property Fragment of $T_{\mathrm{A}} / T_{\mathrm{A}}^{=}$?
- Why are there so many restrictions?
- What are the transformation steps?
- How are quantifier eliminated?
- What is λ and why is it necessary?
- Why is the decision procedure correct?
- What is the Array Property Fragment of $T_{\mathrm{A}}^{\mathbb{Z}}$?
- What are differences to T_{A} ?
- Why do we not need λ for $T_{A}^{\mathbb{Z}}$?
- Why is the decision procedure correct?
- How can we check this fragment?

Nelson-Oppen

- What is the Nelson-Oppen procedure?
- For what theories does it work? For which fragment of the theory?
- What is a stably infinite theory?
- Why is it important that theories are stably infinite?
- What are the two phases of Nelson-Oppen?
- What is the difference between the non-deterministic and deterministic variant of Nelson-Oppen?
- What is a convex theory?
- What is the emphcomplexity of the deterministic version for convex/non-convex theories?

$\operatorname{DPLL}(T)$

- How can we extend the DPLL algorithm to decide T-satisfiability.
- What is a minimal unsatisfiable core?
- How can we compute it efficiently?
- What is the relation between min. unsat. core and conflict clause?
- Why is the algorithm correct, why does it terminate?
- How can we extend it two more than one theory?
- What is the relation to Nelson-Oppen?

Program Correctness

- What is a specification?
- What types of specification are in a typical program? (Precondition, postcondition, loop invariants, assertions)
- When is a procedure correct (partial/total correctness)?
- What is a basic path? Why is it useful?
- How do we prove correctness of a basic path?
- What is a verification condition?
- What is the weakest precondition?
- How do we compute weakest precondition?
- What is a P-invariant annotation, what is a P-inductive annotation?
- Why are we interested in P-inductive annotations?
- What is a ranking function? Why do we need it?
- What is a well-founded relation?
- How do we prove total correctness?

Interpolants

- What is an interpolant?
- What is the symbol condition?
- Why is an interpolant useful?
- How can we compute interpolants in T_{E} ?
- How can we compute interpolants in $T_{\mathbb{Q}}$?
- How can we compute interpolants for DPLL proofs?
- What is the difficulty with theory combination?

General hints for exam

- You should learn definitions (formally). This includes the rules (semantic argument, DPLL with learning).
- You should understand them (informally).
- You should know important theorems.
- Knowing the proofs is a plus. Don't loose yourself in the details!
- You should be able to apply the decision procedures. Do the exercises! Invent some new exercises and solve them!
- You should know some examples/counter-examples, e.g., why is λ necessary?
- When you feel well prepared, check if you can answer the questions in this slide set.
- When learning, do not leave out a whole topic completely!
- Learn in a group. Ask question to each other and answer them as if you were in the exam.

Organisation

- There will be only oral exams for this lecture.
- You should have officially registered at the Prüfungsamt.
- The exams will be in March.

