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Organisation



Organisation

Dates

Lecture is Tuesday 14–16 (c.t) and Thursday 14–15 (c.t).

Tutorials will be given on Thursday 15–16.
Starting next week (this week is a two hour lecture).

Exercise sheets are uploaded on Tuesday.
They are due on Tuesday the week after.

To successfully participate, you must

prepare the exercises (at least 50 %)

actively participate in the tutorial

pass an oral examination
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Literature

The Calculus of Computation:
Decision Procedures with

Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007
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Motivation



Motivation

Decision Procedures are algorithms to decide formulae.
These formulae can arise

in Hoare-style software verification,

in hardware verification,

in synthesis,

in scheduling,

in planning,

. . .
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Motivation (2)

Consider the following program:

for

@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
(int i := `; i ≤ u; i := i + 1) {
if ((a[i ] = e)) {

rv := true;
}

}

How can we prove that the formula is a loop invariant?
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Motivation (3)

Prove the Hoare triples (one for if case, one for else case)

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
assume i ≤ u
assume a[i ] = e
rv := true;
i := i + 1
@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
assume i ≤ u
assume a[i ] 6= e
i := i + 1
@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
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Motivation (4)

A Hoare triple {P} S {Q} holds, iff

P → wp(S ,Q)

(wp denotes is weakest precondition)
For assignments wp is computed by substitution:

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
assume i ≤ u
assume a[i ] = e
rv := true;
i := i + 1
@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)

holds if and only if:

` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e) ∧ i ≤ u ∧ a[i ] = e

→` ≤ i + 1 ≤ u ∧ (true ↔ ∃j . ` ≤ j < i + 1 ∧ a[j ] = e)
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Motivation (5)

We need an algorithm that decides whether a formula holds.

` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e) ∧ i ≤ u ∧ a[i ] = e

→` ≤ i + 1 ≤ u ∧ (true ↔ ∃j . ` ≤ j < i + 1 ∧ a[j ] = e)

If the formula does not hold it should give a counterexample, e.g.:

` = 0, i = 1, u = 1, rv = false, a[0] = 0, a[1] = 1, e = 1,

This counterexample shows that i + 1 ≤ u can be violated.

This lecture is about algorithms checking for validity and producing these
counterexamples.
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Propositional Logic

First-Order Logic

First-Order Theories
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Decision Procedures for Uninterpreted Functions

Decision Procedures for Arrays

Combination of Decision Procedures

DPLL(T)

Craig Interpolants
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Foundations: Propositional Logic



Syntax of Propositional Logic

Atom truth symbols >(“true”) and ⊥(“false”)

propositional variables P,Q,R,P1,Q1,R1, · · ·
Literal atom α or its negation ¬α
Formula literal or application of a

logical connective to formulae F ,F1,F2

¬F “not” (negation)
(F1 ∧ F2) “and” (conjunction)
(F1 ∨ F2) “or” (disjunction)
(F1 → F2) “implies” (implication)
(F1 ↔ F2) “if and only if” (iff)
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Example: Syntax

formula F : ((P ∧ Q) → (> ∨ ¬Q))
atoms: P,Q,>
literal: ¬Q
subformulas: (P ∧ Q), (> ∨ ¬Q)

Parentheses can be omitted: F : P ∧ Q → > ∨ ¬Q

¬ binds stronger than

∧ binds stronger than

∨ binds stronger than

→,↔.
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Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value 0/1
where 0 corresponds to value false

1 true

Interpretation I : {P 7→ 1,Q 7→ 0, · · · }

Evaluation of logical operators:

F1 F2 ¬F1 F1 ∧ F2 F1 ∨ F2 F1 → F2 F1 ↔ F2

0 0
1

0 0 1 1
0 1 0 1 1 0

1 0
0

0 1 0 0
1 1 1 1 1 1
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Example: Semantics

F : P ∧ Q → P ∨ ¬Q
I : {P 7→ 1,Q 7→ 0}

P Q ¬Q P ∧ Q P ∨ ¬Q F

1 0 1 0 1 1

1 = true 0 = false

F evaluates to true under I

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 17 / 436



Inductive Definition of PL’s Semantics

I |= F if F evaluates to 1 / true under I
I 6|= F 0 / false

Base Case:
I |= >
I 6|= ⊥
I |= P iff I [P] = 1
I 6|= P iff I [P] = 0

Inductive Case:
I |= ¬F iff I 6|= F
I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= F1 ∨ F2 iff I |= F1 or I |= F2

I |= F1 → F2 iff, if I |= F1 then I |= F2

I |= F1 ↔ F2 iff, I |= F1 and I |= F2,
or I 6|= F1 and I 6|= F2
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Example: Inductive Reasoning

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ 1, Q 7→ 0}

1. I |= P since I [P] = 1
2. I 6|= Q since I [Q] = 0
3. I |= ¬Q by 2, ¬
4. I 6|= P ∧ Q by 2, ∧
5. I |= P ∨ ¬Q by 1, ∨
6. I |= F by 4, → Why?

Thus, F is true under I .
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Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that I |= F .

Definition (Validity)

F is valid iff for all interpretations I , I |= F .

Note

F is valid iff ¬F is unsatisfiable

Proof.

F is valid iff ∀I : I |= F iff ¬∃I : I 6|= F iff ¬F is unsatisfiable.

Decision Procedure: An algorithm for deciding validity or satisfiability.
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Examples: Satisfiability and Validity

Now assume, you are a decision procedure.

Which of the following formulae is satisfiable, which is valid?

F1 : P ∧ Q
satisfiable, not valid

F2 : ¬(P ∧ Q)
satisfiable, not valid

F3 : P ∨ ¬P
satisfiable, valid

F4 : ¬(P ∨ ¬P)
unsatisfiable, not valid

F5 : (P → Q) ∧ (P ∨ Q) ∧ ¬Q
unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?
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Decision Procedure

We will present three Decision Procedures for propositional logic

Truth Tables

Semantic Tableaux

DPLL/CDCL
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Method 1: Truth Tables

F : P ∧ Q → P ∨ ¬Q

P Q P ∧ Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1
0 1 0 0 0 1

1 0 0 1 1 1
1 1 1 0 1 1

Thus F is valid.

F : P ∨ Q → P ∧ Q

P Q P ∨ Q P ∧ Q F
0 0 0 0 1 ← satisfying I
0 1 1 0 0 ← falsifying I
1 0 1 0 0
1 1 1 1 1

Thus F is satisfiable, but invalid.
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Method 2: Semantic Argument (Semantic Tableaux)

Assume F is not valid and I a falsifying interpretation: I 6|= F

Apply proof rules.

If no contradiction reached and no more rules applicable, F is invalid.

If in every branch of proof a contradiction reached, F is valid.
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Semantic Argument: Proof rules

I |= ¬F
I 6|= F

I 6|= ¬F
I |= F

I |= F ∧ G

I |= F
I |= G

←and

I 6|= F ∧ G

I 6|= F | I 6|= G
↖or

I |= F ∨ G

I |= F | I |= G

I 6|= F ∨ G

I 6|= F
I 6|= G

I |= F → G

I 6|= F | I |= G

I 6|= F → G

I |= F
I 6|= G

I |= F ↔ G

I |= F ∧ G | I 6|= F ∨ G

I 6|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧ G

I |= F
I 6|= F

I |= ⊥
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Example

Prove F : P ∧ Q → P ∨ ¬Q is valid.

Let’s assume that F is not valid and that I is a falsifying interpretation.

1. I 6|= P ∧ Q → P ∨ ¬Q assumption
2. I |= P ∧ Q 1, Rule →
3. I 6|= P ∨ ¬Q 1, Rule →
4. I |= P 2, Rule ∧
5. I 6|= P 3, Rule ∨
6. I |= ⊥ 4 and 5 are contradictory

Thus F is valid.
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Example 2

Prove F : (P → Q) ∧ (Q → R) → (P → R) is valid.

Let’s assume that F is not valid.

1. I 6|= F assumption
2. I |= (P → Q) ∧ (Q → R) 1, Rule →
3. I 6|= P → R 1, Rule →
4. I |= P 3, Rule →
5. I 6|= R 3, Rule →
6. I |= P → Q 2, Rule ∧
7. I |= Q → R 2, Rule ∧

8a. I 6|= P
9a. I |= ⊥

∣∣∣∣∣∣
8b. I |= Q 6 →

9ba. I 6|= Q
10ba. I |= ⊥

∣∣∣∣ 9bb. I |= R
10bb. I |= ⊥

Our assumption is incorrect in all cases — F is valid.
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Example 3

Is F : P ∨ Q → P ∧ Q valid?

Let’s assume that F is not valid.

1. I 6|= P ∨ Q → P ∧ Q assumption
2. I |= P ∨ Q 1 and →
3. I 6|= P ∧ Q 1 and →

4a. I |= P 2 and ∨
5aa. I 6|= P
6aa. I |= ⊥

∣∣∣∣ 5ab. I 6|= Q

∣∣∣∣∣∣
4b. I |= Q 2 and ∨

5ba. I 6|= P
∣∣∣∣ 5bb. I 6|= Q

6bb. I |= ⊥

We cannot always derive a contradiction. F is not valid.

Falsifying interpretation:
I1 : {P 7→ true, Q 7→ false} I2 : {Q 7→ true, P 7→ false}
We have to derive a contradiction in all cases for F to be valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 28 / 436



Method 3: DPLL/CDCL

DPLL/CDCL is a efficient decision procedure for propositional logic.
History:

1960s: Davis, Putnam, Logemann, and Loveland presented DPLL.

1990s: Conflict Driven Clause Learning (CDCL).

Today, very efficient solvers using specialized data structures and
improved heuristics.

DPLL/CDCL doesn’t work on arbitrary formulas, but only on a certain
normal form.
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Normal Forms

Idea: Simplify decision procedure, by simplifying the formula first.
Convert it into a simpler normal form, e.g.:

Negation Normal Form: No→ and no↔; negation only before atoms.

Conjunctive Normal Form: Negation normal form, where conjunction
is outside, disjunction is inside.

Disjunctive Normal Form: Negation normal form, where disjunction is
outside, conjunction is inside.

The formula in normal form should be equivalent to the original input.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 30 / 436



Equivalence

F1 and F2 are equivalent (F1 ⇔ F2)

iff for all interpretations I , I |= F1 ↔ F2

To prove F1 ⇔ F2 show F1 ↔ F2 is valid.

F1 implies F2 (F1 ⇒ F2)

iff for all interpretations I , I |= F1 → F2

F1 ⇔ F2 and F1 ⇒ F2 are not formulae!
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Equivalence is a Congruence relation

If F1 ⇔ F ′1 and F2 ⇔ F ′2, then

¬F1 ⇔ ¬F ′1
F1 ∨ F2 ⇔ F ′1 ∨ F ′2
F1 ∧ F2 ⇔ F ′1 ∧ F ′2
F1 → F2 ⇔ F ′1 → F ′2
F1 ↔ F2 ⇔ F ′1 ↔ F ′2

if we replace in a formula F a subformula F1 by F ′1 and obtain F ′,
then F ⇔ F ′.
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Negation Normal Form (NNF)

Negations appear only in literals. (only ¬,∧,∨)

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)
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Example: Negation Normal Form

Convert F : (Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2) into NNF

(Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (¬¬Q2 ∨ R2)
⇔ (Q1 ∨ R1) ∧ (Q2 ∨ R2)

The last formula is equivalent to F and is in NNF.
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Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals∨
i

∧
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in DNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)

F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)

}
dist
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Example

Convert F : (Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2) into DNF

(Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (Q2 ∨ R2) in NNF
⇔ (Q1 ∧ (Q2 ∨ R2)) ∨ (R1 ∧ (Q2 ∨ R2)) dist
⇔ (Q1 ∧ Q2) ∨ (Q1 ∧ R2) ∨ (R1 ∧ Q2) ∨ (R1 ∧ R2) dist

The last formula is equivalent to F and is in DNF. Note that formulas can
grow exponentially.
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Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals∧
i

∨
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in CNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)
F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

A disjunction of literals P1 ∨ P2 ∨ ¬P3 is called a clause.
For brevity we write it as set: {P1,P2,P3}.
A formula in CNF is a set of clauses (a set of sets of literals).
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Equisatisfiability

Definition (Equisatisfiability)

F and F ′ are equisatisfiable, iff

F is satisfiable if and only if F ′ is satisfiable

Every formula is equisatifiable to either > or ⊥.
There is a efficient conversion of F to F ′ where

F ′ is in CNF and

F and F ′ are equisatisfiable

Note: efficient means polynomial in the size of F .
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Conversion to equisatisfiable CNF

Basic Idea:

Introduce a new variable PG for every subformula G ;
unless G is already an atom.

For each subformula G : G1 ◦ G2 produce a small formula
PG ↔ PG1 ◦ PG2 .

encode each of these (small) formulae separately to CNF.

The formula
PF ∧

∧
G

CNF (PG ↔ PG1 ◦ PG2)

is equisatisfiable to F .
The number of subformulae is linear in the size of F .
The time to convert one small formula is constant!
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Example: CNF

Convert F : P ∨ Q → P ∧ ¬R to CNF.
Introduce new variables: PF , PP∨Q , PP∧¬R , P¬R . Create new formulae
and convert them to CNF separately:

PF ↔ (PP∨Q → PP∧¬R) in CNF:

F1 : {{PF ,PP∨Q ,PP∧¬R}, {PF ,PP∨Q}, {PF ,PP∧¬R}}

PP∨Q ↔ P ∨ Q in CNF:

F2 : {{PP∨Q ,P ∨ Q}, {PP∨Q ,P}, {PP∨Q ,Q}}

PP∧¬R ↔ P ∧ P¬R in CNF:

F3 : {{PP∧¬R ∨ P}, {PP∧¬R ,P¬R}, {PP∧¬R ,P,P¬R}}

P¬R ↔ ¬R in CNF: F4 : {{P¬R ,R}, {P¬R ,R}}
{{PF}} ∪ F1 ∪ F2 ∪ F3 ∪ F4 is in CNF and equisatisfiable to F .
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Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Algorithm to decide PL formulae in CNF.

Published by Davis, Logemann, Loveland (1962).

Often miscited as Davis, Putnam (1960), which describes a different
algorithm.
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Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

let rec dpll F =
let F ′ = prop F in

let F ′′ = plp F ′ in

if F ′′ = > then true

else if F ′′ = ⊥ then false

else

let P = choose vars(F ′′) in

(dpll F ′′{P 7→ >}) ∨ (dpll F ′′{P 7→ ⊥})
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Unit Propagagion

Unit Propagation (prop)

If a clause contains one literal `,

Set ` to >.

Remove all clauses containing `.

Remove ¬` in all clauses.

Based on resolution

` ¬` ∨ C ← clause
C
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Pure Literal Propagagion

Pure Literal Propagation (PLP)

If P occurs only positive (without negation), set it to >.
If P occurs only negative set it to ⊥.
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Example

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R)

Branching on Q

F{Q 7→ >} : (R) ∧ (¬R) ∧ (P ∨ ¬R)

By unit resolution
R (¬R)

⊥
F{Q 7→ >} = ⊥ ⇒ false

On the other branch
F{Q 7→ ⊥} : (¬P ∨ R)
F{Q 7→ ⊥, R 7→ >, P 7→ ⊥} = > ⇒ true

F is satisfiable with satisfying interpretation

I : {P 7→ false, Q 7→ false, R 7→ true}
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Example

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R)

F

(R) ∧ (¬R) ∧ (P ∨ ¬R) (¬P ∨ R)

R (¬R)

⊥ ¬P

I : {P 7→ false, Q 7→ false, R 7→ true}

Q 7→ > Q 7→ ⊥

R 7→ >

P 7→ ⊥

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 46 / 436



Knight and Knaves

A island is inhabited only by knights and knaves. Knights always tell the
truth, and knaves always lie. You meet four inhabitants: Alice, Bob,
Charles and Doris.

Alice says that Doris is a knave.

Bob tells you that Alice is a knave.

Charles claims that Alice is a knave.

Doris tells you, ‘Of Charles and Bob, exactly one is a knight.’
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Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

A ↔ ¬D

B ↔ ¬A

C ↔ ¬A

D ↔ ¬(C ↔ B)

In CNF:

{A,D}, {A,D}
{B,A}, {B,A}
{C ,A}, {C ,A}
{D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}
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Solving Knights and Knaves

F : {{A,D}, {A,D}, {B,A}, {B,A}, {C ,A}, {C ,A},
{D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

prop and plp are not applicable. Decide on A:

F{A 7→ ⊥} : {{D}, {B}, {C}, {D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

By prop we get:

F{A 7→ ⊥,D 7→ >,B 7→ >,C 7→ >} : ⊥

Unsatisfiable! Now set A to >:

F{A 7→ >} : {{D}, {B}, {C}, {D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

By prop we get:

F{A 7→ >,D 7→ ⊥,B 7→ ⊥,C 7→ ⊥} : >

Satisfying assignment!
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 49 / 436



Learning is Useful

Consider the following problem:

{{A1,B1}, {P0,A1,P1}, {P0,B1,P1}, {A2,B2}, {P1,A2,P2}, {P1,B2,P2},
. . . , {An,Bn}, {Pn−1,An,Pn}, {Pn−1,Bn,Pn}, {P0}, {Pn}}

For some literal orderings, we need exponentially many steps.
Note, that

{{Ai ,Bi}, {Pi−1,Ai ,Pi}, {Pi−1,Bi ,Pi}} ⇒ {{Pi−1,Pi}}

If we learn the right clauses, unit propagation will immediately give
unsatisfiable.
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Partial Assignments and Unit/Conflict Clauses

Do not change the clause set, but only assign literals (as global variables).
When you assign true to a literal `,also assign false to `.
For a partial assignment

A clause is true if one of its literals is assigned true.

A clause is a conflict clause if all its literals are assigned false.

A clause is a unit clause if all but one literals are assigned false and
the last literal is unassigned.

If the assignment of a literal from a conflict clause is removed we get a
unit clause.
Explain unsatisfiability of partial assignment by conflict clause and learn it!
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Conflict Driven Clause Learning (CDCL)

Idea: Explain unsatisfiability of partial assignment by conflict clause and
learn it!

If a conflict is found we return the conflict clause.

If variable in conflict were derived by unit propagation
use resolution rule to generate a new conflict clause.

If variable in conflict was derived by decision,
use learned conflict as unit clause
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DPLL with CDCL

The functions dpll and prop return a conflict clause or satisfiable.

let rec dpll =
let prop U =

. . .
if conflictclauses 6= ∅

choose conflictclauses
else if unitclauses 6= ∅

prop (choose unitclauses)
else if coreclauses 6= ∅

let ` = choose (
⋃

coreclauses) ∩ unassigned in

val[`] := >
let C = dpll in

if (C = satisfiable) satisfiable
else

val[`] := undef

if (` /∈ C) C
else learn C ; prop C

else satisfiable
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Unit propagation

The function prop takes a unit clause and does unit propagation. It calls
dpll recursively and returns a conflict clause or satisfiable. recursively:

let prop U =
let ` = choose U ∩ unassigned in

val[`] := >
let C = dpll in

if (C = satisfiable)
satisfiable

else

val[`] := undef

if (` /∈ C ) C

else U \ {`} ∪ C \ {`}

The last line does resolution:

` ∨ C1 ¬` ∨ C2

C1 ∨ C2
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Example

{{A1,B1}, {P0,A1,P1}, {P0,B1,P1}, {A2,B2}, {P1,A2,P2}, {P1,B2,P2},
. . . , {An,Bn}, {Pn−1,An,Pn}, {Pn−1,Bn,Pn}, {P0}, {Pn}}

Unit propagation (prop) sets P0 and Pn to true.

Decide, e.g. A1, prop sets P1

Continue until An−1, prop sets Pn−1,An and Bn

Conflict clause computed: {An−1,Pn−2,Pn}.
Conflict clause does not depend on A1, . . . ,An−2 and can be used
again.
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DPLL (without Learning)
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DPLL with CDCL
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Some Notes about DPLL with Learning

Pure Literal Propagation is unnecessary:
A pure literal is always chosen right and never causes a conflict.

Modern SAT-solvers use this procedure but differ in

heuristics to choose literals/clauses.
efficient data structures to find unit clauses.
better conflict resolution to minimize learned clauses.
restarts (without forgetting learned clauses).

Even with the optimal heuristics DPLL is still exponential:
The Pidgeon-Hole problem requires exponential resolution proofs.
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Summary

Syntax and Semantics of Propositional Logic

Methods to decide satisfiability/validity of formulae:

Truth table
Semantic Tableaux
DPLL

Run-time of all presented algorithms is worst-case exponential in
length of formula.

Deciding satisfiability is NP-complete.
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Further route of this lecture

Syntax and Semantics of First Order Logic (FOL)

Semantic Tableaux for FOL

FOL is only semi-decidable

=⇒ Restrictions to decidable fragments of FOL

Quantifier Free Fragment (QFF)
QFF of Equality
Presburger arithmetic
(QFF of) Linear integer arithmetic
Real arithmetic
(QFF of) Linear real/rational arithmetic
QFF of Recursive Data Structures
QFF of Arrays
Putting it all together (Nelson-Oppen).
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First-Order Logic



Syntax of First-Order Logic

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables x , y , z , · · ·
constants a, b, c , · · ·
functions f , g , h, · · · with arity n > 0
terms variables, constants or

n-ary function applied to n terms as arguments
a, x , f (a), g(x , b), f (g(x , f (b)))

predicates p, q, r , · · · with arity n ≥ 0

atom >, ⊥, or an n-ary predicate applied to n terms
literal atom or its negation

p(f (x), g(x , f (x))), ¬p(f (x), g(x , f (x)))

Note: 0-ary functions: constant
0-ary predicates: P,Q,R, . . .
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Syntax of First-Order Logic (2)

quantifiers

existential quantifier ∃x .F [x ]
“there exists an x such that F [x ]”

universal quantifier ∀x .F [x ]
“for all x , F [x ]”

FOL formula literal, application of logical connectives
(¬,∨,∧,→,↔) to formulae,
or application of a quantifier to a formula
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Example

FOL formula

∀x . (p(f (x), x) → (∃y . (p(f (g(x , y)), g(x , y))︸ ︷︷ ︸
G

)) ∧ q(x , f (x))

︸ ︷︷ ︸
F

)

The scope of ∀x is F .
The scope of ∃y is G .
The formula reads:

“for all x,
if p(f (x), x)
then there exists a y such that
p(f (g(x , y)), g(x , y)) and q(x , f (x))”
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Famous theorems in FOL

The length of one side of a triangle is less than the sum of the lengths
of the other two sides

∀x , y , z . triangle(x , y , z) → length(x) < length(y) + length(z)

Fermat’s Last Theorem.

∀n. integer(n) ∧ n > 2
→∀x , y , z .

integer(x) ∧ integer(y) ∧ integer(z)
∧x > 0 ∧ y > 0 ∧ z > 0
→xn + yn 6= zn
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Pumping Lemma

For every regular Language L there is some n ≥ 0, such that for all words
z ∈ L with |z | ≥ n there is a decomposition z = uvw with |v | ≥ 1 and
|uv | ≤ n, such that for all i ≥ 0: uv iw ∈ L.

∀L. regularlanguage(L)→
∃n. integer(n) ∧ n ≥ 0∧
∀z . z ∈ L ∧ |z | ≥ n→
∃u, v ,w . word(u) ∧ word(v) ∧ word(w)∧

z = uvw ∧ |v | ≥ 1 ∧ |uv | ≤ n∧
∀i . integer(i) ∧ i ≥ 0 → uv iw ∈ L

Predicates: regularlanguage, integer , word , · ∈ ·, · ≤ ·, · ≥ ·, · = ·
Constants: 0, 1
Functions: | · | (word length), concatenation, iteration
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FOL Semantics

An interpretation I : (DI , αI ) consists of:

Domain DI

non-empty set of values or objects
for example DI = playing cards (finite),

integers (countable infinite), or
reals (uncountable infinite)

Assignment αI

each variable x assigned value αI [x ] ∈ DI

each n-ary function f assigned

αI [f ] : Dn
I → DI

In particular, each constant a (0-ary function) assigned value
αI [a] ∈ DI

each n-ary predicate p assigned

αI [p] : Dn
I → {>,⊥}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (>, ⊥)
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Example

F : p(f (x , y), z) → p(y , g(z , x))

Interpretation I : (DI , αI )
DI = Z = {· · · ,−2,−1, 0, 1, 2, · · · } integers
αI [f ] : D2

I → DI

(x , y) 7→ x + y
αI [g ] : D2

I → DI

(x , y) 7→ x − y

αI [p] : D2
I → {>,⊥}

(x , y) 7→

{
> if x < y

⊥ otherwise

Also αI [x ] = 13, αI [y ] = 42, αI [z ] = 1
Compute the truth value of F under I

1. I 6|= p(f (x , y), z) since 13 + 42 ≥ 1
2. I 6|= p(y , g(z , x)) since 42 ≥ 1 − 13
3. I |= F by 1, 2, and →

F is true under I
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Semantics: Quantifiers

For a variable x :

Definition (x-variant)

An x-variant of interpretation I is an interpretation J : (DJ , αJ) such that

DI = DJ

αI [y ] = αJ [y ] for all symbols y , except possibly x

That is, I and J agree on everything except possibly the value of x

Denote J : I / {x 7→ v} the x-variant of I in which αJ [x ] = v for some
v ∈ DI . Then

I |= ∀x . F iff for all v ∈ DI , I / {x 7→ v} |= F

I |= ∃x . F iff there exists v ∈ DI s.t. I / {x 7→ v} |= F
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Example

Consider
F : ∀x . ∃y . 2 · y = x

Here 2 · y is the infix notatation of the term ·(2, y),
and 2 · y = x is the infix notatation of the atom = (·(2, y), x).

2 is a 0-ary function symbol (a constant).

· is a 2-ary function symbol.

= is a 2-ary predicate symbol.

x , y are variables.

What is the truth-value of F ?
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Example (Z)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpration for integers, DI = Z.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff
for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI , there exists v1 ∈ DI , I /{x 7→ v}/{y 7→ v1} |= 2 ·y = x

The latter is false since for 1 ∈ DI there is no number v1 with 2 · v1 = 1.
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Example (Q)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpration for rational numbers, DI = Q.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff
for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI , there exists v1 ∈ DI , I /{x 7→ v}/{y 7→ v1} |= 2 ·y = x

The latter is true since for v ∈ DI we can choose v1 = v
2 .
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Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that I |= F .

Definition (Validity)

F is valid iff for all interpretations I , I |= F .

Note

F is valid iff ¬F is unsatisfiable
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Substitution

Suppose, we want to replace terms with other terms in formulas, e.g.

F : ∀y . (p(x , y) → p(y , x))

should be transformed to

G : ∀y . (p(a, y) → p(y , a))

We call the mapping from x to a a substituion denoted as σ : {x 7→ a}.
We write Fσ for the formula G .
Another convenient notation is F [x ] for a formula containing the variable
x and F [a] for Fσ.
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Substitution

Definition (Substitution)

A substitution is a mapping from terms to terms, e.g.

σ : {t1 7→ s1, . . . , tn 7→ sn}

By Fσ we denote the application of σ to formula F , i.e., the formula F
where all occurences of t1, . . . , tn are replaced by s1, . . . , sn.

For a formula named F [x ] we write F [t] as shorthand for F [x ]{x 7→ t}.
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Safe Substitution

Care has to be taken in the presence of quantifiers:

F [x ] : ∃y . y = Succ(x)

What is F [y ]?
We need to rename bounded variables occuring in the substitution:

F [y ] : ∃y ′. y ′ = Succ(y)

Bounded renaming does not change the models of a formula:

(∃y . y = Succ(x)) ⇔ (∃y ′. y ′ = Succ(x))
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Recursive Definition of Substitution

tσ =


σ(t) t ∈ dom(σ)

f (t1σ, . . . , tnσ) t /∈ dom(σ) ∧ t = f (t1, . . . , tn)

x t /∈ dom(σ) ∧ t = x

p(t1, . . . , tn)σ = p(t1σ, . . . , tnσ)

(¬F )σ = ¬(Fσ)

(F ∧ G )σ = (Fσ) ∧ (Gσ)

. . .

(∀x . F )σ =

{
∀x . Fσ x /∈ Vars(σ)

∀x ′. ((F{x 7→ x ′})σ) otherwise and x ′ is fresh

(∃x . F )σ =

{
∃x . Fσ x /∈ Vars(σ)

∃x ′. ((F{x 7→ x ′})σ) otherwise and x ′ is fresh
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Example: Safe Substitution Fσ

F : (∀x . p(x , y)) → q(f (y),x)
bound by ∀x ↗ ↖ free ↗ ↖ free

σ : {x 7→ g(x), y 7→ f (x), f (y) 7→ h(x , y)}

Fσ?

1 Rename
F ′ : ∀x ′. p(x ′, y) → q(f (y), x)

↑ ↑

where x ′ is a fresh variable

2 Fσ : ∀x ′. p(x ′, f (x)) → q(h(x , y), g(x))
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Semantic Tableaux

Recall rules from propositional logic:

I |= ¬F
I 6|= F

I 6|= ¬F
I |= F

I |= F ∧ G

I |= F
I |= G

←and

I 6|= F ∧ G

I 6|= F | I 6|= G
↖or

I |= F ∨ G

I |= F | I |= G

I 6|= F ∨ G

I 6|= F
I 6|= G

I |= F → G

I 6|= F | I |= G

I 6|= F → G

I |= F
I 6|= G

I |= F ↔ G

I |= F ∧ G | I 6|= F ∨ G

I 6|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧ G

I |= F
I 6|= F

I |= ⊥
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Semantic Tableaux for FOL

The following additional rules are used for quantifiers:

I |= ∀x .F [x ]

I |= F [t]

for any term t I 6|= ∀x .F [x ]

I 6|= F [a]

for a fresh constant a

I |= ∃x .F [x ]

I |= F [a]

for a fresh constant a I 6|= ∃x .F [x ]

I 6|= F [t]

for any term t

(We assume that there are infinitely many constant symbols.)

The formula F [t] is created from the formula F [x ] by the substitution
{x 7→ t} (roughly, replace every x by t).
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Example

Show that (∃x . ∀y . p(x , y)) → (∀x . ∃y . p(y , x)) is valid.

Assume otherwise.

1. I 6|= (∃x . ∀y . p(x , y)) → (∀x . ∃y . p(y , x)) assumption
2. I |= ∃x . ∀y . p(x , y) 1 and →
3. I 6|= ∀x . ∃y . p(y , x) 1 and →
4. I |= ∀y . p(a, y) 2, ∃ (x 7→ a fresh)
5. I 6|= ∃y . p(y , b) 3, ∀ (x 7→ b fresh)
6. I |= p(a, b) 4, ∀ (y 7→ b)
7. I 6|= p(a, b) 5, ∃ (y 7→ a)
8. I |= ⊥ 6,7 contradictory

Thus, the formula is valid.
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Example

Is F : (∀x . p(x , x)) → (∃x . ∀y . p(x , y)) valid?.

Assume I is a falsifying interpretation for F and apply semantic argument:

1. I 6|= (∀x . p(x , x)) → (∃x . ∀y . p(x , y))
2. I |= ∀x . p(x , x) 1 and →
3. I 6|= ∃x . ∀y . p(x , y) 1 and →
4. I |= p(a1, a1) 2, ∀
5. I 6|= ∀y .p(a1, y) 3, ∃
6. I 6|= p(a1, a2) 5, ∀
7. I |= p(a2, a2) 2, ∀
8. I 6|= ∀y .p(a2, y) 3, ∃
9. I 6|= p(a2, a3) 8, ∀
...

No contradiction. Falsifying interpretation I can be “read” from proof:

DI = N, pI (x , y) =


true y = x ,

false y = x + 1,

arbitrary otherwise.
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Semantic Argument Proof

To show FOL formula F is valid, assume I 6|= F and derive a contradiction
I |= ⊥ in all branches

Soundness
If every branch of a semantic argument proof reach I |= ⊥, then F is
valid

Completeness
Each valid formula F has a semantic argument proof in which every
branch reaches I |= ⊥
Non-termination
For an invalid formula F the method is not guaranteed to terminate.
Thus, the semantic argument is not a decision procedure for validity.
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Soundness (proof sketch)

If for interpretation I the assumption of the proof holds
then there is an interpretation I ′ and a branch
such that all statements on that branch hold.

I ′ differs from I in the values αI [ai ] of fresh constants ai .

If all branches of the proof end with I |= ⊥, then the assumption was
wrong. Thus, if the assumption was I 6|= F , then F must be valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 84 / 436



Completeness (proof sketch)

Consider (finite or infinite) proof trees starting with I 6|= F . We assume
that

all possible proof rules were applied in all non-closed branches.

the ∀ and ∃ rules were applied for all terms.
This is possible since the terms are countable.

If every branch is closed, the tree is finite (Kőnig’s Lemma) and we have a
finite proof for F .
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Completeness (proof sketch, continued)

Otherwise, the proof tree has at least one open branch P. We show that F
is not valid.

1 The statements on that branch P form a Hintikka set:
I |= F ∧ G ∈ P implies I |= F ∈ P and I |= G ∈ P.
I 6|= F ∧ G ∈ P implies I 6|= F ∈ P or I 6|= G ∈ P.
I |= ∀x . F [x ] ∈ P implies for all terms t, I |= F [t] ∈ P.
I 6|= ∀x . F [x ] ∈ P implies for some term a, I 6|= F [a] ∈ P.
Similarly for ∨,→,↔,∃.

2 Choose DI := {t | t is term}, αI [f ](t1, . . . , tn) = f (t1, . . . tn),
αI [x ] = x (every term is interpreted as itself)

αI [p](t1, . . . , tn) =

{
true I |= p(t1, . . . , tn) ∈ P

false otherwise

3 I satisfies all statements on the branch.
In particular, I is a falsifying interpretation of F , thus F is not valid.
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Normal Forms

Also in first-order logic normal forms can be used:

Devise an algorithm to convert a formula to a normal form.

Then devise an algorithm for satisfiability/validity that only works on
the normal form.
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Negation Normal Forms (NNF)

Negations appear only in literals. (only ¬,∧,∨, ∃, ∀)

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

¬∀x . F [x ] ⇔ ∃x . ¬F [x ]
¬∃x . F [x ] ⇔ ∀x . ¬F [x ]
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Example: Conversion to NNF

G : ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w .p(x ,w) .

1 ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w . p(x ,w)

2 ∀x . ¬(∃y . p(x , y) ∧ p(x , z)) ∨ ∃w . p(x ,w)
F1 → F2 ⇔ ¬F1 ∨ F2

3 ∀x . (∀y . ¬(p(x , y) ∧ p(x , z))) ∨ ∃w . p(x ,w)
¬∃x . F [x ] ⇔ ∀x . ¬F [x ]

4 ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)
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Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

Q1x1 · · ·Qnxn. F [x1, · · · , xn]

where Qi ∈ {∀, ∃} and F is quantifier-free.

Every FOL formula F can be transformed to formula F ′ in PNF s.t.
F ′ ⇔ F :

1 Write F in NNF

2 Rename quantified variables to fresh names

3 Move all quantifiers to the front
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Example: PNF

Find equivalent PNF of

F : ∀x . ((∃y . p(x , y) ∧ p(x , z)) → ∃y . p(x , y))

Write F in NNF

F1 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃y . p(x , y)

Rename quantified variables to fresh names

F2 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)
↑ in the scope of ∀x
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Example: PNF

Move all quantifiers to the front

F3 : ∀x . ∀y . ∃w . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Alternately,

F ′3 : ∀x . ∃w . ∀y . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Note: In F2, ∀y is in the scope of ∀x , therefore the order of
quantifiers must be · · · ∀x · · · ∀y · · ·

F4 ⇔ F and F ′4 ⇔ F

Note: However G < F

G : ∀y . ∃w . ∀x . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)
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Decidability of FOL

FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says “yes” if F is valid or say “no” if F is
invalid.

FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is valid,
but may not halt if F is invalid.

On the other hand,

PL is decidable
There exists an algorithm for deciding if a PL formula F is valid, e.g.,
the truth-table procedure.

Similarly for satisfiability
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Theories



Theories

In first-order logic function symbols have no predefined meaning:

The formula 1 + 1 = 3 is satisfiable.

We want to fix the meaning for some function symbols.
Examples:

Equality theory

Theory of natural numbers

Theory of rational numbers

Theory of arrays or lists
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First-Order Theories

Definition (First-order theory)

A First-order theory T consists of

A Signature Σ - set of constant, function, and predicate symbols

A set of axioms AT - set of closed (no free variables) Σ-formulae

A Σ-formula is a formula constructed of constants, functions, and
predicate symbols from Σ, and variables, logical connectives, and
quantifiers

The symbols of Σ are just symbols without prior meaning

The axioms of T provide their meaning
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Theory of Equality TE

Signature Σ= : {=, a, b, c, · · · , f , g , h, · · · , p, q, r , · · · }

=, a binary predicate, interpreted by axioms.

all constant, function, and predicate symbols.

Axioms of TE :

1 ∀x . x = x (reflexivity)

2 ∀x , y . x = y → y = x (symmetry)

3 ∀x , y , z . x = y ∧ y = z → x = z (transitivity)

4 for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5 for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn) ↔ p(y1, . . . , yn))

(equivalence)
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Axiom Schemata

Congruence and Equivalence are axiom schemata.

4 for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5 for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn) ↔ p(y1, . . . , yn))

(equivalence)

For every function symbol there is an instance of the congruence axiom
schemata.
Example: Congruence axiom for binary function f2:
∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → f2(x1, x2) = f2(y1, y2)

ATE
contains an infinite number of these axioms.
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T -Validity and T -Satisfiability

Definition (T -interpretation)

An interpretation I is a T -interpretation, if it satisfies all the axioms of T .

Definition (T -valid)

A Σ-formula F is valid in theory T (T -valid, also T |= F ),
if every T -interpretation satisfies F .

Definition (T -satisfiable)

A Σ-formula F is satisfiable in T (T -satisfiable),
if there is a T -interpretation that satisfies F

Definition (T -equivalent)

Two Σ-formulae F1 and F2 are equivalent in T (T -equivalent),
if F1 ↔ F2 is T -valid,
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Example: TE-validity

Semantic argument method can be used for TE

Prove

F : a = b ∧ b = c → g(f (a), b) = g(f (c), a) TE-valid.

Suppose not; then there exists a TE-interpretation I such that I 6|= F .
Then,

1. I 6|= F assumption
2. I |= a = b ∧ b = c 1, →
3. I 6|= g(f (a), b) = g(f (c), a) 1, →
4. I |= ∀x , y , z . x = y ∧ y = z → x = z transitivity
5. I |= a = b ∧ b = c → a = c 4, 3 × ∀{x 7→ a, y 7→ b, z 7→ c}
6a I 6|= a = b ∧ b = c 5, →
7a I |= ⊥ 2 and 6a contradictory

6b. I |= a = c 4, 5, (5, →)
7b. I |= a = c → f (a) = f (c) (congruence), 2 × ∀
8ba. I 6|= a = c · · · I |= ⊥
8bb. I |= f (a) = f (c) 7b, →
9bb. I |= a = b 2, ∧
10bb. I |= a = b → b = a (symmetry), 2 × ∀
11bba. I 6|= a = b · · · I |= ⊥
11bbb. I |= b = a 10bb, →
12bbb. I |= f (a) = f (c) ∧ b = a → g(f (a), b) = g(f (c), a) (congruence), 4 × ∀
. . . 13 I |= g(f (a), b) = g(f (c), a) 8bb, 11bbb, 12bbb

3 and 13 are contradictory. Thus, F is TE-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 100 / 436



Decidability of TE

Is it possible to decide TE -validity?

TE -validity is undecidable.

If we restrict ourself to quantifier-free formulae we get decidability:

For a quantifier-free formula TE -validity is decidable.
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Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of formulae of
the theory.

Example: quantifier-free fragment of theory T is the set of
quantifier-free formulae in T .

A theory T is decidable if T |= F (T -validity) is decidable for every
Σ-formula F ,

i.e., there is an algorithm that always terminate with “yes”,
if F is T -valid, and “no”, if F is T -invalid.

A fragment of T is decidable if T |= F is decidable for every Σ-formula F
in the fragment.
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Natural Numbers and Integers

Natural numbers N = {0, 1, 2, · · · }
Integers Z = {· · · ,−2,−1, 0, 1, 2, · · · }

Three variations:

Peano arithmetic TPA: natural numbers with addition and
multiplication

Presburger arithmetic TN: natural numbers with addition

Theory of integers TZ: integers with +,−, >
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Peano Arithmetic TPA (first-order arithmetic)

Signature: ΣPA : {0, 1, +, ·, =}

Axioms of TPA: axioms of TE ,

1 ∀x . ¬(x + 1 = 0) (zero)

2 ∀x , y . x + 1 = y + 1 → x = y (successor)

3 F [0] ∧ (∀x . F [x ] → F [x + 1]) → ∀x . F [x ] (induction)

4 ∀x . x + 0 = x (plus zero)

5 ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

6 ∀x . x · 0 = 0 (times zero)

7 ∀x , y . x · (y + 1) = x · y + x (times successor)

Line 3 is an axiom schema.
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Expressiveness of Peano Arithmetic

3x + 5 = 2y can be written using ΣPA as

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y

We can define > and ≥: 3x + 5 > 2y write as
∃z . z 6= 0 ∧ 3x + 5 = 2y + z

3x + 5 ≥ 2y write as ∃z . 3x + 5 = 2y + z

Examples for valid formulae:

Pythagorean Theorem is TPA-valid
∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xx + yy = zz

Fermat’s Last Theorem is TPA-valid (Andrew Wiles, 1994)
∀n. n > 2 → ¬∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xn + yn = zn
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Expressiveness of Peano Arithmetic (2)

In Fermat’s theorem we used xn, which is not a valid term in ΣPA.
However, there is the ΣPA-formula EXP[x , n, r ] with

1 EXP[x , 0, r ] ↔ r = 1

2 EXP[x , i + 1, r ] ↔ ∃r1. EXP[x , i , r1] ∧ r = r1 · x

EXP[x , n, r ] : ∃d ,m. (∃z . d = (m + 1)z + 1)∧
(∀i , r1. i < n ∧ r1 < m ∧ (∃z . d = ((i + 1)m + 1)z + r1)→

r1x < m ∧ (∃z . d = ((i + 2)m + 1)z + r1 · x))∧
r < m ∧ (∃z . d = ((n + 1)m + 1)z + r)

Fermat’s theorem can be stated as:

∀n. n > 2 → ¬∃x , y , z , rx , ry . x 6= 0 ∧ y 6= 0 ∧ z 6= 0∧
EXP[x , n, rx ] ∧ EXP[y , n, ry ] ∧ EXP[z , n, rx + ry ]
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Decidability of Peano Arithmetic

Gödel showed that for every recursive function f : Nn → N there is a
ΣPA-formula F [x1, . . . , xn, r ] with

F [x1, . . . , xn, r ] ↔ r = f (x1, . . . , xn)

TPA is undecidable. (Gödel, Turing, Post, Church)

The quantifier-free fragment of TPA is undecidable. (Matiyasevich, 1970)

Remark: Gödel’s first incompleteness theorem

Peano arithmetic TPA does not capture true arithmetic:
There exist closed ΣPA-formulae representing valid propositions of number
theory that are not TPA-valid.
The reason: TPA actually admits nonstandard interpretations

For decidability: no multiplication
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Presburger Arithmetic TN

Signature: ΣN : {0, 1, +, =} no multiplication!

Axioms of TN: axioms of TE ,

1 ∀x . ¬(x + 1 = 0) (zero)

2 ∀x , y . x + 1 = y + 1 → x = y (successor)

3 F [0] ∧ (∀x . F [x ] → F [x + 1]) → ∀x . F [x ] (induction)

4 ∀x . x + 0 = x (plus zero)

5 ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

3 is an axiom schema.

TN-satisfiability and TN-validity are decidable. (Presburger 1929)
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Theory of Integers TZ

Signature:
ΣZ : {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . , +, −, =, >}
where

. . . ,−2,−1, 0, 1, 2, . . . are constants

. . . ,−3·,−2·, 2·, 3·, . . . are unary functions
(intended meaning: 2 · x is x + x)

+,−,=, > have the usual meanings.

Relation between TZ and TN

TZ and TN have the same expressiveness:

For every ΣZ-formula there is an equisatisfiable ΣN-formula.

For every ΣN-formula there is an equisatisfiable ΣZ-formula.

ΣZ-formula F and ΣN-formula G are equisatisfiable iff:

F is TZ-satisfiable iff G is TN-satisfiable
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Example: ΣN-formula to ΣZ-formula.

Example: The ΣN-formula

∀x . ∃y . x = y + 1

is equisatisfiable to the ΣZ-formula:

∀x . x > −1 → ∃y . y > −1 ∧ x = y + 1.
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Example: ΣZ-formula to ΣN-formula

Consider the ΣZ-formula
F0 : ∀w , x . ∃y , z . x + 2y − z − 7 > −3w + 4

Introduce two variables, vp and vn (range over the nonnegative integers) for
each variable v (range over the integers) of F0

F1 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

(xp − xn) + 2(yp − yn) − (zp − zn) − 7 > −3(wp − wn) + 4

Eliminate − by moving to the other side of >

F2 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

xp + 2yp + zn + 3wp > xn + 2yn + zp + 7 + 3wn + 4

Eliminate > and numbers:

F3 :

∀wp,wn, xp, xn. ∃yp, yn, zp, zn. ∃u.
¬(u = 0) ∧ xp + yp + yp + zn + wp + wp + wp

= xn + yn + yn + zp + wn + wn + wn + u
+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

which is a ΣN-formula equisatisfiable to F0.
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 111 / 436



Reducing TZ to TN.

To decide TZ-validity for a ΣZ-formula F :

transform ¬F to an equisatisfiable ΣN-formula ¬G ,

decide TN-validity of G .
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Rationals and Reals

Σ = {0, 1, +, −, ·, =, ≥}

Theory of Reals TR (with multiplication)

x · x = 2 ⇒ x = ±
√

2

Theory of Rationals TQ (no multiplication)

2x︸︷︷︸
x+x

= 7 ⇒ x =
2

7

Note: Strict inequality

∀x , y . ∃z . x + y > z

can be expressed as

∀x , y . ∃z . ¬(x + y = z) ∧ x + y ≥ z
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Theory of Reals TR

Signature: ΣR : {0, 1, +, −, ·, =, ≥} with multiplication.

Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)
2 ∀x , y . x + y = y + x (+ commutativity)
3 ∀x . x + 0 = x (+ identity)
4 ∀x . x + (−x) = 0 (+ inverse)
5 ∀x , y , z . (x · y) · z = x · (y · z) (· associativity)
6 ∀x , y . x · y = y · x (· commutativity)
7 ∀x . x · 1 = x (· identity)
8 ∀x . x 6= 0 → ∃y . x · y = 1 (· inverse)
9 ∀x , y , z . x · (y + z) = x · y + x · z (distributivity)

10 0 6= 1 (separate identies)
11 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)
12 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
13 ∀x , y . x ≥ y ∨ y ≥ x (totality)
14 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)
15 ∀x , y . x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0 (· ordered)
16 ∀x . ∃y . x = y · y ∨ x = −y · y (square root)
17 for each odd integer n,
∀x0, . . . , xn−1. ∃y . yn + xn−1yn−1 · · · + x1y + x0 = 0 (at least one root)
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Example

F : ∀a, b, c. b2 − 4ac ≥ 0 ↔ ∃x . ax2 + bx + c = 0 is TR-valid.
As usual: x2 abbreviates x · x , we omit ·, e.g. in 4ac ,

4 abbreviate 1 + 1 + 1 + 1 and a − b abbreviates a + (−b).

1. I 6|= F assumption
2. I |= ∃y . bb − 4ac = y 2 ∨ bb − 4ac = −y 2 square root, ∀
3. I |= d2 = bb − 4ac ∨ d2 = −(bb − 4ac) 2, ∃
4. I |= d ≥ 0 ∨ 0 ≥ d ≥ total
5. I |= d2 ≥ 0 4, case distinction, · ordered
6. I |= 2a · e = 1 · inverse, ∀, ∃
7a. I |= bb − 4ac ≥ 0 1,↔
8a. I 6|= ∃x .axx + bx + c = 0 1,↔
9a. I 6|= a((−b + d)e)2 + b(−b + d)e + c = 0 8a, ∃
10a. I 6|= ab2e2 − 2abde2 + ad2e2

−b2e + bde + c = 0 distributivity
11a. I |= dd = bb − 4ac 3, 5, 7a
12a. I 6|= ab2e2 − bde + a(b2 − 4ac)e2

−b2e + bde + c = 0 6, 11a, congruence
13a. I 6|= 0 = 0 3, distributivity, inverse
14a. I |= ⊥ 13a, reflexivity
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Example

F : ∀a, b, c. bb − 4ac ≥ 0 ↔ ∃x . axx + bx + c = 0 is TR-valid.
As usual: x2 abbreviates x · x , we omit ·, e.g., in 4ac,

4 abbreviate 1 + 1 + 1 + 1 and a − b abbreviates a + (−b).

1. I 6|= F assumption
2. I |= ∃y . bb − 4ac = y 2 ∨ bb − 4ac = −y 2 square root, ∀
3. I |= d2 = bb − 4ac ∨ d2 = −(bb − 4ac) 2, ∃
4. I |= d ≥ 0 ∨ 0 ≥ d ≥ total
5. I |= d2 ≥ 0 4, case distinction, · ordered
6. I |= 2a · e = 1 · inverse, ∀,∃
7b. I 6|= bb − 4ac ≥ 0 1,↔
8b. I |= ∃x .axx + bx + c = 0 1,↔
9b. I |= aff + bf + c = 0 8b,∃
10b. I |= (2af + b)2 = bb − 4ac field axioms, TE

11b. I |= (2af + b)2 ≥ 0 analogous to 5
12b. I |= bb − 4ac ≥ 0 10b, 11b, equivalence
13b. I |= ⊥ 12b, 7b
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Decidability of TR

TR is decidable (Tarski, 1930)

High time complexity: O(22kn)
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Theory of Rationals TQ

Signature: ΣQ : {0, 1, +, −, =, ≥} no multiplication!
Axioms of TQ: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)

2 ∀x , y . x + y = y + x (+ commutativity)

3 ∀x . x + 0 = x (+ identity)

4 ∀x . x + (−x) = 0 (+ inverse)

5 1 ≥ 0 ∧ 1 6= 0 (one)

6 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)

7 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)

8 ∀x , y . x ≥ y ∨ y ≥ x (totality)

9 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)

10 For every positive integer n:
∀x . ∃y . x = y + · · · + y︸ ︷︷ ︸

n

(divisible)
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Expressiveness and Decidability of TQ

Rational coefficients are simple to express in TQ

Example: Rewrite
1

2
x +

2

3
y ≥ 4

as the ΣQ-formula

x + x + x + y + y + y + y ≥ 1 + 1 + · · · + 1︸ ︷︷ ︸
24

TQ is decidable
Efficient algorithm for quantifier free fragment
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Recursive Data Structures (RDS)

Data Structures are tuples of variables.
Like struct in C, record in Pascal.

In Recursive Data Structures, one of the tuple elements can be the
data structure again.
Linked lists or trees.
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RDS theory of LISP-like lists, Tcons

Σcons : {cons, car, cdr, atom, =}

where
cons(a, b) – list constructed by adding a in front of list b
car(x) – left projector of x : car(cons(a, b)) = a
cdr(x) – right projector of x : cdr(cons(a, b)) = b
atom(x) – true iff x is a single-element list

Axioms: The axioms of ATE
plus

∀x , y . car(cons(x , y)) = x (left projection)

∀x , y . cdr(cons(x , y)) = y (right projection)

∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)

∀x , y . ¬atom(cons(x , y)) (atom)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 121 / 436



Axioms of Theory of Lists Tcons

1 The axioms of reflexivity, symmetry, and transitivity of =

2 Congruence axioms

∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)
∀x , y . x = y → car(x) = car(y)
∀x , y . x = y → cdr(x) = cdr(y)

3 Equivalence axiom

∀x , y . x = y → (atom(x) ↔ atom(y))

4 ∀x , y . car(cons(x , y)) = x (left projection)

5 ∀x , y . cdr(cons(x , y)) = y (right projection)

6 ∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)

7 ∀x , y . ¬atom(cons(x , y)) (atom)
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Decidability of Tcons

Tcons is undecidable
Quantifier-free fragment of Tcons is efficiently decidable
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Example: Tcons-Validity

We argue that the following Σcons-formula F is Tcons-valid:

F :
car(a) = car(b) ∧ cdr(a) = cdr(b) ∧ ¬atom(a) ∧ ¬atom(b)
→a = b

1. I 6|= F assumption
2. I |= car(a) = car(b) 1, →, ∧
3. I |= cdr(a) = cdr(b) 1, →, ∧
4. I |= ¬atom(a) 1, →, ∧
5. I |= ¬atom(b) 1, →, ∧
6. I 6|= a = b 1, →
7. I |= cons(car(a), cdr(a)) = cons(car(b), cdr(b))

2, 3, (congruence)
8. I |= cons(car(a), cdr(a)) = a 4, (construction)
9. I |= cons(car(b), cdr(b)) = b 5, (construction)
10. I |= a = b 7, 8, 9, (transitivity)

Lines 6 and 10 are contradictory. Therefore, F is Tcons-valid.
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Theory of Arrays TA

Signature: ΣA : {·[·], ·〈· / ·〉, =},
where

a[i ] binary function –
read array a at index i (“read(a,i)”)

a〈i / v〉 ternary function –
write value v to index i of array a (“write(a,i ,e)”)

Axioms

1 the axioms of (reflexivity), (symmetry), and (transitivity) of TE

2 ∀a, i , j . i = j → a[i ] = a[j ] (array congruence)

3 ∀a, v , i , j . i = j → a〈i / v〉[j ] = v (read-over-write 1)

4 ∀a, v , i , j . i 6= j → a〈i / v〉[j ] = a[j ] (read-over-write 2)
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Equality in TA

Note: = is only defined for array elements

a[i ] = e → a〈i / e〉 = a

not TA-valid, but

a[i ] = e → ∀j . a〈i / e〉[j ] = a[j ] ,

is TA-valid.

Also
a = b → a[i ] = b[i ]

is not TA-valid: We only axiomatized a restricted congruence.

TA is undecidable
Quantifier-free fragment of TA is decidable
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Theory of Arrays T=
A (with extensionality)

Signature and axioms of T =
A are the same as TA, with one additional

axiom
∀a, b. (∀i . a[i ] = b[i ]) ↔ a = b (extensionality)

Example:
F : a[i ] = e → a〈i / e〉 = a

is T =
A -valid.

T =
A is undecidable

Quantifier-free fragment of T =
A is decidable
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Combination of Theories

How do we show that

1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

is (TE ∪ TZ)-unsatisfiable?

Or how do we prove properties about
an array of integers, or
a list of reals . . . ?

Given theories T1 and T2 such that

Σ1 ∩ Σ2 = {=}

The combined theory T1 ∪ T2 has

signature Σ1 ∪ Σ2

axioms A1 ∪ A2
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Nelson & Oppen

qff = quantifier-free fragment

Nelson & Oppen showed that

if satisfiability of qff of T1 is decidable,
satisfiability of qff of T2 is decidable, and
certain technical requirements are met

then satisfiability of qff of T1 ∪ T2 is decidable.
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Lists with equality T=
cons

T =
cons : TE ∪ Tcons

Signature: ΣE ∪ Σcons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of TE and Tcons

T =
cons is undecidable

Quantifier-free fragment of T =
cons is efficiently decidable
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Example: T=
cons-Validity

We argue that the following Σ=
cons-formula F is T =

cons-valid:

F :
car(a) = car(b) ∧ cdr(a) = cdr(b) ∧ ¬atom(a) ∧ ¬atom(b)
→f (a) = f (b)

1. I 6|= F assumption
2. I |= car(a) = car(b) 1, →, ∧
3. I |= cdr(a) = cdr(b) 1, →, ∧
4. I |= ¬atom(a) 1, →, ∧
5. I |= ¬atom(b) 1, →, ∧
6. I 6|= f (a) = f (b) 1, →
7. I |= cons(car(a), cdr(a)) = cons(car(b), cdr(b))

2, 3, (congruence)
8. I |= cons(car(a), cdr(a)) = a 4, (construction)
9. I |= cons(car(b), cdr(b)) = b 5, (construction)
10. I |= a = b 7, 8, 9, (transitivity)
11. I |= f (a) = f (b) 10, (congruence)

Lines 6 and 11 are contradictory. Therefore, F is T =
cons-valid.
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First-Order Theories

Theory Decidable QFF Dec.

TE Equality − 3

TPA Peano Arithmetic − −
TN Presburger Arithmetic 3 3

TZ Linear Integer Arithmetic 3 3

TR Real Arithmetic 3 3

TQ Linear Rationals 3 3

Tcons Lists − 3

T =
cons Lists with Equality − 3

TA Arrays − 3

T =
A Arrays with Extensionality − 3
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Quantifier Elimination



Quantifier Elimination

Quantifier Elimination (QE) removes quantifiers from formulae:

Given a formula with quantifiers, e.g., ∃x .F [x , y , z ].

Goal: find an equivalent quantifier-free formula G [y , z ].

The free variables of F and G are the same.

∃x .F [x , y , z ] ⇔ G [y , z ]
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QE as Decision Procedure

Decide satisfiabilty for a formula F , e.g. in TQ, using quantifier
elimination:

Given a formula F , with free variable x1, . . . , xn.

Build ∃x1 . . . ∃xn.F .

Build equivalent quantifier free formula G .
G contains only constants, functions and predicates
i.e. 0, 1,+,−,≥,=.

Compute truth value of G .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 135 / 436



QE algorithm

In developing a QE algorithm for theory T , we need only consider formulae
of the form

∃x . F
for quantifier-free F

Example: For Σ-formula

G1: ∃x . ∀y . ∃z . F1[x , y , z ]︸ ︷︷ ︸
F2[x ,y ]

G2: ∃x . ∀y . F2[x , y ]

G3: ∃x . ¬∃y . ¬F2[x , y ]︸ ︷︷ ︸
F3[x]

G4: ∃x . ¬F3[x ]︸ ︷︷ ︸
F4

G5: F4

G5 is quantifier-free and T -equivalent to G1
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Syntactic sugar for Rationals

Consider the Signature of Rationals: ΣQ : {0, 1, +, −, =, ≥}
We extend the signature with the predicate >, which is defined as

x > y :⇔ x ≥ y ∧ ¬(x = y).

Additionally we allow predicates < and ≤:

x < y :⇔ y > x x ≤ y :⇔ y ≥ x .

We extend the signature by fractions:

·
a
∈ ΣQ for a ∈ Z+

which are unary function symbols, with their usual meaning.
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Ferrante and Rackoff’s Method

Given a ΣQ-formula ∃x . F [x ], where F [x ] is quantifier-free
Generate quantifier-free formula F4 (four steps) s.t.

F4 is ΣQ-equivalent to ∃x . F [x ].

1 Put F [x ] in NNF.

2 Eliminate negated literals.

3 Solve the literals s.t. x appears isolated on one side.

4 Finite disjunction
∨

t∈SF F [t].

∃x .F [x ] ⇔
∨
t∈SF

F [t].

where SF depends on the formula F .
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Step 1 and 2

Step 1: Put F [x ] in NNF. The result is ∃x . F1[x ].

Step 2: Eliminate negated literals and ≥ (left to right)

s ≥ t ⇔ s > t ∨ s = t
¬(s > t) ⇔ t > s ∨ t = s
¬(s ≥ t) ⇔ t > s
¬(s = t) ⇔ t < s ∨ t > s

The result ∃x . F2[x ] does not contain negations.
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Step 3

Solve for x in each atom of F2[x ], e.g.,

ax + t2 < bx + t1 ⇒ x <
t1 − t2

a − b

where a − b ∈ Z+.

All atoms containing x in the result ∃x . F3[x ] have form

(A) x < t

(B) t < x

(C) x = t

where t is a term that does not contain x .
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Step 4 (Part 1)

Construct from F3[x ]

left infinite projection F3[−∞] by replacing

(A) atoms x < t by >
(B) atoms t < x by ⊥
(C) atoms x = t by ⊥

right infinite projection F3[+∞] by replacing

(A) atoms x < t by ⊥
(B) atoms t < x by >
(C) atoms x = t by ⊥
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Step 4 (Part 2)

Let S be the set of terms t from (A), (B), (C) atoms.
Construct the formula

F4 :
∨
t∈SF

F3[t], where SF := {−∞,∞} ∪
{

s + t

2

∣∣∣∣ s, t ∈ S

}

which is TQ-equivalent to ∃x . F [x ].

F3[−∞] captures the case when small x ∈ Q satisfy F3[x ]

F3[−∞] captures the case when large x ∈ Q satisfy F3[x ]

if s ≡ t, s+t
2 = s captures the case when s ∈ S satisfies F3[s]

if s < t are adjacent numbers, s+t
2 represents the whole interval

(s, t).
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Intuition

Four cases are possible:
1 All numbers x smaller than the smallest term satisfy F [x ].

←−)t1 t2 · · · tn

2 All numbers x larger than the largest term satisfy F [x ].

t1 t2 · · · tn(−→

3 Some ti ,satisfies F [x ].

t1 · · · ti · · · tn
↑

4 On an open interval between two terms every element satisfies F [x ].

t1 · · · ti (←→)ti+1 · · · tn
ti+ti+1

2
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Correctness of Step 4

Theorem

Let SF be the set of terms constructed from F3[x ] as in Step 4. Then
∃x . F3[x ] ⇔

∨
t∈SF F3[t].

Proof of Theorem

⇐ If
∨

t∈SF F3[t] is true, then F3[t] for some t ∈ SF is true.

If F3[ s+t
2 ] is true, then obviously ∃x . F3[x ] is true.

If F3[−∞] is true, choose some x < t for all t ∈ S . Then F3[x ] is
true.
If F3[∞] is true, choose some x > t for all t ∈ S . Then F3[x ] is true.
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Correctness of Step 4

⇒ If I |= ∃x . F3[x ] then there is value v such that

I / {x 7→ v} |= F3 .

If v < αI [t] for all t ∈ S , then I |= F3[−∞].
If v > αI [t] for all t ∈ S , then I |= F3[∞].
If v = αI [t] for some t ∈ S , then I |= F [ t+t

2 ].

Otherwise choose largest s ∈ S with αI [s] < v and smallest t ∈ S
with αI [t] > v.
Since no atom of F3 can distinguish between values in interval (s, t),
F3[v] ⇔ F3[ s+t

2 ]. Hence, I |= F [ s+t
2 ].

In all cases I |=
∨

t∈SF F3[t].
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Example

∃x . 3x + 1 < 10 ∧ 7x − 6 > 7︸ ︷︷ ︸
F [x]

Solving for x

∃x . x < 3 ∧ x >
13

7︸ ︷︷ ︸
F3[x]

Step 4:

F4 :
∨
t∈SF

(
t < 3 ∧ t >

13

7

)
︸ ︷︷ ︸

F3[t]
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Example contd.

SF = {−∞,+∞, 3, 13

7
,

3 + 13
7

2
}.

F3[x ] = x < 3 ∧ x > 13/7

F−∞ ⇔ > ∧ ⊥ ⇔ ⊥ F+∞ ⇔ ⊥ ∧ > ⇔ ⊥

F3 [3]⊥ ∧ > ⇔ ⊥ F3

[
13

7

]
⇔ > ∧ ⊥ ⇔ ⊥

F3

[
13
7 + 3

2

]
:

13
7 + 3

2
< 3 ∧

13
7 + 3

2
>

13

7
⇔ >

Thus, F4 :
∨

t∈SF F3[t] ⇔ > is TQ-equivalent to ∃x . F [x ],
so ∃x . F [x ] is TQ-valid.
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Example

∃x . 2x > y ∧ 3x < z︸ ︷︷ ︸
F [x]

Solving for x

∃x . x >
y

2
∧ x <

z

3︸ ︷︷ ︸
F3[x]

Step 4: F−∞ ⇔ ⊥, F+∞ ⇔ ⊥, F3[ y2 ] ⇔ ⊥ and F3[ z3 ] ⇔ ⊥.

F4 :
y
2 + z

3

2
>

y

2
∧

y
2 + z

3

2
<

z

3

which simplifies to:
F4 : 2z > 3y

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 148 / 436



Quantifier Elimination for TZ

ΣZ : {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . , +, −, =, <}
Consider the formula

F : ∃x . 2x = y

Which quantifier free formula G [y ] is equivalent to F ?

There is no such formula!
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No QE for TZ

Lemma

Given quantifier-free ΣZ-formula F s.t. free(F ) = {y}. Let
SF : {n ∈ Z : F{y 7→ n} is TZ-valid} .

Either Z+ ∩ SF or Z+ \ SF is finite.
where Z+ is the set of positive integers

Proof (Structural Induction over F )

Base case: F is an atomic formula:
>,⊥, t1 = t2, a · y = t, t1 < t2, a · y < t.

Z+ \ S> = Z+ ∩ S⊥ = ∅ is finite

St1=t2 and St1<t2 are either S> or S⊥.

Z+ ∩ Sa·y=t , (a 6= 0) has at most one element.

Z+ ∩ Sa·y<t , a > 0 is finite.

Z+ \ Sa·y<t , a < 0 is finite.
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No QE for TZ

Lemma

Given quantifier-free ΣZ-formula F s.t. free(F ) = {y}. Let
SF : {n ∈ Z : F{y 7→ n} is TZ-valid} .

Either Z+ ∩ SF or Z+ \ SF is finite.
where Z+ is the set of positive integers

Proof (Structural Induction over F )

Induction step: Assume property holds for F ,G . Show it for
¬F ,F ∧ G ,F ∨ G ,F → G ,F ↔ G .

¬F : We have Z+ ∩ S¬F = Z+ \ S and Z+ \ S¬F = Z+ ∩ S and by
ind.-hyp one of these sets is finite.

F ∧ G : We have Z+ ∩ SF∧G = (Z+ ∩ SF ) ∩ (Z+ ∩ SG ) and
Z+ \ SF∧G = (Z+ \ SF ) ∪ (Z+ \ SG ).
If the latter set is not finite then one of Z+ ∩ SF or Z+ ∩ SG is finite.
In both cases Z+ ∩ SF∧G is finite.
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No QE for TZ

Lemma

Given quantifier-free ΣZ-formula F s.t. free(F ) = {y}. Let
SF : {n ∈ Z : F{y 7→ n} is TZ-valid} .

Either Z+ ∩ SF or Z+ \ SF is finite.
where Z+ is the set of positive integers

Proof (Structural Induction over F )

Induction step: Assume property holds for F ,G . Show it for
¬F ,F ∧ G ,F ∨ G ,F → G ,F ↔ G .

F ∨ G follows from previous, since SF∨G = S¬(¬F∧¬G).

F → G follows from SF→G = S(¬F∨G).

F ↔ G follows from SF↔G = S(F→G)∧(G→F ).
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No QE for TZ

Lemma

Given quantifier-free ΣZ-formula F s.t. free(F ) = {y}. Let
SF : {n ∈ Z : F{y 7→ n} is TZ-valid} .

Either Z+ ∩ SF or Z+ \ SF is finite.
where Z+ is the set of positive integers

ΣZ-formula F : ∃x . 2x = y (with quantifier)

SF : even integers

Z+ ∩ SF : positive even integers — infinite
Z+ \ SF : positive odd integers — infinite

Therefore, by the lemma, there is no quantifier-free TZ-formula that is
TZ-equivalent to F .

Thus, TZ does not admit QE.
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Augmented theory T̂Z

Σ̂Z: ΣZ with countable number of unary divisibility predicates

ΣZ ∪ {1|·, 2|·, 3|·, . . . }
Intended interpretations:

k | x holds iff k divides x without any remainder

Axioms of T̂Z: axioms of TZ with additional countable set of axioms

∀x . k | x ↔ ∃y . x = ky for k ∈ Z+

Example:

x > 1 ∧ y > 1 ∧ 2 | x + y

is satisfiable (choose x = 2, y = 2).

¬(2 | x) ∧ 4 | x

is not satisfiable.
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T̂Z admits QE (Cooper’s method)

Algorithm: Given Σ̂Z-formula ∃x . F [x ], where F is quantifier-free

Construct quantifier-free Σ̂Z-formula that is equivalent to ∃x . F [x ].

1 Put F[x] into Negation Normal Form (NNF).

2 Normalize literals: s < t, k|t, or ¬(k |t).

3 Put x in s < t on one side: hx < t or s < hx .

4 Replace hx with x ′ without a factor.

5 Replace F [x ′] by
∨

F [j ] for finitely many j .
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Cooper’s Method: Step 1

Put F [x ] in NNF F1[x ], that is,
∃x . F1[x ] has negations only in literals (only ∧, ∨)

and T̂Z-equivalent to ∃x . F [x ]

Example:
∃x . ¬(x − 6 < z − x ∧ 4 | 5x + 1 → 3x < y)

is equivalent to
∃x . ¬(3x < y) ∧ x − 6 < z − x ∧ 4 | 5x + 1
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Cooper’s Method: Step 2

Replace (left to right)

s = t ⇔ s < t + 1 ∧ t < s + 1
¬(s = t) ⇔ s < t ∨ t < s
¬(s < t) ⇔ t < s + 1

The output ∃x . F2[x ] contains only literals of form

s < t , k | t , or ¬(k | t) ,

where s, t are T̂Z-terms and k ∈ Z+.

Example:
∃x . ¬(3x < y) ∧ x − 6 < z − x ∧ 4 | 5x + 1

is equivalent to
∃x . y < 3x + 1 ∧ x − 6 < z − x ∧ 4 | 5x + 1
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Cooper’s Method: Step 3

Collect terms containing x so that literals have the form

hx < t , t < hx , k | hx + t , or ¬(k | hx + t) ,

where t is a term and h, k ∈ Z+. The output is the formula ∃x . F3[x ],

which is T̂Z-equivalent to ∃x . F [x ].

Example:
∃x . y < 3x + 1 ∧ x − 6 < z − x ∧ 4 | 5x + 1

is equivalent to
∃x . y − 1 < 3x ∧ 2x < z + 6 ∧ 4 | 5x + 1

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 158 / 436



Cooper’s Method: Step 4

Let
δ = lcm{h : h is a coefficient of x in F3[x ]} ,

where lcm is the least common multiple. Multiply atoms in F3[x ] by
constants so that δ is the coefficient of x everywhere:

hx < t ⇔ δx < h′t where h′h = δ
t < hx ⇔ h′t < δx where h′h = δ

k | hx + t ⇔ h′k | δx + h′t where h′h = δ
¬(k | hx + t) ⇔ ¬(h′k | δx + h′t) where h′h = δ

The result ∃x . F ′3[x ], in which all occurrences of x in F ′3[x ] are in terms δx .

Replace δx terms in F ′3 with a fresh variable x ′ to form

F ′′3 : F3{δx 7→ x ′}
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Cooper’s Method: Step 4 contd.

Finally, construct

∃x ′. F ′′3 [x ′] ∧ δ | x ′︸ ︷︷ ︸
F4[x ′]

∃x ′.F4[x ′] is equivalent to ∃x . F [x ] and each literal of F4[x ′] has one of
the forms:

(A) x ′ < t

(B) t < x ′

(C) k | x ′ + t

(D) ¬(k | x ′ + t)

where t is a term that does not contain x , and k ∈ Z+.
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Cooper’s Method: Step 4 (Example)

Example: T̂Z-formula
∃x . 2x < z + 6 ∧ y − 1 < 3x ∧ 4 | 5x + 1︸ ︷︷ ︸

F3[x]

Collecting coefficients of x :

δ = lcm(2, 3, 5) = 30

Multiply when necessary

∃x . 30x < 15z + 90 ∧ 10y − 10 < 30x ∧ 24 | 30x + 6

Replacing 30x with fresh x ′

∃x ′. x ′ < 15z + 90 ∧ 10y − 10 < x ′ ∧ 24 | x ′ + 6 ∧ 30 | x ′︸ ︷︷ ︸
F4[x ′]

∃x ′. F4[x ′] is equivalent to ∃x . F3[x ]
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Cooper’s Method: Result of Step 4

∃x ′.F4[x ′] is equivalent to ∃x . F [x ] and each literal of F4[x ′] has one of
the forms:

(A) x ′ < t

(B) t < x ′

(C) k | x ′ + t

(D) ¬(k | x ′ + t)

where t is a term that does not contain x , and k ∈ Z+.
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Cooper’s Method: Step 5

Construct

left infinite projection F−∞[x ′]

of F4[x ′] by

(A) replacing literals x ′ < t by >
(B) replacing literals t < x ′ by ⊥
idea: very small numbers satisfy (A) literals but not (B) literals

Let

δ = lcm

{
k of (C) literals k | x ′ + t
k of (D) literals ¬(k | x ′ + t)

}
and B be the set of terms t appearing in (B) literals. Construct

F5 :
δ∨

j=1

F−∞[j ] ∨
δ∨

j=1

∨
t∈B

F4[t + j ] .

F5 is quantifier-free and T̂Z-equivalent to F .
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Cooper’s Method: Step 5 (Example)

∃x ′. x ′ < 15z + 90 ∧ 10y − 10 < x ′ ∧ 24 | x ′ + 6 ∧ 30 | x ′︸ ︷︷ ︸
F4[x ′]

Compute lcm: δ = lcm(24, 30) = 120
Then

F5 =
120∨
j=1

> ∧ ⊥ ∧ 24 | j + 6 ∧ 30 | j

∨
120∨
j=1

10y − 10 + j < 15z + 90 ∧ 10y − 10 < 10y − 10 + j

∧ 24 | 10y − 10 + j + 6 ∧ 30 | 10y − 10 + j

The formula can be simplified to:

F5 =
120∨
j=1

10y − 10 + j < 15z + 90 ∧ 24 | 10y − 10 + j + 6 ∧ 30 | 10y − 10 + j
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Correctness of Step 5

Theorem

Let F5 be the formula constructed from ∃x ′. F4[x ′] as in Step 5. Then
∃x ′. F4[x ′] ⇔ F5.

Lemma[Periodicity]: For all atoms k | x ′ + t in F4, we have k | δ.
Therefore, k | x ′ + t iff k | x ′ + λδ + t for all λ ∈ Z.

Proof of Theorem

⇐ If F5 is true, there are two cases: F−∞[j ] is true or F4[t + j ] is true.
If F4[t + j ] is true, than obviously ∃x ′. F4[x ′] is true. If F−∞[j ] is
true, then (due to periodicity) F−∞[j + λ · δ] is true.
If λ < t − 1 for all t ∈ A ∪ B, then
j + λ · δ < δ + (t − 1)δ = δt ≤ t. Thus,

F−∞[j + λ · δ] ⇔ F4[j + λ · δ] ⇒ ∃x ′. F4[x ′] .
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Correctness of Step 5

⇒ Assume for some x ′, F4[x ′] is true. If ¬(t < x ′) for all t ∈ B, then
choose jx ′ ∈ {1, . . . , δ} such that δ | (jx ′ − x ′). jx ′ will satisfy all (C)
and (D) literals that x ′ satisfies. x ′ does not satisfy any (B) literal.
Therefore if F4[x ′] is true, F−∞[j ] must be true. Therefore F5 is true.
If t < x ′ for some t ∈ B, then let

tx ′ = max{t ∈ B|t < x ′}

and choose jx ′ ∈ {1, . . . , δ} such that δ |(tx ′ + jx ′ − x ′). We claim
that F4[tx ′ + jx ′ ] is true.
Since x ′ = tx ′ + jx ′ + λδ, x ′ and tx ′ + jx ′ satisfy the same (C) and
(D) literals (due to periodicity).
Since tx ′ + jx ′ > tx ′ = max{t ∈ B|t < x ′}, tx ′ + jx ′ satisfies all
(B) literals that are satisfied by x ′.
Since tx ′ < x ′ = tx ′ + jx ′ + λδ ≤ tx ′ + (λ + 1)δ, we conclude that
λ ≥ 0. Hence, x ′ ≥ tx ′ + jx ′ and tx ′ + jx ′ satisfies all (A) literals
satisfied by x ′.
Thus F4[tx + j ′x ] is true. Therefore, F5 is true.
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Cooper’s Method: Step 5

Construct

left infinite projection F−∞[x ′]

of F4[x ′] by

(A) replacing literals x ′ < t by >
(B) replacing literals t < x ′ by ⊥

Let

δ = lcm

{
k of (C) literals k | x ′ + t
k of (D) literals ¬(k | x ′ + t)

}
and B be the set of terms t appearing in (B) literals. Construct

F5 :
δ∨

j=1

F−∞[j ] ∨
δ∨

j=1

∨
t∈B

F4[t + j ] .

F5 is quantifier-free and T̂Z-equivalent to F .
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Symmetric Elimination

In step 5, if there are fewer
(A) literals x ′ < t

than
(B) literals t < x ′.

Construct the right infinite projection F+∞[x ′] from F4[x ′] by replacing

each (A) literal x ′ < t by ⊥
and

each (B) literal t < x ′ by >.

Then right elimination.

F5 :
δ∨

j=1

F+∞[−j ] ∨
δ∨

j=1

∨
t∈A

F4[t − j ] .
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Symmetric Elimination (Example)

∃x ′. x ′ < 15z + 90 ∧ 10y − 10 < x ′ ∧ 24 | x ′ + 6 ∧ 30 | x ′︸ ︷︷ ︸
F4[x ′]

Compute lcm: δ = lcm(24, 30) = 120
Then

F5 =
120∨
j=1

⊥ ∧ > ∧ 24 | − j + 6 ∧ 30 | − j

∨
120∨
j=1

15z + 90 − j < 15z + 90 ∧ 10y − 10 < 15z + 90 − j

∧ 24 | 15z + 90 − j + 6 ∧ 30 | 15z + 90 − j

The formula can be simplified to:

F5 =
120∨
j=1

10y − 10 < 15z + 90 − j ∧ 24 | 15z + 90 − j + 6 ∧ 30 | 15z + 90 − j
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Example

∃x . (3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2 | x︸ ︷︷ ︸
F [x]

Isolate x terms
∃x . (3x < 9 ∨ 13 < 7x) ∧ 2 | x ,

so
δ = lcm{3, 7} = 21 .

After multiplying coefficients by proper constants,

∃x . (21x < 63 ∨ 39 < 21x) ∧ 42 | 21x ,

we replace 21x by x ′:

∃x ′. (x ′ < 63 ∨ 39 < x ′) ∧ 42 | x ′ ∧ 21 | x ′︸ ︷︷ ︸
F4[x ′]

.
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Then
F−∞[x ′] : (> ∨ ⊥) ∧ 42 | x ′ ∧ 21 | x ′ ,

or, simplifying,
F−∞[x ′] : 42 | x ′ ∧ 21 | x ′ .

Finally,
δ = lcm{21, 42} = 42 and B = {39} ,

so

F5 :

42∨
j=1

(42 | j ∧ 21 | j) ∨

42∨
j=1

((39 + j < 63 ∨ 39 < 39 + j) ∧ 42 | 39 + j ∧ 21 | 39 + j) .

Since 42 | 42 and 21 | 42, the left main disjunct simplifies to >, so that F

is T̂Z-equivalent to >. Thus, F is T̂Z-valid.
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Decision Procedures for Quantifier-free Fragments

Quantifier elimination decides validity/satisfiable quantified formulae.

Can also be used for quantifier free formulae:
To decide satisfiability of F [x1, . . . , xn],
apply QE on ∃x1, . . . , xn. F [x1, . . . , xn].

But high complexity (doubly exponential for TQ).

Therefore, we are looking for a fast procedure.
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Quantifier-free Theory of Equality



The Theory of Equality TE

ΣE : {=, a, b, c , . . . , f , g , h, . . . , p, q, r , . . .}
uninterpreted symbols:
• constants a, b, c, . . .
• functions f , g , h, . . .
• predicates p, q, r , . . .
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Axioms of TE

1 ∀x . x = x (reflexivity)

2 ∀x , y . x = y → y = x (symmetry)

3 ∀x , y , z . x = y ∧ y = z → x = z (transitivity)

define = to be an equivalence relation.

Axiom schema

4 for each positive integer n and n-ary function symbol f ,

∀x1, . . . , xn, y1, . . . , yn.
∧

i xi = yi
→f (x1, . . . , xn) = f (y1, . . . , yn) (congruence)

5 for each positive integer n and n-ary predicate symbol p,

∀x1, . . . , xn, y1, . . . , yn.
∧
i

xi = yi→

(p(x1, . . . , xn) ↔ p(y1, . . . , yn)) (equivalence)
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Congruence Closure Algorithm

F : s1 = t1 ∧ · · · ∧ sm = tm ∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn

The algorithm performs the following steps:

1 Construct the congruence closure ∼ of

{s1 = t1, . . . , sm = tm}

over the subterm set SF . Then

∼|= s1 = t1 ∧ · · · ∧ sm = tm .

2 If for any i ∈ {m + 1, . . . , n}, si ∼ ti , return unsatisfiable.

3 Otherwise, ∼|= F , so return satisfiable.

How do we actually construct the congruence closure in Step 1?
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Congruence Closure Algorithm (Details)

Begin with the finest congruence relation ∼0:

{{s} : s ∈ SF} .

Each term of SF is only congruent to itself.

Then, for each i ∈ {1, . . . ,m}, impose si = ti by merging

[si ]∼i−1 and [ti ]∼i−1

to form a new congruence relation ∼i . To accomplish this merging,

form the union of [si ]∼i−1 and [ti ]∼i−1

propagate any new congruences that arise within this union.

The new relation ∼i is a congruence relation in which si ∼ ti .
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Ingredients of Algorithm

Efficient data structure for computing the congruence closure.

Directed Acyclic Graph (DAG) to represent terms.

f

f

a b

f (f (a, b), b)

f (a, b)

a b

Union-Find data structure to represent equivalence classes:

f

f

a b
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Directed Acyclic Graph (DAG)

For every subterm of the ΣE -formula F , create

a node labelled with the function symbols.

and edges to the argument nodes.

If two subterms are equal, only one node is created.

1 : f

2 : f

3 : a 4 : b

f (f (a, b), b)

f (a, b)

a b
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Union-Find Data Structure

Equivalence classes are connected by a tree structure, with arrows pointing
to the root node.

1 : f

2 : f

3 : a 4 : b

Two operations are defined:

FIND: Find the representative of an equivalence class by following the
edges. O(log n)

UNION: Merge two classes by connecting the representatives. O(1)
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Summary of idea

f (a, b) = a ∧ f (f (a, b), b) 6= a

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

Initial DAG f (a, b) = a ⇒
merge f (a, b) a

f (a, b) ∼ a, b ∼ b ⇒
f (f (a, b), b) ∼ f (a, b)

merge f (f (a, b), b)
f (a, b)

find f (f (a, b), b) = a = find a
f (f (a, b), b) 6= a

}
⇒ Unsatisfiable
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DAG representation

type node = {
id : id

node’s unique identification number

fn : string
constant or function name

args : id list
list of function arguments

mutable find : id
the edge to the representative

mutable ccpar : id set
if the node is the representative for its
congruence class, then its ccpar

(congruence closure parents) are all
parents of nodes in its congruence class

}
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DAG Representation of node 2

type node = {
id : id
fn : string
args : idlist
mutable find : id
mutable ccpar : idset
}

. . . 2

. . . f

. . . [3, 4]

. . . 3

. . . ∅

1 : f

2 : f

3 : a 4 : b
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DAG Representation of node 3

type node = {
id : id
fn : string
args : idlist
mutable find : id
mutable ccpar : idset
}

. . . 3

. . . a

. . . []

. . . 3

. . . {1, 2}

1 : f

2 : f

3 : a 4 : b
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The Implementation: FIND

find function

returns the representative of node’s congruence class

let rec find i =
let n = node i in
if n.find = i then i else find n.find

1 : f

2 : f

3 : a 4 : b

Example: find 2 = find 3 = 3
3 is the representative of 2.
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The Implementation: UNION

union function

let union i1 i2 =
let n1 = node (find i1) in

let n2 = node (find i2) in

n1.find ← n2.find;
n2.ccpar ← n1.ccpar ∪ n2.ccpar;
n1.ccpar ← ∅

n2 is the representative of the union class
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Example

1 : f

2 : f

3 : a 4 : b

union 1 2 n1 = 1 n2 = 3
1.find ← 3
3.ccpar ← {1, 2}
1.ccpar ← ∅
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The Implementation: CONGRUENT

ccpar function

Returns parents of all nodes in i ’s congruence class

let ccpar i =
(node (find i)).ccpar

congruent predicate

Test whether i1 and i2 are congruent

let congruent i1 i2 =
let n1 = node i1 in

let n2 = node i2 in

n1.fn = n2.fn
∧|n1.args| = |n2.args|
∧∀i ∈ {1, . . . , |n1.args|}. find n1.args[i ] = find n2.args[i ]
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Example

1 : f

2 : f

3 : a 4 : b

Are 1 and 2 congruent?

fn fields — both f
# of arguments — same
left arguments f (a, b) and a — both congruent to 3
right arguments b and b — both 4 (congruent)

Therefore 1 and 2 are congruent.
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The Implementation: MERGE

merge function

let rec merge i1 i2 =
if find i1 6= find i2 then begin

let Pi1 = ccpar i1 in

let Pi2 = ccpar i2 in

union i1 i2;
foreach t1, t2 ∈ Pi1 × Pi2 do

if find t1 6= find t2 ∧ congruent t1 t2

then merge t1 t2

done

end

Pi1 and Pi2 store the current values of ccpar i1 and ccpar i2.
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Decision Procedure: TE -satisfiability

Given ΣE -formula

F : s1 = t1 ∧ · · · ∧ sm = tm ∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn ,

with subterm set SF , perform the following steps:

1 Construct the initial DAG for the subterm set SF .

2 For i ∈ {1, . . . ,m}, merge si ti .

3 If find si = find ti for some i ∈ {m + 1, . . . , n}, return
unsatisfiable.

4 Otherwise (if find si 6= find ti for all i ∈ {m + 1, . . . , n}) return
satisfiable.
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Example f (a, b) = a ∧ f (f (a, b), b) 6= a

f (a, b) = a ∧ f (f (a, b), b) 6= a

(1)
1 : f

2 : f

3 : a 4 : b

(2)
1 : f

2 : f

3 : a 4 : b

(3)
1 : f

2 : f

3 : a 4 : b

Initial DAG merge 2 3
union 2 3
P2 = {1}
P3 = {2}

congruent 1 2

merge 1 2
union 1 2
P1 = {}
P2 = {1, 2}

find f (f (a, b), b) = a = find a ⇒ Unsatisfiable
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Given ΣE -formula

F : f (a, b) = a ∧ f (f (a, b), b) 6= a .

The subterm set is

SF = {a, b, f (a, b), f (f (a, b), b)} ,
resulting in the initial partition

(1) {{a}, {b}, {f (a, b)}, {f (f (a, b), b)}}
in which each term is its own congruence class. Fig (1).

Final partition

(2) {{a, f (a, b), f (f (a, b), b)}, {b}}

Does

(3) {{a, f (a, b), f (f (a, b), b)}, {b}} |= F ?

No, as f (f (a, b), b) ∼ a, but F asserts that f (f (a, b), b) 6= a. Hence, F
is TE -unsatisfiable.
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Example f 3(a) = a ∧ f 5(a) = a ∧ f (a) 6= a

f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a

5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Initial DAG

f (f (f (a))) = a ⇒ merge 3 0 P3 = {4} P0 = {1}
⇒ merge 4 1 P4 = {5} P1 = {2}
⇒ merge 5 2 P5 = {} P2 = {3}

f (f (f (f (f (a))))) = a ⇒ merge 5 0 P5 = {3} P0 = {1, 4}
⇒ merge 3 1 P3 = {1, 3, 4},P1 = {2, 5}

find f (a) = f (a) = find a ⇒ Unsatisfiable
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Given ΣE -formula

F : f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a ,

which induces the initial partition

1 {{a}, {f (a)}, {f 2(a)}, {f 3(a)}, {f 4(a)}, {f 5(a)}} .
The equality f 3(a) = a induces the partition

2 {{a, f 3(a)}, {f (a), f 4(a)}, {f 2(a), f 5(a)}} .
The equality f 5(a) = a induces the partition

3 {{a, f (a), f 2(a), f 3(a), f 4(a), f 5(a)}} .
Now, does

{{a, f (a), f 2(a), f 3(a), f 4(a), f 5(a)}} |= F ?

No, as f (a) ∼ a, but F asserts that f (a) 6= a. Hence, F is
TE -unsatisfiable.
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Correctness of the Algorithm

Theorem (Sound and Complete)

Quantifier-free conjunctive ΣE -formula F is TE -satisfiable iff the
congruence closure algorithm returns satisfiable.

Proof:

⇒ Let I be a satisfying interpretation.
By induction over the steps of the algorithm one can prove:
Whenever the algorithm merges nodes t1 and t2, I |= t1 = t2 holds.

Since I |= si 6= ti for i ∈ {m + 1, . . . , n} they cannot be merged.

Hence the algorithm returns satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 196 / 436



Correctness of the Algorithm (2)

Proof:

⇐ Let S denote the nodes of the graph and
Let [t] := {t ′ | t ∼ t ′} denote the congruence class of t and
S/∼ := {[t] | t ∈ S} denote the set of congruence classes.
Show that there is an interpretation I :

DI = S/∼ ∪ {Ω}

αI [f ](v1, . . . , vn) =


[f (t1, . . . , tn)] v1 = [t1], . . . , vn = [tn],

f (t1, . . . , tn) ∈ S

Ω otherwise

αI [=](v1, v2) = > iff v1 = v2

I is well-defined!
αI [=] is a congruence relation,
I |= F .
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Example: f (a, b) = a ∧ f (f (a, b), b) 6= b

1 : f

2 : f

3 : a 4 : b

S = {f (f (a, b), b), f (a, b), a, b}
S/∼ = {{f (f (a, b), b), f (a, b), a}, {b}} = {[a], [b]}
DI = {[a], [b],Ω}
αI [f ] [a] [b] Ω

[a] Ω [a] Ω
[b] Ω Ω Ω
Ω Ω Ω Ω

αI [=] [a] [b] Ω

[a] > ⊥ ⊥
[b] ⊥ > ⊥
Ω ⊥ ⊥ >

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 198 / 436



How to handle predicates?

We can get rid of predicates by

Introduce fresh constant • corresponding to >.

Introduce a fresh function fp for each predicate p.

Replace p(t1, . . . , tn) with fp(t1, . . . , tn) = •.
Compare the equivalence axiom for p
with the congruence axiom for fp.

∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → p(x1, x2) ↔ p(y1, y2)

∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → fp(x1, x2) = fp(y1, y2)
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Example

x = f (x) ∧ p(x , f (x)) ∧ p(f (x), z) ∧ ¬p(x , z)

is rewritten to

x = f (x) ∧ fp(x , f (x)) = • ∧ fp(f (x), z) = • ∧ fp(x , z) 6= •

1 : fp

2 : f

3 : x

4 : fp

5 : z

6 : fp

7 : •

find fp(x , z) = •
find • = •
⇒ Unsatisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 200 / 436



Theory of Lists



Theory of Lists Tcons

Σcons : {cons, car, cdr, atom, =}

constructor cons: cons(a, b) list constructed by
prepending a to b

left projector car: car(cons(a, b)) = a

right projector cdr: cdr(cons(a, b)) = b

atom: unary predicate

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 202 / 436



Axioms of Tcons

reflexivity, symmetry, transitivity

congruence axioms:

∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)
∀x , y . x = y → car(x) = car(y)
∀x , y . x = y → cdr(x) = cdr(y)

equivalence axiom:

∀x , y . x = y → (atom(x) ↔ atom(y))

∀x , y . car(cons(x , y)) = x (left projection)
∀x , y . cdr(cons(x , y)) = y (right projection)
∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)
∀x , y . ¬atom(cons(x , y)) (atom)
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Satisfiabilty of Quantifier-free Σcons ∪ ΣE-formulae

First simplify the formula:

Consider only conjunctive Σcons ∪ ΣE-formulae.
Convert non-conjunctive formula to DNF and check each disjunct.

¬atom(ui ) literals are removed:

replace ¬atom(ui ) with ui = cons(u1
i , u

2
i )

by the (construction) axiom.

Result is a conjunctive Σcons ∪ ΣE-formula with the literals:

s = t

s 6= t

atom(u)

where s, t, u are Tcons ∪ TE-terms.
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Algorithm: Tcons-Satisfiability (the idea)

F : s1 = t1 ∧ · · · ∧ sm = tm︸ ︷︷ ︸
generate congruence closure

∧ sm+1 6= tm+1 ∧ · · · ∧ sn 6= tn︸ ︷︷ ︸
search for contradiction

∧ atom(u1) ∧ · · · ∧ atom(u`)︸ ︷︷ ︸
search for contradiction

where si , ti , and ui are Tcons ∪ TE-terms.
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Algorithm: Tcons-Satisfiability

1 Construct the initial DAG for SF

2 for each node n with n.fn = cons

add car(n) and merge car(n) n.args[1]
add cdr(n) and merge cdr(n) n.args[2]

by axioms (left projection), (right projection)

3 for 1 ≤ i ≤ m, merge si ti
4 for m + 1 ≤ i ≤ n, if find si = find ti , return unsatisfiable

5 for 1 ≤ i ≤ `, if ∃v . find v = find ui ∧ v .fn = cons,
return unsatisfiable

6 Otherwise, return satisfiable
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Example

Given (Σcons ∪ ΣE)-formula

F :
car(x) = car(y) ∧ cdr(x) = cdr(y)

∧ ¬atom(x) ∧ ¬atom(y) ∧ f (x) 6= f (y)

where the function symbol f is in ΣE

F ′ :

car(x) = car(y) ∧ (1)
cdr(x) = cdr(y) ∧ (2)
x = cons(x1, x2) ∧ (3)
y = cons(y1, y2) ∧ (4)
f (x) 6= f (y) (5)
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Example: car(x) = car(y) ∧ cdr(x) = cdr(y)∧
x = cons(x1, x2) ∧ y = cons(y1, y2) ∧ f (x) 6= f (y)

x

car f cdr

y

car f cdr

x1 x2

cons

car cdr

y1 y2

cons

car cdr

car

car

cdr

cdr

car

car

cdr

cdr

cons cons

f f

congruence

Step 1
Step 2
Step 3 :
merge car(x) car(y)
merge cdr(x) cdr(y)
merge x cons(x1, x2)
merge car(x) car(cons(x1, x2))
merge cdr(x) cdr(cons(x1, x2))
merge y cons(y1, y2)
merge car(y) car(cons(y1, y2))
merge cdr(y) cdr(cons(y1, y2))
merge cons(x1, x2) cons(y1, y2)
merge f (x) f (y)

Step 4 :
find f (x) = find f (y)
⇒ unsatisfiable
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Correctness of the Algorithm

Theorem (Sound and Complete)

Quantifier-free conjunctive Σcons-formula F is Tcons-satisfiable iff the
congruence closure algorithm for Tcons returns satisfiable.

Proof:

⇒ Let I be a satisfying interpretation.
By induction over the steps of the algorithm one can prove:
Whenever the algorithm merges nodes t1 and t2, I |= t1 = t2 holds.

Since I |= si 6= ti for i ∈ {m + 1, . . . , n} they cannot be merged.
From I |= ¬atom(cons(t1, t2)) and I |= atom(ui )
follows I |= ui 6= cons(t1, t2) by equivalence axiom.
Thus ui for i ∈ {1, . . . , `} cannot be merged with a cons node.

Hence the algorithm returns satisfiable.
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Correctness of the Algorithm (2)

Proof:

⇐ Let S denote the nodes of the graph and
let S/∼ denote the congruence classes computed by the algorithm.
Show that there is an interpretation I :

DI = {binary trees with leaves labelled with S/∼}

\ {trees with subtree ↙↘
[t1] [t2] with cons(t1, t2) ∈ S}

consI (v1, v2) =

[cons(t1, t2)] v1 = [t1], v2 = [t2], cons(t1, t2) ∈ S

↙↘
v1 v2

otherwise

carI (v) =


[car(t)] if v = [t], car(t) ∈ S

v1 if v = ↙↘
v1 v2

arbitrary otherwise
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Correctness of the Algorithm (3)

cdrI (v) =


[cdr(t)] if v = [t], cdr(t) ∈ S

v2 if v = ↙↘
v1 v2

arbitrary otherwise

atomI (v) =


false if v = [cons(t1, t2)]

false if v = ↙↘
v1 v2

true otherwise

αI [=](v1, v2) = true iff v1 = v2

I is well-defined! αI [=] is obviously a congruence relation.
∀x , y . car(cons(x , y)) = x (left projection)
∀x , y . cdr(cons(x , y)) = y (right projection)
∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)
∀x , y . ¬atom(cons(x , y)) (atom)
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Example: car(x) = car(y) ∧ cdr(x) = cdr(y)∧
x = cons(x1, x2) ∧ y = cons(y1, y2)

x

car f cdr

y

car f cdr

x1 x2

cons

car cdr

y1 y2

cons

car cdr

congruence
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Quantifier-free Rationals



Conjunctive Quantifier-free Fragment

In the next lectures, we consider conjunctive quantifier-free Σ-formulae,
i.e., conjunctions of Σ-literals (Σ-atoms or negations of Σ-atoms).

Remark 1: From this an algorithm for arbitrary quantifier-free formulae
can be built.
For given arbitrary quantifier-free Σ-formula F , convert it into DNF
Σ-formula

F1 ∨ . . . ∨ Fk

where each Fi conjunctive.
F is T -satisfiable iff at least one Fi is T -satisfiable.

Remark 2: One can also combine a decision procedure for conjunctive
fragment with DPLL.
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Conjunctive Quantifier-free Fragment of Rationals

For TQ a formula in the conjunctive fragment looks like this:

a11x1 + a12x2 + · · · + a1nxn ≤ b1

∧a21x1 + a22x2 + · · · + a2nxn ≤ b2

...

∧am1x1 + am2x2 + · · · + amnxn ≤ bm

as vectors: A · ~x ≤ ~b.

Note: x = b can be expressed as x ≤ b ∧ −x ≤ −b.
¬(x ≤ b) can be expressed as −x < −b.
x < b requires some additional handling (later).
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Dutertre–de Moura Algorithm

Presented 2006 by B. Dutertre and L. de Moura

Based on Simplex algorithm

Simpler; it doesn’t optimize.
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Nonbasic and Basic Variables

The set of variables in the formula is called N (set of non-basic variables).

Additionally we introduce basic variables B, one variable for each linear
term in the formula:

yi := ai1x1 + ai2x2 + · · · + ainxn

The basic variables depend on the non-basic variables.

Note: The naming is counter-intuitive. Unfortunately it is the standard
naming for Simplex algorithm.

We need to find a solution for y1 ≤ b1, . . . , ym ≤ bm
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Computing Basic from Non-basic Variables

The basic variables can be computed by a simple Matrix computation:y1
...

ym

 =

a11 . . . a1n
...

...
am1 . . . amn

 ·
x1

...
xn


One can also use tableaux notation:

x1 . . . xn
y1 a11 . . . a1n

...
...

...
ym am1 . . . amn

We start by setting all non-basic to 0 and computing the basic variables,
denoted as β0(x) := 0. The valuation βs assigns values for the variables
at step s.
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Configuration

A configuration at step s of the algorithm consists of

a partition of the variables into non-basic and basic variables

Ns ∪ Bs = {x1, . . . , xn, y1, . . . ym} ,

a tableaux A (a m × n matrix) where the columns correspond to
non-basic and rows correspond to basic variables,
and a valuation βs , that assigns

βs(xi ) = 0 for xi ∈ Ns ,
βs(yi ) = bi for yi ∈ Ns ,
βs(zi ) =

∑
zj∈Ns

aijβ(zj) for zi ∈ Bs .

(Here z stands for either an x or a y variable.)

The initial configuration is:

N0 = {x1, . . . , xn},B0 = {y1, . . . , ym},A0 = A, β0(xi ) = 0

In later steps variables from N and B are swapped.
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Pivoting aka. Exchanging Basic and Non-basic Variables

Suppose βs is not a solution for y1 ≤ b1, . . . , ym ≤ bm.
Let yi be a variable whose value βs(yi ) > bi .
Consider the row in the matrix:

yi = ai1z1 + ai2z2 + · · · + ainzn

Idea: Choose a zj , then solve zj in the above equation.
Thus, zj becomes non-basic variable, yi becomes basic.
Then decrease β(yi ) to bi .
This will either decrease zj (if aij > 0)
or increase zj (if aij < 0, zj must be a x-variable).
Solving zj in the above equation gives:

zj =
ai1
−aij

z1 +
ai2
−aij

z2 + · · · +
ain
−aij

zn +
1

aij
yi
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Result of Pivoting

After pivoting yi and zj the matrix looks as follows:

y1 = (a11 −
a1jai1
aij

)z1 + · · · +
a1j

aij
yi + · · · + (a1n −

a1jain
aij

)zn
...

...
...

...
zj = −ai1

aij
z1 + · · · + 1

aij
yi + · · · + −ain

aij
zn

...
...

...
...

ym = (am1 −
amjai1
aij

)z1 + · · · +
amj

aij
yi + · · · + (amn −

amjain
aij

)zn

Now, set βs+1(yi ) to bi and recompute basic variables.
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Detecting Conflicts

We may arrive at a configuration like:

yi = 0 · x1 + · · · + aij1yj1 + · · · + aijk yjk + 0 · xn

where the non-basic y variables are set to their bound:

βs(yj1) = bj1 , . . . , βs(yjk ) = bjk ,

coefficients of x variables are zero, coefficients aij1 , . . . , aijk ≤ 0, and
βs(yi ) > bi .

Then, we have a conflict:

yj1 ≤ bj1 ∧ · · · ∧ yjk ≤ bjk → yi > bi .

The formula is not satisfiable.
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Example

Consider the formula

F : x1 + x2 ≥ 4 ∧ x1 − x2 ≤ 1

We have two non-basic variables N = {x1, x2}.
Define basic variables B = {y1, y2}:

y1 = −x1 − x2, y1 ≤ −4

y2 = x1 − x2, y2 ≤ 1

We write the equation as a tableaux:
x1 x2

y1 -1 -1
y2 1 -1
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Example (cont.)

Tableaux:
x1 x2

y1 -1 -1
y2 1 -1

Values:
x1 = x2 = 0
→y1 = 0 > −4 (!)
→y2 = 0 ≤ 1

Pivot y1 against x1: x1 = −y1 − x2.

New Tableaux:
y1 x2

x1 -1 -1
y2 -1 -2
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Example (cont.)

Tableaux:
y1 x2

x1 -1 -1
y2 -1 -2

Values:
y1 = −4, x2 = 0
→x1 = 4
→y2 = 4 > 1 (!)

y2 cannot be pivoted with y1, since −1 negative.
Pivot y2 and x2:

New Tableaux:
y1 y2

x1 -.5 .5
x2 -.5 -.5
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Example (cont.)

Tableaux:
y1 y2

x1 -.5 .5
x2 -.5 -.5

Values:
y1 = −4, y2 = 1
→x1 = 2.5
→x2 = 1.5

We found a satisfying interpretation for:

F : x1 + x2 ≥ 4 ∧ x1 − x2 ≤ 1
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Example

Now, consider the formula

F ′ : x1 + x2 ≥ 4 ∧ x1 − x2 ≤ 1 ∧ x2 ≤ 1

We have two non-basic variables N = {x1, x2}.
Define basic variables B = {y1, y2, y3}:

y1 = −x1 − x2, y1 ≤ −4

y2 = x1 − x2, y2 ≤ 1

y3 = x2, y3 ≤ 1

We write the equation as tableaux:
x1 x2

y1 -1 -1
y2 1 -1
y3 0 1
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Example (cont.)

The first two steps are identical:
pivot y1 resp. y2 and x1 resp. x2.

y1 y2

x1 -.5 .5
x2 -.5 -.5
y3 -.5 -.5
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Example (cont.)

Tableaux:
y1 y2

x1 -.5 .5
x2 -.5 -.5
y3 -.5 -.5

Values:
y1 = −4, y2 = 1
→x1 = 2.5
→x2 = 1.5
→y3 = 1.5 > 1!

Now, y3 cannot pivot, since all coefficients in that row are negative.
Conflict is −x1 − x2 ≤ −4 ∧ x1 − x2 ≤ 1 → x2 > 1.
Formula F ′ is unsatisfiable
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Termination

To guarantee termination we need a fixed pivot selection rule.

The following rule works:

When choosing the basic variable (row) to pivot:

Choose the y -variable with the smallest index, whose value exceeds
the bound.

If there is no such variable, return satisfiable

When choosing the non-basic variable (column) to pivot with:

if possible, take a x-variable.

Otherwise, take the y -variable with the smallest index, such that the
corresponding coefficient in the matrix is positive.

If there is no such variable, return unsatisfiable
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Termination Proof

Assume we have an infinite computation of the algorithm.
Let yj be the variable with the largest index, that is infinitely often pivoted.
Look at the step where yj is pivoted to a non-basic variable and where for
k > j , yk is not pivoted any more. The (ordered) tableaux at the point of
pivoting looks like this:

x · · · x y · · · y yj y · · ·
...
yi 0 · · · 0 −/0 · · · −/0 + ±/0 · · ·
...

(+ denotes a positive coefficient, − a negative coefficient)

After pivoting the tableaux changes to:
x · · · x y · · · y yi y · · ·

...
yj 0 · · · 0 +/0 · · · +/0 + ∓/0 · · ·

...
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Termination Proof (cont.)

After pivoting the tableaux changes to:

x · · · x y · · · y yi y · · ·
...
yj 0 · · · 0 +/0 · · · +/0 + ∓/0 · · ·

...

∑
k<j ,yk∈Ns

akbk +
∑

k>j ,yk∈Ns

akbk = βs(yj) < bj , where ak ≥ 0 for k < j .

Now look at the step s ′ where yj is pivoted back.
By the pivoting rule: βs′(yk) ≤ bk for all k < j .
For k > j , the non-basic/basic variables do not change.
Therefore, the value of yj can only get smaller.

βs′(yj) =
∑

k<j ,yk∈Ns

ak · βs′(yk) +
∑

k>j ,yk∈Ns

akbk < bj

This contradicts βs′(yj) > bj .

Therefore, assumption was wrong and algorithm terminates.
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Strict Bounds

With strict bounds the formula looks like this:

a11x1 + a12x2 + · · · + a1nxn ≤ b1

...

∧ai1x1 + ai2x2 + · · · + ainxn ≤ bi

∧a(i+1)1x1 + a(i+1)2x2 + · · · + a(i+1)nxn < bi+1

...

∧am1x1 + am2x2 + · · · + amnxn < bm

If the formula is satisfiable, then there is an ε > 0 with:

a11x1 + a12x2 + · · · + a1nxn ≤ b1

...

∧ai1x1 + ai2x2 + · · · + ainxn ≤ bi

∧a(i+1)1x1 + a(i+1)2x2 + · · · + a(i+1)nxn ≤ bi+1 − ε

...

∧am1x1 + am2x2 + · · · + amnxn ≤ bm − ε
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Infinitesimal Numbers

We compute with ε symbolically. Our bounds are elements of

Qε := {a1 + a2ε | a1, a2 ∈ Q}

The arithmetical operators and the ordering are defined as:

(a1 + a2ε) + (b1 + b2ε) = (a1 + b1) + (a2 + b2)ε

a · (b1 + b2ε) = ab1 + ab2ε

a1 + a2ε ≤ b1 + b2ε iff a1 < b1 ∨ (a1 = b1 ∧ a2 ≤ b2)

Note: Qε is a two-dimensional vector space over Q.
Changes to the configuration:

β gives values for variables in Qε.

The tableaux does not contain ε. It is still a Qm×n matrix.
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Example

F1 : 3x1 + 2x2 < 5 ∧ 2x1 + 3x2 < 1 ∧ x1 + x2 > 1
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Example F1

Step 1:
x1 x2 β bi

β 0 0

y1 3 2 0 5 − ε
y2 2 3 0 1 − ε
y3 -1 -1 0 −1 − ε (!)

Step 2:
y3 x2 β bi

β −1 − ε 0

y1 -3 -1 3 + 3ε 5 − ε
y2 -2 1 2 + 2ε 1 − ε (!)
x1 -1 -1 1 + 1ε

Step 3:
y3 y2 β bi

β −1 − ε 1 − ε

y1 -5 -1 4 + 6ε 5 − ε
x2 2 1 −1 − 3ε
x1 -3 -1 2 + 4ε
β(y1) = 4 + 6ε ≤ 5 − ε (for 0 < ε ≤ 1/7).
Solution (ε = 0.1): x1 = 2.4, x2 = −1.3.
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Example

F2 : 3x1 + 2x2 < 5 ∧ 2x1 − x2 > 1 ∧ x1 + 3x2 > 4
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Example F2

Step 1:
x1 x2 β bi

β 0 0

y1 3 2 0 5 − ε
y2 -2 1 0 −1 − ε (!)
y3 -1 -3 0 −4 − ε (!)

Step 2:
x1 y2 β bi

β 0 −1 − ε

y1 7 2 −2 − 2ε 5 − ε
x2 2 1 −1 − ε
y3 -7 -3 3 + 3ε −4 − ε (!)

Step 3:
y3 y2 β bi

β −4 − ε −1 − ε

y1 -1 -1 5 + 2ε 5 − ε (!)
x2 -2/7 1/7 1 + 1/7ε
x1 -1/7 -3/7 1 + 4/7ε

Now 5 + 2ε > 5 − ε but all coefficients in first row negative.

Unsatisfiable.
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Correctness of the Algorithm

Theorem (Sound and Complete)

Quantifier-free conjunctive ΣQ-formula F is TQ-satisfiable iff the
Dutertre-de-Moura algorithm returns satisfiable.
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Theory of Arrays



Arrays: Quantifier-free Fragment of TA

ΣA : {·[·], ·〈· / ·〉, =} ,
where

a[i ] is a binary function representing
read of array a at index i ;

a〈i / v〉 is a ternary function representing
write of value v to index i of array a;

= is a binary predicate. It is not used on arrays.

Axioms of TA:

1 axioms of (reflexivity), (symmetry), and (transitivity) of TE

2 ∀a, i , j . i = j → a[i ] = a[j ] (array congruence)

3 ∀a, v , i , j . i = j → a〈i / v〉[j ] = v (read-over-write 1)

4 ∀a, v , i , j . i 6= j → a〈i / v〉[j ] = a[j ] (read-over-write 2)
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Decision Procedure for TA

Given quantifier-free conjunctive ΣA-formula F .
To decide the TA-satisfiability of F :

Step 1
For every read-over-write term a〈i / v〉[j ] in F , replace F with the formula

(i = j ∧ F{a〈i / v〉[j ] 7→ v}) ∨
(i 6= j ∧ F{a〈i / v〉[j ] 7→ a[j ]})

Repeat until there are no more read-over-write terms.
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Decision Procedure for TA (cont)

Step 2

Associate array variables a with fresh function symbol fa.
Replace read terms a[i ] with fa(i).

Step 3

Now F is a TE -Formula. Decide TE-satisfiability using the
congruence-closure algorithm for each of the disjuncts produced in Step 1.
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Example: Consider ΣA-formula

F : i1 = j ∧ i1 6= i2 ∧ a[j ] = v1 ∧ a〈i1 / v1〉〈i2 / v2〉[j ] 6= a[j ] .

F contains a read-over-write term,

a〈i1 / v1〉〈i2 / v2〉[j ] 6= a[j ] .

Rewrite it to F1 ∨ F2 with:

F1 : i2 = j ∧ i1 = j ∧ i1 6= i2 ∧ a[j ] = v1 ∧ v2 6= a[j ] ,

F2 : i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ a[j ] = v1 ∧ a〈i1 / v1〉[j ] 6= a[j ] .

F1 does not contain any write terms, so rewrite it to

F ′1 : i2 = j ∧ i1 = j ∧ i1 6= i2 ∧ fa(j) = v1 ∧ v2 6= fa(j) .

The first two literals imply that i1 = i2, contradicting the third literal, so
F ′1 is TE-unsatisfiable.
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Now, we try the second case (F2):
F2 contains the read-over-write term a〈i1 / v1〉[j ]. Rewrite it to F3 ∨ F4

with

F3 : i1 = j ∧ i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ a[j ] = v1 ∧ v1 6= a[j ] ,

F4 : i1 6= j ∧ i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ a[j ] = v1 ∧ a[j ] 6= a[j ] .

Rewrite the array reads to

F ′3 : i1 = j ∧ i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ fa(j) = v1 ∧ v1 6= fa(j) ,

F ′4 : i1 6= j ∧ i2 6= j ∧ i1 = j ∧ i1 6= i2 ∧ fa(j) = v1 ∧ fa(j) 6= fa(j) .

In F ′3 there is a contradiction because of the final two terms. In F ′4, there
are two contradictions: the first and third literals contradict each other,
and the final literal is contradictory. Since F is equisatisfiable to
F ′1 ∨ F ′3 ∨ F ′4, F is TA-unsatisfiable.

Suppose instead that F does not contain the literal i1 6= i2. Is this new
formula TA-satisfiable?
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Complexity of Decision Procedure for TA

Our algorithm has a big disadvantage. Step 1 doubles the size of the
formula:

(i = j ∧ F{a〈i / v〉[j ] 7→ v}) ∨
(i 6= j ∧ F{a〈i / v〉[j ] 7→ a[j ]})

This can be avoided by introducing fresh variables xaijv :

F{a〈i / v〉[j ] 7→ xaijv}∧
((i = j ∧ xaijv = v) ∨ (i 6= j ∧ xaijv = a[j ]))

However, this is not in the conjunctive fragment of TE.

There is no way around:

The conjunctive fragment of TA is NP-complete.
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Arrays and Quantifiers

In programming languages, one often needs to express the following
concepts:

Containment contains(a, `, u, e): the array a contains element e at
some index between ` and u.

∃i .` ≤ i ≤ u ∧ a[i ] = e

Sortedness sorted(a, `, u): the array a is sorted between index ` and
index u.

∀i , j .` ≤ i ≤ j ≤ u =⇒ a[i ] ≤ a[j ]

Partitioning partition(a, `1, u1, `2, u2): The array elements between `1

and u1 are smaller than all elements between `2 and u2.

∀i , j .`1 ≤ i ≤ u1 ∧ `2 ≤ j ≤ u2 =⇒ a[i ] ≤ a[j ]
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Decision Procedure for Arrays

These concepts can only be expressed as first-order formulae with
quantifiers.

However: the general theory of arrays TA with quantifier is not decidable.

Is there a decidable fragment of TA that contains the above formulae?
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Example

We want to prove validity for a formula, such as:

¬contains(a, `, u, e) ∧ e 6= f → ¬contains(a〈j / f 〉, `, u, e)

¬(∃i .` ≤ i ≤ u ∧ a[i ] = e) ∧ e 6= f

→ ¬(∃i .` ≤ i ≤ u ∧ a〈j / f 〉[i ] 6= e).

Check satisfiability of negated formula:

¬(∃i .` ≤ i ≤ u ∧ a[i ] = e) ∧ e 6= f ∧ (∃i .` ≤ i ≤ u ∧ a〈j / f 〉[i ] 6= e).

Negation Normal Form:

(∀i .` > i ∨ i > u∨a[i ] 6= e)∧e 6= f ∧(∃i .` ≤ i ∧ i ≤ u∧a〈j / f 〉[i ] = e).

or the equisatisfiable formula

∀i .` > i ∨ i > u ∨ a[i ] 6= e ∧ e 6= f ∧ ` ≤ i2 ∧ i2 ≤ u ∧ a〈j / f 〉[i2] = e.

We need to handle satisfiability for universal quantifiers.
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Array Property Fragment of TA

Decidable fragment of TA that includes ∀ quantifiers

Array property

ΣA-formula of form
∀i . F [i ] → G [i ] ,

where i is a list of variables.

index guard F [i ]:

iguard → iguard ∧ iguard | iguard ∨ iguard | atom
atom → var = var | evar 6= var | var 6= evar | >

var → evar | uvar

where uvar is any universally quantified index variable,
and evar is any constant or unquantified variable.
value constraint G [i ]: a universally quantified index can occur in a
value constraint G [i ] only in a read a[i ], where a is an array term.
The read cannot be nested; for example, a[b[i ]] is not allowed.

Array property Fragment: Boolean combinations of quantifier-free
TA-formulae and array properties

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 250 / 436



Example: Array Property Fragment

Is this formula in the array property fragment?

F : ∀i . i 6= a[k] → a[i ] = a[k]

The antecedent is not a legal index guard since a[k] is not a variable
(neither a uvar nor an evar); however, by simple manipulation

F ′ : v = a[k] ∧ ∀i . i 6= v → a[i ] = a[k]

Here, i 6= v is a legal index guard, and a[i ] = a[k] is a legal value
constraint. F and F ′ are equisatisfiable.
This trick works for every term that does not contain a uvar.
However, no manipulation works for:

G : ∀i . i 6= a[i ] → a[i ] = a[k] .

Thus, G is not in the array property fragment.
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Example: Array Property Fragment (cont)

Is this formula in the array property fragment?

F ′ : ∀ij . i 6= j → a[i ] 6= a[j ]

No, the term uvar 6= uvar is not allowed in the index guard. There is no
workaround.
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Array property fragment and extensionality

Remark: Array property fragment allows expressing equality between
arrays (extensionality): two arrays are equal precisely when their
corresponding elements are equal.

For given formula
F : · · · ∧ a = b ∧ · · ·

with array terms a and b, rewrite F as

F ′ : · · · ∧ (∀i . > → a[i ] = b[i ]) ∧ · · · .

F and F ′ are equisatisfiable.
F ′ is in array property fragment of TA.
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Decision Procedure for Array Property Fragment

Basic Idea: Similar to quantifier elimination.

Replace universal quantification

∀i .F [i ]

by finite conjunction
F [t1] ∧ . . . ∧ F [tn].

We call t1, . . . , tn the index terms and they depend on the formula.
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Example

Consider
F : a〈i / v〉 = a ∧ a[i ] 6= v ,

which expands to

F ′ : ∀j . a〈i / v〉[j ] = a[j ] ∧ a[i ] 6= v .

Intuitively, only the index i is important:

F ′′ :

 ∧
j∈{i}

a〈i / v〉[j ] = a[j ]

 ∧ a[i ] 6= v ,

or simply
a〈i / v〉[i ] = a[i ] ∧ a[i ] 6= v .

Simplifying,
v = a[i ] ∧ a[i ] 6= v ,

it is clear that this formula, and thus F , is TA-unsatisfiable.
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Decision Procedure for Array Property Fragment

Given array property formula F , decide its TA-satisfiability by the following
steps:

Step 1
Put F in NNF, but do not rewrite inside a quantifier.

Step 2
Apply the following rule exhaustively to remove writes:

F [a〈i / v〉]
F [a′] ∧ a′[i ] = v ∧ (∀j . j 6= i → a[j ] = a′[j ])

for fresh a′ (write)

After an application of the rule, the resulting formula contains at least one
fewer write terms than the given formula.

Step 3
Apply the following rule exhaustively to remove existential quantification:

F [∃i . G [i ]]

F [G [j ]]
for fresh j (exists)

Existential quantification can arise during Step 1 if the given formula has a
negated array property.
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Steps 4-6 accomplish the reduction of universal quantification to finite
conjunction.
Main idea: select a set of symbolic index terms on which to instantiate all
universal quantifiers. The set is sufficient for correctness.

Step 4
From the output F3 of Step 3, construct the index set I:

I =
{λ}
∪ {t : ·[t] ∈ F3 such that t is not a universally quantified variable}
∪ {t : t occurs as an evar in the parsing of index guards}

This index set is the finite set of indices that need to be examined. It includes

all terms t that occur in some read a[t] anywhere in F (unless it is a
universally quantified variable)
all terms t (constant or unquantified variable) that are compared to a
universally quantified variable in some index guard.
λ is a fresh constant that represents all other index positions that are not
explicitly in I.
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Step 5 (Key step)
Apply the following rule exhaustively to remove universal quantification:

H[∀i . F [i ] → G [i ]]

H

∧
i∈In

(
F [i ] → G [i ]

) (forall)

where n is the number of quantified variables i .

Step 6
From the output F5 of Step 5, construct

F6 : F5 ∧
∧

i ∈ I\{λ}

λ 6= i .

The new conjuncts assert that the variable λ introduced in Step 4 is
indeed unique.

Step 7
Decide the TA-satisfiability of F6 using the decision procedure for the
quantifier-free fragment.
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Example

Is this T =
A -formula valid?

F : (∀i . i 6= k → a[i ] = b[i ]) ∧ b[k] = v → a〈k / v〉 = b

Check satisfiability of:

¬((∀i . i 6= k → a[i ] = b[i ]) ∧ b[k] = v → (∀i . a〈k / v〉[i ] = b[i ]))

Step 1: NNF

F1 : (∀i . i 6= k → a[i ] = b[i ]) ∧ b[k] = v ∧ (∃i . a〈k / v〉[i ] 6= b[i ])

Step 2: Remove array writes

F2 : (∀i . i 6= k → a[i ] = b[i ]) ∧ b[k] = v ∧ (∃i . a′[i ] 6= b[i ])

∧ a′[k] = v ∧ (∀i . i 6= k → a′[i ] = a[i ])

Step 3: Remove existential quantifier

F3 : (∀i . i 6= k → a[i ] = b[i ]) ∧ b[k] = v ∧ a′[j ] 6= b[j ]

∧ a′[k] = v ∧ (∀i . i 6= k → a′[i ] = a[i ])
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Example (cont)

Step 4: Compute index set I = {λ, k, j}
Step 5+6: Replace universal quantifier:

F6 : (λ 6= k → a[λ] = b[λ])

∧ (k 6= k → a[k] = b[k])

∧ (j 6= k → a[j ] = b[j ])

∧ b[k] = v ∧ a′[j ] 6= b[j ] ∧ a′[k] = v

∧ (λ 6= k → a′[λ] = a[λ])

∧ (k 6= k → a′[k] = a[k])

∧ (j 6= k → a′[j ] = a[j ])

∧ λ 6= k ∧ λ 6= j

Case distinction on j = k proves unsatisfiability of F6.
Therefore F is valid
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The importance of λ

Is this formula satisfiable?

F : (∀i .i 6= j → a[i ] = b[i ]) ∧ (∀i .i 6= k → a[i ] 6= b[i ])

The algorithm produces:

F6 : λ 6= j → a[λ] = b[λ]

∧ j 6= j → a[j ] = b[j ]

∧ k 6= j → a[k] = b[k]

∧ λ 6= k → a[λ] 6= b[λ]

∧ j 6= k → a[j ] 6= b[j ]

∧ k 6= k → a[k] 6= b[k]

∧ λ 6= j ∧ λ 6= k

The first, fourth and last line give a contradiction!
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The importance of λ (cont)

Without λ we had the formula:

F ′6 : j 6= j → a[j ] = b[j ]

∧ k 6= j → a[k] = b[k]

∧ j 6= k → a[j ] 6= b[j ]

∧ k 6= k → a[k] 6= b[k]

which simplifies to:

j 6= k → a[k] = b[k] ∧ a[j ] 6= b[j ] .

This formula is satisfiable!
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Correctness of Decision Procedure

Theorem

Consider a ΣA-formula F from the array property fragment of TA. The
output F6 of Step 6 of the algorithm is TA-equisatisfiable to F .

This also works when extending the Logic with an arbitrary theory T with
signature Σ for the elements:

Theorem

Consider a ΣA ∪ Σ-formula F from the array property fragment of TA ∪ T .
The output F6 of Step 6 of the algorithm is TA ∪ T -equisatisfiable to F .
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Proof of Theorem

Proof: It is easy to see that steps 1–3 do not change the satisfiability of
formula.
For step 4–6 we need to show:

(1) H[∀i . (F [i ] → G [i ])] is satisfiable
iff.

(2) H[
∧

i∈In(F [i ] → G [i ])] ∧
∧

i∈I\{λ} λ 6= i is satisfiable.

If the formula (1) is satisfied some Interpretation, then (2) holds in the
same interpretation.
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Proof of Theorem (cont)

If the formula (2) holds in some interpretation I , we construct an
interpretation J as follows:

projI(j) =

{
i if i ∈ I ∧ αI [j ] = αI [i ]

λ otherwise

αJ [a[j ]] = αI [a[projI(j)]]

αJ [x ] = αI [x ] for every non-array variable and constant

J interprets the symbols occuring in formula (2) in the same way as I .
Therefore, (2) holds in J.
To prove that formula (1) holds in J, it suffices to show:

J |=
∧
i∈In

(F [i ] → G [i ]) implies J |= ∀i . (F [i ] → G [i ])
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Proof of Theorem (cont)

Assume J |=
∧

i∈In(F [i ] → G [i ]). Show:

F [i ] → F [projI(i)] → G [projI(i)] → G [i ]

The first implication F [i ] → F [projI(i)] can be shown by structural
induction over F . Base cases:

var1 = var2 → projI(var1) = projI(var2): trivial.

evar1 6= var2 → projI(evar1) 6= projI(var2):
By definition of I: evar1 ∈ I \ {λ}.
If evar1 = projI(evar1) = projI(var2), then var2 ∈ I \ {λ}, hence
evar1 = projI(var2) = var2

var1 6= evar2 analogously.

The induction step is trivial.
The second implication F [projI(i)] → G [projI(i)] holds by assumption.
The third implication G [projI(i)] =⇒ G [i ] holds because G contains
variables i only in array reads a[i ]. By definition of J:
αJ [a[i ]] = αJ [a[projI(i)]].
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Theory of Integer-Indexed Arrays



Theory of Integer-Indexed Arrays TZ
A

≤ enables reasoning about subarrays and properties such as subarray is
sorted or partitioned.

signature of TZ
A : ΣZ

A = ΣA ∪ ΣZ

axioms of TZ
A : both axioms of TA and TZ
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Array Property Fragment of TZ
A

Array property: ΣZ
A-formula of the form

∀i . F [i ] → G [i ] ,

where i is a list of integer variables.

F [i ] index guard:
iguard → iguard ∧ iguard | iguard ∨ iguard | atom
atom → expr ≤ expr | expr = expr
expr → uvar | pexpr

pexpr → pexpr′

pexpr′ → Z | Z · evar | pexpr′ + pexpr′

where uvar is any universally quantified integer variable,
and evar is any existentially quantified or free integer variable.
G [i ] value constraint:
Any occurrence of a quantified index variable i must be as a read into
an array, a[i ], for array term a. Array reads may not be nested; e.g.,
a[b[i ]] is not allowed.

Array property fragment of TZ
A consists of formulae that are Boolean

combinations of quantifier-free ΣZ
A-formulae and array properties.
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Application: array property fragments

Array equality a = b in TA:

∀i . a[i ] = b[i ]

Bounded array equality beq(a, b, `, u) in TZ
A :

∀i . ` ≤ i ≤ u → a[i ] = b[i ]

Universal properties F [x ] in TA:

∀i . F [a[i ]]

Bounded universal properties F [x ] in TZ
A :

∀i . ` ≤ i ≤ u → F [a[i ]]

Bounded and unbounded sorted arrays sorted(a, `, u) in TZ
A ∪ TZ or

TZ
A ∪ TQ:

∀i , j . ` ≤ i ≤ j ≤ u → a[i ] ≤ a[j ]

Partitioned arrays partitioned(a, `1, u1, `2, u2) in TZ
A ∪ TZ or

TZ
A ∪ TQ:
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The Decision Procedure (Step 1–2)

The idea again is to reduce universal quantification to finite conjunction.
Given F from the array property fragment of TZ

A , decide its
TZ

A -satisfiability as follows:

Step 1
Put F in NNF.

Step 2
Apply the following rule exhaustively to remove writes:

F [a〈i / e〉]
F [a′] ∧ a′[i ] = e ∧ (∀j . j 6= i → a[j ] = a′[j ])

for fresh a′ (write)

To meet the syntactic requirements on an index guard, rewrite the third
conjunct as

∀j . j ≤ i − 1 ∨ i + 1 ≤ j → a[j ] = a′[j ] .
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The Decision Procedure (Step 3–4)

Step 3
Apply the following rule exhaustively to remove existential quantification:

F [∃i . G [i ]]

F [G [j ]]
for fresh j (exists)

Existential quantification can arise during Step 1 if the given formula has a
negated array property.

Step 4
From the output of Step 3, F3, construct the index set I:

I =
{t : ·[t] ∈ F3 such that t is not a universally quantified variable}
∪ {t : t occurs as a pexpr in the parsing of index guards}

If I = ∅, then let I = {0}. The index set contains all relevant symbolic
indices that occur in F3.
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The Decision Procedure (Step 5–6)

Step 5
Apply the following rule exhaustively to remove universal quantification:

H[∀i . F [i ] → G [i ]]

H

∧
i∈In

(
F [i ] → G [i ]

) (forall)

n is the size of the block of universal quantifiers over i .

Step 6
F5 is quantifier-free in the combination theory TA ∪ TZ. Decide the
(TA ∪ TZ)-satisfiability of the resulting formula.
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Example

ΣZ
A-formula:

F :
(∀i . ` ≤ i ≤ u → a[i ] = b[i ])
∧ ¬(∀i . ` ≤ i ≤ u + 1 → a〈u + 1 / b[u + 1]〉[i ] = b[i ])

In NNF, we have

F1 :
(∀i . ` ≤ i ≤ u → a[i ] = b[i ])
∧ (∃i . ` ≤ i ≤ u + 1 ∧ a〈u + 1 / b[u + 1]〉[i ] 6= b[i ])

Step 2 produces

F2 :

(∀i . ` ≤ i ≤ u → a[i ] = b[i ])
∧ (∃i . ` ≤ i ≤ u + 1 ∧ a′[i ] 6= b[i ])
∧ a′[u + 1] = b[u + 1]
∧ (∀j . j ≤ u + 1 − 1 ∨ u + 1 + 1 ≤ j → a[j ] = a′[j ])
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Step 3 removes the existential quantifier by introducing a fresh constant k:

F3 :

(∀i . ` ≤ i ≤ u → a[i ] = b[i ])
∧ ` ≤ k ≤ u + 1 ∧ a′[k] 6= b[k]
∧ a′[u + 1] = b[u + 1]
∧ (∀j . j ≤ u + 1 − 1 ∨ u + 1 + 1 ≤ j → a[j ] = a′[j ])

Simplifying,

F ′3 :

(∀i . ` ≤ i ≤ u → a[i ] = b[i ])
∧ ` ≤ k ≤ u + 1 ∧ a′[k] 6= b[k]
∧ a′[u + 1] = b[u + 1]
∧ (∀j . j ≤ u ∨ u + 2 ≤ j → a[j ] = a′[j ])

The index set is

I = {k , u + 1} ∪ {`, u, u + 2} ,

which includes the read terms k and u + 1 and the terms `, u, and u + 2
that occur as pexprs in the index guards.
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Step 5 rewrites universal quantification to finite conjunction over this set:

F5 :

∧
i ∈ I

(` ≤ i ≤ u → a[i ] = b[i ])

∧ ` ≤ k ≤ u + 1 ∧ a′[k] 6= b[k]
∧ a′[u + 1] = b[u + 1]

∧
∧

j ∈ I
(j ≤ u ∨ u + 2 ≤ j → a[j ] = a′[j ])

Expanding the conjunctions according to the index set I and simplifying
according to trivially true or false antecedents (e.g., ` ≤ u + 1 ≤ u
simplifies to ⊥, while u ≤ u ∨ u + 2 ≤ u simplifies to >) produces:
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F ′5 :

(` ≤ k ≤ u → a[k] = b[k]) (1)
∧ (` ≤ u → a[`] = b[`] ∧ a[u] = b[u]) (2)
∧ ` ≤ k ≤ u + 1 (3)
∧ a′[k] 6= b[k] (4)
∧ a′[u + 1] = b[u + 1] (5)
∧ (k ≤ u ∨ u + 2 ≤ k → a[k] = a′[k]) (6)
∧ (` ≤ u ∨ u + 2 ≤ ` → a[`] = a′[`]) (7)
∧ a[u] = a′[u] ∧ a[u + 2] = a′[u + 2] (8)

(TA ∪ TZ)-unsatisfiability of this quantifier-free (ΣA ∪ ΣZ)-formula can be
decided using the techniques of Combination of Theories.
Informally, ` ≤ k ≤ u + 1 (3)

If k ∈ [`, u] then a[k] = b[k] (1). Since k ≤ u then a[k] = a′[k]
(6), contradicting a′[k] 6= b[k] (4).

if k = u + 1, a′[k] 6= b[k] = b[u + 1] = a′[u + 1] = a′[k] by (4)
and (5), a contradiction.

Hence, F is TZ
A -unsatisfiable.
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Correctness of Decision Procedure

Theorem

Consider a ΣZ
A ∪ Σ-formula F from the array property fragment of

TZ
A ∪ T . The output F5 of Step 5 of the algorithm is

TZ
A ∪ T -equisatisfiable to F .
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Proof of Theorem

Proof: The proof proceeds using the same strategy as for TA.
It is easy to see that steps 1–3 do not change the satisfiability of formula.
For step 4–5 we need to show:

(1) H[∀i . (F [i ] → G [i ])] is satisfiable
iff.

(2) H[
∧

i∈In(F [i ] → G [i ])] is satisfiable.

⇒: Obviously formula (1) implies formula (2).
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Proof of Theorem (cont)

If the formula (2) holds in some interpretation I = (DI , αI ), we construct
an interpretation J = (DJ , αJ) with DJ := DI and

projI(j) =


max{αI [i ]|i ∈ I ∧ αI [i ] ≤ αI [j ]} if for some i ∈ I:

αI [i ] ≤ αI [j ]

min{αI [i ]|i ∈ I ∧ αI [i ] ≥ αI [j ]} otherwise

αJ [a[j ]] = αI [a[projI(j)]]

αJ [x ] = αI [x ] for every non-array variable and constant

J interprets the symbols occuring in formula (2) in the same way as I .
Therefore, (2) holds in J.
To prove that formula (1) holds in J, it suffices to show:

J |=
∧
i∈In

(F [i ] → G [i ]) implies J |= ∀i . (F [i ] → G [i ])
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Proof of Theorem (cont)

Assume J |=
∧

i∈In(F [i ] → G [i ]). Show:

F [i ] → F [projI(i)] → G [projI(i)] → G [i ]

The first implication F [i ] → F [projI(i)] can be shown by structural
induction over F . Base cases:

expr1 ≤ expr2: see exercise.

expr1 = expr2: follows from first case since it is equivalent to

expr1 ≤ expr2 ∧ expr2 ≤ expr1 .

The induction step is trivial.
The second implication F [projI(i)] → G [projI(i)] holds by assumption.
The third implication G [projI(i)] =⇒ G [i ] holds because G contains
variables i only in array reads a[i ]. By definition of J:
αJ [a[i ]] = αJ [a[projI(i)]].
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Nelson-Oppen Theory Combination



Combining Decision Procedures: Nelson-Oppen Method

Motivation: How do we show that

F : 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

is (TE ∪ TZ)-unsatisfiable?

Given

Multiple Theories Ti over signatures Σi

(constants, functions, predicates)
with corresponding decision procedures Pi for Ti -satisfiability.

Goal

Decide satisfiability of a sentence in theory ∪iTi .
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Nelson-Oppen Combination Method (N-O Method)

Σ1 ∩ Σ2 = {=}

Σ1-theory T1

P1 for T1-satisfiability

of quantifier-free Σ1-formulae

Σ2-theory T2

P2 for T2-satisfiability

of quantifier-free Σ2-formulae

P for (T1 ∪ T2)-satisfiability
of quantifier-free (Σ1 ∪ Σ2)-formulae

We show how to get Procedure P from Procedures P1 and P2.
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Nelson-Oppen: Limitations

Given formula F in theory T1 ∪ T2.

1 F must be quantifier-free.

2 Signatures Σi of the combined theory only share =, i.e.,

Σ1 ∩ Σ2 = {=}

3 Theories must be stably infinite.

Note:

Algorithm can be extended to combine arbitrary number of theories
Ti — combine two, then combine with another, and so on.

We restrict F to be conjunctive formula — otherwise convert to DNF
and check each disjunct.
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Stably Infinite Theories

Problem: The T1/T2-interpretations must have the same data domain;
it turns out same cardinality, e.g. infinite, is enough.

Definition (stably infinite)

A Σ-theory T is stably infinite iff
for every quantifier-free Σ-formula F :

if F is T -satisfiable
then there exists some infinite T -interpretation that satisfies F

with infinite cardinality.
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Example: Stably Infinite

TZ: stably infinite (all T -interpretations are infinite).

TQ: stably infinite (all T -interpretations are infinite).

TE: stably infinite (one can add infinitely many fresh and distinct
values).

Σ-theory T with Σ : {a, b,=} and axiom ∀x . x = a ∨ x = b:
not stable infinite,
since every T -interpretation has at most two elements.
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Example: ΣE and ΣZ

Consider quantifier-free conjunctive (ΣE ∪ ΣZ)-formula

F : 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2) .

The signatures of TE and TZ only share =. Also, both theories are stably
infinite. Hence, the NO combination of the decision procedures for TE and
TZ decides the (TE ∪ TZ)-satisfiability of F .

F is (TE ∪ TZ)-unsatisfiable:
The first two literals imply x = 1 ∨ x = 2 so that
f (x) = f (1) ∨ f (x) = f (2). This contradicts last two literals.
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N-O Overview

Phase 1: Variable Abstraction

Given conjunction Γ in theory T1 ∪ T2.

Convert to conjunction Γ1 ∪ Γ2 s.t.

Γi in theory Ti

Γ1 ∪ Γ2 satisfiable iff Γ satisfiable.

Phase 2: Check

If there is some set S of equalities and disequalities between the
shared variables of Γ1 and Γ2

shared(Γ1, Γ2) = free(Γ1) ∩ free(Γ2)
s.t. S ∪ Γi are Ti -satisfiable for all i ,
then Γ is satisfiable.

Otherwise, unsatisfiable.
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Nelson-Oppen Method: Overview

Consider quantifier-free conjunctive (Σ1 ∪ Σ2)-formula F .

Two versions:

nondeterministic — simple to present, but high complexity

deterministic — efficient

Nelson-Oppen (N-O) method proceeds in two steps:

Phase 1 (variable abstraction)
— same for both versions

Phase 2
nondeterministic: guess equalities/disequalities and check
deterministic: generate equalities/disequalities by equality propagation
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Phase 1: Variable abstraction

Given quantifier-free conjunctive (Σ1 ∪ Σ2)-formula F .
Transform F into two quantifier-free conjunctive formulae

Σ1-formula F1 and Σ2-formula F2

s.t. F is (T1 ∪ T2)-satisfiable iff F1 ∧ F2 is (T1 ∪ T2)-satisfiable
F1 and F2 are linked via a set of shared variables.

For term t, let hd(t) be the root symbol, e.g. hd(f (x)) = f .
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Generation of F1 and F2

For i , j ∈ {1, 2} and i 6= j , repeat the transformations
1 if function f ∈ Σi and hd(t) ∈ Σj ,

F [f (t1, . . . , t, . . . , tn)] eqsat. F [f (t1, . . . ,w , . . . , tn)] ∧ w = t

2 if predicate p ∈ Σi and hd(t) ∈ Σj ,

F [p(t1, . . . , t, . . . , tn)] eqsat. F [p(t1, . . . ,w , . . . , tn)] ∧ w = t

3 if hd(s) ∈ Σi and hd(t) ∈ Σj ,

F [s = t] eqsat. F [>] ∧ w = s ∧ w = t

4 if hd(s) ∈ Σi and hd(t) ∈ Σj ,

F [s 6= t] eqsat. F [w1 6= w2] ∧ w1 = s ∧ w2 = t

where w , w1, and w2 are fresh variables.
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Example: Phase 1

Consider (ΣE ∪ ΣZ)-formula

F : 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2) .

According to transformation 1, since f ∈ ΣE and 1 ∈ ΣZ, replace f (1) by
f (w1) and add w1 = 1. Similarly, replace f (2) by f (w2) and add w2 = 2.
Now, the literals

ΓZ : {1 ≤ x , x ≤ 2, w1 = 1, w2 = 2}

are TZ-literals, while the literals

ΓE : {f (x) 6= f (w1), f (x) 6= f (w2)}

are TE -literals. Hence, construct the ΣZ-formula

F1 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

and the ΣE -formula

F2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2) .

F1 and F2 share the variables {x ,w1,w2}.
F1 ∧ F2 is (TE ∪ TZ)-equisatisfiable to F .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 293 / 436



Example: Phase 1

Consider (ΣE ∪ ΣZ)-formula

F : f (x) = x + y ∧ x ≤ y + z ∧ x + z ≤ y ∧ y = 1 ∧ f (x) 6= f (2) .

In the first literal, hd(f (x)) = f ∈ ΣE and hd(x + y) = + ∈ ΣZ; thus,
by (3), replace the literal with

w1 = f (x) ∧ w1 = x + y .

In the final literal, f ∈ ΣE but 2 ∈ ΣZ, so by (1), replace it with

f (x) 6= f (w2) ∧ w2 = 2 .

Now, separating the literals results in two formulae:

F1 : w1 = x + y ∧ x ≤ y + z ∧ x + z ≤ y ∧ y = 1 ∧ w2 = 2

is a ΣZ-formula, and

F2 : w1 = f (x) ∧ f (x) 6= f (w2)

is a ΣE -formula.
The conjunction F1 ∧ F2 is (TE ∪ TZ)-equisatisfiable to F .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 294 / 436



Phase 2: Guess and Check (Nondeterministic)

Phase 1 separated (Σ1 ∪ Σ2)-formula F into two formulae:
Σ1-formula F1 and Σ2-formula F2

F1 and F2 are linked by a set of shared variables:
V = shared(F1,F2) = free(F1) ∩ free(F2)

Let E be an equivalence relation over V .

The arrangement α(V ,E ) of V induced by E is:

α(V ,E ) :
∧

u,v ∈ V . uEv

u = v ∧
∧

u,v ∈ V . ¬(uEv)

u 6= v
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Correctness of Phase 2

Lemma

The original formula F is (T1 ∪ T2)-satisfiable iff
there exists an equivalence relation E of V s.t.

(1) F1 ∧ α(V ,E ) is T1-satisfiable, and
(2) F2 ∧ α(V ,E ) is T2-satisfiable.

Proof:

⇒ If F is (T1 ∪ T2)-satisfiable, then F1 ∧ F2 is (T1 ∪ T2)-satisfiable,
hence there is a T1 ∪ T2-Interpretation I with I |= F1 ∧ F2.

Define E ⊆ V × V with u E v iff I |= u = v .
Then E is a equivalence relation.
By definition of E and α(V ,E ), I |= α(V ,E ).
Hence I |= F1 ∧ α(V ,E ) and I |= F2 ∧ α(V ,E ).
Thus, these formulae are T1- and T2-satisfiable, respectively.
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⇐ Let I1 and I2 be T1- and T2-interpretations, respectively, with

I1 |= F1 ∧ α(V ,E ) and I2 |= F2 ∧ α(V ,E ).

W.l.o.g. assume that αI1 [=](v ,w) iff v = w iff αI2 [=](v ,w).
(Otherwise, replace DIi with DIi/αIi [=])

Since T1 and T2 are stably infinite, we can assume that DI1 and DI2

are of the same cardinality.

Since I1 |= α(V ,E ) and I2 |= α(V ,E ), for x , y ∈ V :

αI1 [x ] = αI1 [y ] iff αI2 [x ] = αI2 [y ].

Construct bijective function g : DI1 → DI2 with g(αI1 [x ]) = αI2 [x ]
for all x ∈ V . Define I as follows: DI = DI2 ,
αI [x ] = αI2 [x ](= g(αI1 [x ])) for x ∈ V ,
αI [=](v ,w) iff v = w ,
αI [f2] = αI2 [f2] for f2 ∈ Σ2,
αI [f1](v1, . . . , vn) = g(αI1 [f1](g−1(v1), . . . , g−1(vn))) for f1 ∈ Σ1.

Then I is a T1 ∪ T2-interpretation, and satisfies F1 ∧ F2.
Hence F is T1 ∪ T2-satisfiable.
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Example: Phase 2

Consider (ΣE ∪ ΣZ)-formula
F : 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

Phase 1 separates this formula into the ΣZ-formula
F1 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

and the ΣE -formula
F2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)

with
V = shared(F1,F2) = {x ,w1,w2}

There are 5 equivalence relations to consider, which we list by stating the
partitions:
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Example: Phase 2 (cont)

1 {{x ,w1,w2}}, i.e., x = w1 = w2:
x = w1 and f (x) 6= f (w1) ⇒ F2 ∧ α(V ,E ) is TE -unsatisfiable.

2 {{x ,w1}, {w2}}, i.e., x = w1, x 6= w2:
x = w1 and f (x) 6= f (w1) ⇒ F2 ∧ α(V ,E ) is TE -unsatisfiable.

3 {{x ,w2}, {w1}}, i.e., x = w2, x 6= w1:
x = w2 and f (x) 6= f (w2) ⇒ F2 ∧ α(V ,E ) is TE -unsatisfiable.

4 {{x}, {w1,w2}}, i.e., x 6= w1, w1 = w2:
w1 = w2 and w1 = 1 ∧ w2 = 2
⇒ F1 ∧ α(V ,E ) is TZ-unsatisfiable.

5 {{x}, {w1}, {w2}}, i.e., x 6= w1, x 6= w2, w1 6= w2:
x 6= w1 ∧ x 6= w2 and x = w1 = 1 ∨ x = w2 = 2
(since 1 ≤ x ≤ 2 implies that x = 1 ∨ x = 2 in TZ)
⇒ F1 ∧ α(V ,E ) is TZ-unsatisfiable.

Hence, F is (TE ∪ TZ)-unsatisfiable.
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Example: Phase 2 (cont)

Consider the (Σcons ∪ ΣZ)-formula

F : car(x) + car(y) = z ∧ cons(x , z) 6= cons(y , z) .

After two applications of (1), Phase 1 separates F into the Σcons-formula
F1 : w1 = car(x) ∧ w2 = car(y) ∧ cons(x , z) 6= cons(y , z)

and the ΣZ-formula
F2 : w1 + w2 = z ,

with
V = shared(F1,F2) = {z ,w1,w2} .

Consider the equivalence relation E given by the partition
{{z}, {w1}, {w2}} .

The arrangement
α(V ,E ) : z 6= w1 ∧ z 6= w2 ∧ w1 6= w2

satisfies both F1 and F2: F1 ∧ α(V ,E ) is Tcons-satisfiable, and
F2 ∧ α(V ,E ) is TZ-satisfiable.
Hence, F is (Tcons ∪ TZ)-satisfiable.
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Practical Efficiency

Phase 2 was formulated as “guess and check”:
First, guess an equivalence relation E ,
then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the #
of shared variables. It is given by Bell numbers.
e.g., 12 shared variables ⇒ over four million equivalence relations.

Solution: Deterministic Version
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Deterministic Version

Phase 1 as before
Phase 2 asks the decision procedures P1 and P2 to propagate new
equalities.

Example 1:

Real linear arithmethic TR Theory of equality TE

PR PE

F : f (f (x)−f (y)) 6= f (z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z
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Phase 1: Variable Abstraction

F : f (f (x) − f (y)) 6= f (z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

f (x) ⇒ u f (y) ⇒ v u − v ⇒ w

ΓE : {f (w) 6= f (z), u = f (x), v = f (y)} . . .TE -formula

ΓR : {x ≤ y , y + z ≤ x , 0 ≤ z , w = u − v} . . .TR-formula

shared(ΓR, ΓE ) = {x , y , z , u, v ,w}

Nondeterministic version — over 200 E s!
Let’s try the deterministic version.
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Phase 2: Equality Propagation

PR s0 : 〈ΓR, ΓE , {}〉 PE

ΓR |= x = y

s1 : 〈ΓR, ΓE , {x = y}〉
ΓE ∪ {x = y} |= u = v

s2 : 〈ΓR, ΓE , {x = y , u = v}〉
ΓR ∪ {u = v} |= z = w

s3 : 〈ΓR, ΓE , {x = y , u = v , z = w}〉
ΓE ∪ {z = w} |= false

s4 : false
Contradiction. Thus, F is (TR ∪ TE )-unsatisfiable.

If there were no contradiction, F would be (TR ∪ TE )-satisfiable.
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Convex Theories

Definition (convex theory)

A Σ-theory T is convex iff
for every quantifier-free conjunction Σ-formula F

and for every disjunction
n∨

i=1

(ui = vi )

if F |=
n∨

i=1

(ui = vi )

then F |= ui = vi , for some i ∈ {1, . . . , n}

Claim

Equality propagation is a decision procedure for convex theories.
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Convex Theories

TE , TR, TQ, Tcons are convex

TZ,TA are not convex

Example: TZ is not convex

Consider quantifier-free conjunctive

F : 1 ≤ z ∧ z ≤ 2 ∧ u = 1 ∧ v = 2

Then
F |= z = u ∨ z = v

but

F 6|= z = u

F 6|= z = v
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Example:

The theory of arrays TA is not convex.
Consider the quantifier-free conjunctive ΣA-formula

F : a〈i / v〉[j ] = v .

Then
F ⇒ i = j ∨ a[j ] = v ,

but
F 6⇒ i = j
F 6⇒ a[j ] = v .
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What if T is Not Convex?

Case split when:

Γ |=
n∨

i=1

(ui = vi )

but

Γ 6|= ui = vi for all i = 1, . . . , n

For each i = 1, . . . , n, construct a branch on which
ui = vi is assumed.

If all branches are contradictory, then unsatisfiable.
Otherwise, satisfiable.
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Example 2: Non-Convex Theory

TZ not convex! TE convex

PZ PE

Γ :

{
1 ≤ x , x ≤ 2,
f (x) 6= f (1), f (x) 6= f (2)

}
in TZ ∪ TE

Replace f (1) by f (w1), and add w1 = 1.

Replace f (2) by f (w2), and add w2 = 2.

Result:

ΓZ =


1 ≤ x ,
x ≤ 2,
w1 = 1,
w2 = 2

 and ΓE =

{
f (x) 6= f (w1),
f (x) 6= f (w2)

}

shared(ΓZ, ΓE ) = {x ,w1,w2}
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Example 2: Non-Convex Theory

s0 : 〈ΓZ, ΓE , {}〉
ΓZ |= x = w1 ∨ x = w2

s1 : 〈ΓZ, ΓE , {x = w1}〉
ΓE ∪ {x = w1} |= ⊥

s2 : ⊥

s3 : 〈ΓZ, ΓE , {x = w2}〉
ΓE ∪ {x = w2} |= ⊥

s4 : ⊥

x = w1 x = w2

All leaves are labeled with ⊥ ⇒ Γ is (TZ ∪ TE )-unsatisfiable.
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Example 3: Non-Convex Theory

Γ :

{
1 ≤ x , x ≤ 3,

f (x) 6= f (1), f (x) 6= f (3), f (1) 6= f (2)

}
in TZ ∪ TE

Replace f (1) by f (w1), and add w1 = 1.

Replace f (2) by f (w2), and add w2 = 2.

Replace f (3) by f (w3), and add w3 = 3.

Result:

ΓZ =


1 ≤ x ,
x ≤ 3,
w1 = 1,
w2 = 2,
w3 = 3

 and ΓE =


f (x) 6= f (w1),
f (x) 6= f (w3),
f (w1) 6= f (w2)


shared(ΓZ, ΓE ) = {x ,w1,w2,w3}
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Example 3: Non-Convex Theory

s0 : 〈ΓZ, ΓE , {}〉
ΓZ |= x = w1 ∨ x = w2 ∨ x = w3

s1 : 〈ΓZ, ΓE , {x = w1}〉
ΓE ∪ {x = w1} |= ⊥

s2 : ⊥

s3 : 〈ΓZ, ΓE , {x = w2}〉 s4 : 〈ΓZ, ΓE , {x = w3}〉
ΓE ∪ {x = w3} |= ⊥

s5 : ⊥

x = w1 x = w2 x = w3

No more equations on middle leaf ⇒ Γ is (TZ ∪ TE )-satisfiable.
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DPLL(T)



Satisfiability and Conjunctive Theories

Suppose we have a TQ-formulae that is not conjunctive:

(x ≥ 0→y > z)∧ (x + y ≥ z→y ≤ z)∧ (y ≥ 0→x ≥ 0)∧x + y ≥ z

Our approach so far: Converting to DNF.
Yields in 8 conjuncts that have to be checked separately.

Is there a more efficient way to prove unsatisfiability?
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CNF and Propositional Core

Suppose we have the following TQ-formulae:

(x ≥ 0→y > z)∧ (x + y ≥ z→y ≤ z)∧ (y ≥ 0→x ≥ 0)∧x + y ≥ z

Converting to CNF and restricting to ≤:

(¬(0 ≤ x) ∨ ¬(y ≤ z)) ∧ (¬(z ≤ x + y) ∨ (y ≤ z))

∧(¬(0 ≤ y) ∨ (0 ≤ x)) ∧ (z ≤ x + y)

Now, introduce boolean variables for each atom:

P1 : 0 ≤ x P2 : y ≤ z

P3 : z ≤ x + y P4 : 0 ≤ y

Gives a propositional formula:

(¬P1 ∨ ¬P2) ∧ (¬P3 ∨ P2) ∧ (¬P4 ∨ P1) ∧ P3
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DPLL-Algorithm

The core feature of the DPLL-algorithm is Unit Propagation.

(¬P1 ∨ ¬P2) ∧ (¬P3 ∨ P2) ∧ (¬P4 ∨ P1) ∧ P3

The clause P3 is a unit clause; set P3 to >.
Then ¬P3 ∨ P2 is a unit clause; set P2 to >.
Then ¬P1 ∨ ¬P2 is a unit clause; set P1 to ⊥.
Then ¬P4 ∨ P1 is a unit clause; set P4 to ⊥.

Only solution is P3 ∧ P2 ∧ ¬P1 ∧ ¬P4.
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DPLL-Algorithm

Only solution is P3 ∧ P2 ∧ ¬P1 ∧ ¬P4.

P1 : 0 ≤ x P2 : y ≤ z

P3 : z ≤ x + y P4 : 0 ≤ y

This gives the conjunctive TQ-formula

z ≤ x + y ∧ y ≤ z ∧ x < 0 ∧ y < 0.
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DPLL(T) with Learning (CDCL)

We describe DPLL(T) by a set of rules modifying a configuration.
A configuration is a triple

〈M,F ,C 〉 ,

where

M (model) is a sequence of literals (that are currently set to true)
interspersed with backtracking points denoted by �.

F (formula) is a formula in CNF,
i. e., a set of clauses where each clause is a set of literals.

C (conflict) is either > or a conflict clause (a set of literals).
A conflict clause C is a clause with F ⇒ C and M 6|= C .
Thus, a conflict clause shows M 6|= F .
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Rule Based Description

We describe the algorithm by a set of rules, which each describe a set of
transitions between configurations, e. g.,

Explain
〈M,F ,C ∪ {`}〉

〈M,F ,C ∪ {`1, . . . , `k}〉
where ` /∈ C , {`1, . . . , `k , ¯̀} ∈ F ,
and ¯̀

1, . . . , ¯̀
k ≺ ¯̀ in M.

Here, ¯̀
1, . . . , ¯̀

k ≺ ` in M means the literals ¯̀
1, . . . , ¯̀

k occur in the
sequence M before the literal ` (and all literals appear in M).

Example: for M = P1P̄3P̄2P̄4, F = {{P1}, {P3, P̄4}}, and C = {P2}
the transition

〈M,F , {P2,P4}〉 −→ 〈M,F , {P2,P3}〉

is possible.
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Rules for CDCL (Conflict Driven Clause Learning)

Decide
〈M,F ,>〉

〈M · � · `,F ,>〉
where ` ∈ lit(F ), `, ¯̀ 6in M

Propagate
〈M,F ,>〉
〈M · `,F ,>〉

where {`1, . . . , `k , `} ∈ F
and ¯̀

1, . . . , ¯̀
k in M, `, ¯̀ 6in M.

Conflict
〈M,F ,>〉

〈M,F , {`1, . . . , `k}〉
where {`1, . . . , `k} ∈ F
and ¯̀

1, . . . , ¯̀
k in M.

Explain
〈M,F ,C ∪ {`}〉

〈M,F ,C ∪ {`1, . . . , `k}〉
where ` /∈ C , {`1, . . . , `k , ¯̀} ∈ F ,
and ¯̀

1, . . . , ¯̀
k ≺ ¯̀ in M.

Learn
〈M,F ,C 〉

〈M,F ∪ {C},C 〉
where C 6= >, C /∈ F .

Back
〈M,F , {`1, . . . , `k , `}〉
〈M ′ · `,F ,>〉

where {`1, . . . , `k , `} ∈ F ,
M = M ′ · � · · · ¯̀· · · ,
and ¯̀

1, . . . , ¯̀
k in M ′.
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Example: DPLL with Learning

P1∧ (¬P2∨P3)∧ (¬P4∨P3)∧ (P2∨P4)∧ (¬P1∨¬P4∨¬P3)∧ (P4∨¬P3)

The algorithm starts with M = ε, C = > and
F = {{P1}, {P̄2,P3}, {P̄4,P3}, {P2,P4}, {P̄1, P̄4, P̄3}, {P4, P̄3}}.

〈ε,F ,>〉 Propagate−→ 〈P1,F ,>〉
Decide−→ 〈P1�P̄2,F ,>〉

Propagate−→
〈P1�P̄2P4,F ,>〉

Propagate−→ 〈P1�P̄2P4P3,F ,>〉
Conflict−→

〈P1�P̄2P4P3,F , {P̄1, P̄4, P̄3}〉
Explain−→ 〈P1�P̄2P4P3,F , {P̄1, P̄4}〉

Learn−→
〈P1�P̄2P4P3,F

′, {P̄1, P̄4}〉
Back−→ 〈P1P̄4,F

′,>〉 Propagate−→
〈P1P̄4P2P3,F

′,>〉 Conflict−→ 〈P1P̄4P2P3,F
′, {P4, P̄3}〉

Explain−→
〈P1P̄4P2P3,F

′, {P4, P̄2}〉
Explain−→ 〈P1P̄4P2P3,F

′, {P4}〉
Explain−→

〈P1P̄4P2P3,F
′, {P̄1}〉

Explain−→ 〈P1P̄4P2P3,F
′, ∅〉 Learn−→

〈P1P̄4P2P3,F
′ ∪ {∅}, ∅〉

where F ′ = F ∪ {{P̄1, P̄4}}.
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DPLL(T): DPLL Modulo Theory

The DPLL/CDCL algorithm is combined with a Decision Procedures for a
Theory

DPLL engine
Theory,
e.g., TQ

Truth Assignment

Unsatisfiable Core

DPLL takes the propositional core of a formula,
assigns truth-values to atoms.

Theory takes a conjunctive formula (conjunction of literals),
returns a minimal unsatisfiable core.
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Minimal Unsatisfiable Core

Suppose we have a decision procedure for a conjunctive theory,
e.g., Simplex Algorithm for TQ.

Given an unsatisfiable conjunction of literals `1 ∧ · · · ∧ `n.
Find a subset UnsatCore = {`i1 , . . . , `im}, such that

`i1 ∧ . . . ∧ `im is unsatisfiable.

For each subset of UnsatCore the conjunction is satisfiable.

Possible approach: check for each literal whether it can be omitted.
−→ n calls to decision procedure.

Most decision procedures can give small unsatisfiable cores for free.
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Unsatisfiable Core and Conflict Clause

Theory returns an unsatisfiable core:

a conjunction of literals from current truth assignment

that is unsatisfible.

DPLL learns conflict clauses, a disjunction of literals

that are implied by the formula

and in conflict to current truth assignment.

Thus the negation of an unsatisfiable core is a conflict clause.
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DPLL(T)

The DPLL part only needs one new rule:

TConflict
〈M,F ,>〉
〈M,F ,C 〉

where M is unsatisfiable in the theory
and ¬C an unsatisfiable core of M.
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Example: DPLL(T)

F : y ≥ 1 ∧ (x ≥ 0 → y ≤ 0) ∧ (x ≤ 1 → y ≤ 0)

Atomic propositions:

P1 : y ≥ 1 P2 : x ≥ 0

P3 : y ≤ 0 P4 : x ≤ 1

Propositional core of F in CNF:

F0 : (P1) ∧ (¬P2 ∨ P3) ∧ (¬P4 ∨ P3)
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Running DPLL(T)

F0 : {{P1}, {P̄2,P3}, {P̄4,P3}}
P1 : y ≥ 1 P2 : x ≥ 0 P3 : y ≤ 0 P4 : x ≤ 1

〈ε,F0,>〉
Propagate−→ 〈P1,F0,>〉

Decide−→ 〈P1�P3,F0,>〉
TConflict−→

〈P1�P3,F0, {P̄1, P̄3}〉
Learn−→ 〈P1�P3,F1, {P̄1, P̄3}〉

Back−→
〈P1P̄3,F1,>〉

Propagate−→ 〈P1P̄3P̄2,F1,>〉
Propagate−→

〈P1P̄3P̄2P̄4,F1,>〉
TConflict−→ 〈P1P̄3P̄2P̄4,F1, {P2,P4}〉

Explain−→
〈P1P̄3P̄2P̄4,F1, {P2,P3}〉

Explain−→ 〈P1P̄3P̄2P̄4,F1, {P3}〉
Explain−→

〈P1P̄3P̄2P̄4,F1, {P̄1}〉
Explain−→ 〈P1P̄3P̄2P̄4,F1, ∅〉

Learn−→
〈P1P̄3P̄2P̄4,F1 ∪ {∅}, ∅〉

where F1 := F0 ∪ {{P̄1, P̄3}}

No further step is possible; the formula F is unsatisfiable.
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Correctness of DPLL(T)

Theorem (Correctness of DPLL(T))

Let F be a Σ-formula and F ′ its propositional core. Let

〈ε,F ′,>〉 = 〈M0,F0,C0〉 −→ . . . −→ 〈Mn,Fn,Cn〉

be a maximal sequence of rule application of DPLL(T).

Then F is T -satisfiable iff Cn is >.

Before proving the theorem, we note some important invariants:

Mi never contains a literal more than once.
Mi never contains ` and ¯̀.
Every � in Mi is followed immediately by a literal.
If Ci = {`1, . . . , `k} then ¯̀

1, . . . , ¯̀
k in M.

Ci is always implied by Fi (or the theory).
F is equivalent to Fi for all steps i of the computation.
If a literal ` in M is not immediately preceded by �, then F contains
a clause {`, `1, . . . , `k} and ¯̀

1, . . . , ¯̀
k ≺ ` in M.
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Correctness proof

Proof: If the sequence ends with 〈Mn,Fn,>〉 and there is no rule
applicable, then:

Since Decide is not applicable, all literals of Fn appear in Mn either
positively or negatively.
Since Conflict is not applicable, for each clause at least one literal
appears in Mn positively.
Since TConflict is not applicable, the conjunction of truth
assignments of Mn is satisfiable by a model I .

Thus, I is a model for Fn, which is equivalent to F .

If the sequence ends with 〈Mn,Fn,Cn〉 with Cn 6= >.
Assume Cn = {`1, . . . , `k , `} 6= ∅. W.l.o.g., ¯̀

1, . . . , ¯̀
k ≺ ¯̀. Then:

Since Learn is not applicable, Cn ∈ Fn.
Since Explain is not applicable ¯̀ must be immediately preceded by �.
However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and Cn = ∅ (= ⊥).
Since F implies Cn, F is not satisfiable.
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Total Correctness of DPLL with Learning

Theorem (Termination of DPLL)

Let F be a propositional formula. Then every sequence

〈ε,F ,>〉 = 〈M0,F0,C0〉 −→ 〈M1,F1,C1〉 −→ . . .

terminates.
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Proof of Total Correctness

We define some well-ordering on the domains:

We define M ≺ M ′ if M�� comes lexicographically before M ′��,
where every literal is considered to be smaller than �.
Example: `1`2(��) ≺ `1� ¯̀

2`3(��) ≺ `1� ¯̀
2(��) ≺ `1(��)

For a sequence M = ¯̀
1 . . . ¯̀

n, the conflict clauses are ordered by:
C ≺M C ′, iff C 6= >,C ′ = > or for some k ≤ n:

C ∩ {`k+1, . . . , `n} = C ′ ∩ {`k+1, . . . `n} and `k /∈ C , `k ∈ C ′.
Example: ∅ ≺ ¯̀

1
¯̀
2

¯̀
3
{`2} ≺ ¯̀

1
¯̀
2

¯̀
3
{`1, `3} ≺ ¯̀

1
¯̀
2

¯̀
3
{`2, `3} ≺ ¯̀

1
¯̀
2

¯̀
3
>

These are well-orderings, because the domains are finite.

Termination Proof: Every rule application decreases the value of
〈Mi ,Fi ,Ci 〉 according to the well-ordering:

〈M,F ,C 〉 ≺ 〈M ′,F ′,C ′〉, iff


M ≺ M ′,

or M = M ′,C ≺M C ′,

or M = M ′,C = C ′,C ∈ F ,C /∈ F ′.
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Program Correctness



Road Map

So far: decision procedures to decide validity in theories

In the next lectures: the “practical” part

Application of decision procedures to program verification
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The programming language pi

pi is an imperative programming language.

built-in program annotations in first order logic

annotation F at location L asserts that F is true whenever program
control reaches L
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Program 1: LinearSearch

@pre 0 ≤ ` ∧ u < |a|
@post rv ↔ ∃i . ` ≤ i ≤ u ∧ a[i ] = e
bool LinearSearch(int[] a, int `, int u, int e) {
for

@L : ` ≤ i ∧ (∀j . ` ≤ j < i → a[j ] 6= e)
(int i := `; i ≤ u; i := i + 1) {
if (a[i ] = e) return true;
}
return false;
}
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Proving Partial Correctness

A function f is partially correct if
when f ’s precondition is satisfied on entry and f terminates,
then f ’s postcondition is satisfied.

A function + annotation is reduced to finite set of verification
conditions (VCs), FOL formulae

If all VCs are valid, then the function obeys its specification (partially
correct)
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Loops

Loop invariants

Each loop needs an annotation @L called loop invariant

while loop: L must hold

at the beginning of each iteration before the loop condition is evaluated

for loop: L must hold

after the loop initialization, and
before the loop condition is evaluated
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Basic Paths: Loops

To handle loops, we break the function into basic paths.

@ ← precondition or loop invariant

finite sequence of instructions
(with no loop invariants)

@ ← loop invariant, assertion, or postcondition
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Basic Paths: Loops

A basic path:

begins at the function pre condition or a loop invariant,

ends at an assertion, e.g., the loop invariant or the function post,

does not contain the loop invariant inside the sequence,

conditional branches are replaced by assume statements.

Assume statement c

Remainder of basic path is executed only if c holds

Guards with condition c split the path (assume(c) and assume(¬c))
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Example: Basic Paths of LinearSearch

Visualization of basic paths of LinearSearch

@pre

L

@post

(1)

(2),(4)

(3)
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Example: Basic Paths of LinearSearch

(1)
@pre 0 ≤ ` ∧ u < |a|
i := `;
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j ] 6= e

(2)
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j ] 6= e
assume i ≤ u;
assume a[i ] = e;
rv := true;
@post rv ↔ ∃j . ` ≤ j ≤ u ∧ a[j ] = e
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Example: Basic Paths of LinearSearch

(3)
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j ] 6= e
assume i ≤ u;
assume a[i ] 6= e;
i := i + 1;
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j ] 6= e

(4)
@L : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j ] 6= e
assume i > u;
rv := false;
@post rv ↔ ∃j . ` ≤ j ≤ u ∧ a[j ] = e
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Proving Partial Correctness

Goal

Prove that annotated function f agrees with annotations

Therefore: Reduce f to finite set of verification conditions VC

Validity of VC implies that function behaviour agrees with annotations

Weakest precondition wp(F , S)

Informally: What must hold before executing statement S to ensure
that formula F holds afterwards?

wp(F , S) = weakest formula such that executing S results in formula
that satisfies F

For all states s such that s |= wp(F , S): successor state s ′ |= F .
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Proving Partial Correctness

Computing weakest preconditions

wp(F , assume c) ⇔ c → F

wp(F [v ], v := e) ⇔ F [e] (“substitute v with e”)

For S1; . . . ; Sn,
wp(F , S1; . . . ; Sn) ⇔ wp(wp(F , Sn), S1; . . . ; Sn−1)

Verification Condition of basic path

@ F
S1;
. . .
Sn;
@ G

is

F → wp(G , S1; . . . ; Sn)
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Proving Partial Correctness

Proving partial correctness for programs with loops

Input: Annotated program

Produce all basic paths P = {p1, . . . , pn}
For all p ∈ P: generate verification condition VC (p)

Check validity of
∧

p∈P VC (p)

Theorem
If
∧

p∈P VC (p) is valid, then each function agrees with its annotation.
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VC of basic path

(1)
@ F : x ≥ 0
S1 : x := x + 1;
@ G : x ≥ 1

The VC is
F → wp(G , S1)

That is,
wp(G , S1)
⇔ wp(x ≥ 1, x := x + 1)
⇔ (x ≥ 1){x 7→ x + 1}
⇔ x + 1 ≥ 1
⇔ x ≥ 0

Therefore the VC of path (1)
x ≥ 0 → x ≥ 0 ,

which is TZ-valid.
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Program 1: VC of basic path (2) of LinearSearch

(2)
@L : F : ` ≤ i ∧ ∀j . ` ≤ j < i → a[j ] 6= e
S1 : assume i ≤ u;
S2 : assume a[i ] = e;
S3 : rv := true;
@post G : rv ↔ ∃j . ` ≤ j ≤ u ∧ a[j ] = e

The VC is: F → wp(G , S1; S2; S3)

That is,
wp(G , S1; S2; S3)
⇔ wp(wp(rv ↔ ∃j . ` ≤ j ≤ u ∧ a[j ] = e, rv := true), S1; S2)
⇔ wp(true ↔ ∃j . ` ≤ j ≤ u ∧ a[j ] = e, S1; S2)
⇔ wp(∃j . ` ≤ j ≤ u ∧ a[j ] = e, S1; S2)
⇔ wp(wp(∃j . ` ≤ j ≤ u ∧ a[j ] = e, assume a[i ] = e), S1)
⇔ wp(a[i ] = e → ∃j . ` ≤ j ≤ u ∧ a[j ] = e, S1)
⇔ wp(a[i ] = e → ∃j . ` ≤ j ≤ u ∧ a[j ] = e, assume i ≤ u)
⇔ i ≤ u → (a[i ] = e → ∃j . ` ≤ j ≤ u ∧ a[j ] = e)
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Program 1: VC of basic path (2) of LinearSearch

Therefore the VC of path (2)

` ≤ i ∧ (∀j . ` ≤ j < i → a[j ] 6= e)
→(i ≤ u → (a[i ] = e → ∃j . ` ≤ j ≤ u ∧ a[j ] = e))

(1)

or, equivalently,

` ≤ i ∧ (∀j . ` ≤ j < i → a[j ] 6= e) ∧ i ≤ u ∧ a[i ] = e
→∃j . ` ≤ j ≤ u ∧ a[j ] = e

(2)

according to the equivalence

F1 ∧ F2 → (F3 → (F4 → F5)) ⇔ (F1 ∧ F2 ∧ F3 ∧ F4) → F5 .

This formula (2) is (TZ ∪ TA)-valid.
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Tool Demo: PiVC

Verifies pi programs

Available at http://cs.stanford.edu/people/jasonaue/pivc/
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Example 2: BinarySearch

The recursive function BinarySearch searches subarray of sorted array a of
integers for specified value e.

sorted: weakly increasing order, i.e.

sorted(a, `, u) ⇔ ∀i , j . ` ≤ i ≤ j ≤ u → a[i ] ≤ a[j ]

Defined in the combined theory of integers and arrays, TZ∪A

Function specifications

Function postcondition (@post)
It returns true iff a contains the value e in the range [`, u]

Function precondition (@pre)
It behaves correctly only if 0 ≤ ` and u < |a|
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Program 2: BinarySearch

@pre 0 ≤ ` ∧ u < |a| ∧ sorted(a, `, u)
@post rv ↔ ∃i . ` ≤ i ≤ u ∧ a[i ] = e
bool BinarySearch(int[] a, int `, int u, int e) {
if (` > u) return false;
else {
int m := (` + u) div 2;
if (a[m] = e) return true;
else if (a[m] < e) return BinarySearch(a,m + 1, u, e);
else return BinarySearch(a, `,m − 1, e);
}
}
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Example: Binary Search with Function Call Assertions

@pre 0 ≤ ` ∧ u < |a| ∧ sorted(a, `, u)
@post rv ↔ ∃i . ` ≤ i ≤ u ∧ a[i ] = e
bool BinarySearch(int[] a, int `, int u, int e) {
if (` > u) return false;
else {
int m := (` + u) div 2;
if (a[m] = e) return true;
else if (a[m] < e) {

@pre 0 ≤ m + 1 ∧ u < |a| ∧ sorted(a,m + 1, u);
bool tmp := BinarySearch(a,m + 1, u, e);
@post tmp ↔ ∃i . m + 1 ≤ i ≤ u ∧ a[i ] = e; return tmp;
} else {

@pre 0 ≤ ` ∧ m − 1 < |a| ∧ sorted(a, `,m − 1);
bool tmp := BinarySearch(a, `,m − 1, e);
@post tmp ↔ ∃i . ` ≤ i ≤ m − 1 ∧ a[i ] = e;
return tmp;
}
}
}
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Program 3: BubbleSort

@pre >
@post sorted(rv , 0, |rv | − 1)
int[] BubbleSort(int[] a0) {
int[] a := a0;
for @ >

(int i := |a| − 1; i > 0; i := i − 1) {
for @ >

(int j := 0; j < i ; j := j + 1) {
if (a[j ] > a[j + 1]) {
int t := a[j ];
a[j ] := a[j + 1];
a[j + 1] := t;
}
}
}
return a;
}
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Example 3: BubbleSort

Function BubbleSort sorts integer array a

a: unsorted sorted

by “bubbling” the largest element of the left unsorted region of a toward
the sorted region on the right.

Each iteration of the outer loop expands the sorted region by one cell.
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Sample execution of BubbleSort

2

j

3 4 1 2

i

5 6

2 3

j

4 1 2

i

5 6

2 3 4

j

1 2

i

5 6

2 3 1 4

j

2

i

5 6

2 3 1 2 4

j , i

5 6

2

j

3 1 2

i

4 5 6
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BubbleSort with runtime assertions

@pre >
@post >
int[] BubbleSort(int[] a0) {
int[] a := a0;
for @ >

(int i := |a| − 1; i > 0; i := i − 1) {
for @ >

(int j := 0; j < i ; j := j + 1) {
@ 0 ≤ j < |a| ∧ 0 ≤ j + 1 < |a|;
if (a[j ] > a[j + 1]) {
int t := a[j ];
a[j ] := a[j + 1];
a[j + 1] := t;
}

}
}
return a;
}
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BubbleSort with loop invariants

@pre >
@post sorted(rv , 0, |rv | − 1)
int[] BubbleSort(int[] a0) {
int[] a := a0;
for

@L1 :

−1 ≤ i < |a|
∧partitioned(a, 0, i , i + 1, |a| − 1)
∧sorted(a, i , |a| − 1)


(int i := |a| − 1; i > 0; i := i − 1) {
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for

@L2 :


1 ≤ i < |a| ∧ 0 ≤ j ≤ i
∧partitioned(a, 0, i , i + 1, |a| − 1)
∧partitioned(a, 0, j − 1, j , j)
∧sorted(a, i , |a| − 1)


(int j := 0; j < i ; j := j + 1) {
if (a[j ] > a[j + 1]) {
int t := a[j ];
a[j ] := a[j + 1];
a[j + 1] := t;
}
}
}
return a;
}
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Partition

partitioned(a, `1, u1, `2, u2)
⇔ ∀i , j . `1 ≤ i ≤ u1 < `2 ≤ j ≤ u2 → a[i ] ≤ a[j ]

in TZ ∪ TA.

That is, each element of a in the range [`1, u1] is ≤ each element in the
range [`2, u2].

Basic Paths of BubbleSort

(1)
@pre >;
a := a0;
i := |a| − 1;
@L1 : −1 ≤ i < |a| ∧ partitioned(a, 0, i , i + 1, |a| − 1)

∧sorted(a, i , |a| − 1)
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(2)
@L1 : −1 ≤ i < |a| ∧ partitioned(a, 0, i , i + 1, |a| − 1)

∧sorted(a, i , |a| − 1)
assume i > 0;
j := 0;

@L2 :

[
1 ≤ i < |a| ∧ 0 ≤ j ≤ i ∧ partitioned(a, 0, i , i + 1, |a| − 1)
∧partitioned(a, 0, j − 1, j , j) ∧ sorted(a, i , |a| − 1)

]
(3)

@L2 :

[
1 ≤ i < |a| ∧ 0 ≤ j ≤ i ∧ partitioned(a, 0, i , i + 1, |a| − 1)
∧partitioned(a, 0, j − 1, j , j) ∧ sorted(a, i , |a| − 1)

]
assume j < i ;
assume a[j ] > a[j + 1];
t := a[j ];
a[j ] := a[j + 1];
a[j + 1] := t;
j := j + 1;

@L2 :

[
1 ≤ i < |a| ∧ 0 ≤ j ≤ i ∧ partitioned(a, 0, i , i + 1, |a| − 1)
∧partitioned(a, 0, j − 1, j , j) ∧ sorted(a, i , |a| − 1)

]
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(4)

@L2 :

[
1 ≤ i < |a| ∧ 0 ≤ j ≤ i ∧ partitioned(a, 0, i , i + 1, |a| − 1)
∧partitioned(a, 0, j − 1, j , j) ∧ sorted(a, i , |a| − 1)

]
assume j < i ;
assume a[j ] ≤ a[j + 1];
j := j + 1;

@L2 :

[
1 ≤ i < |a| ∧ 0 ≤ j ≤ i ∧ partitioned(a, 0, i , i + 1, |a| − 1)
∧partitioned(a, 0, j − 1, j , j) ∧ sorted(a, i , |a| − 1)

]
(5)

@L2 :

[
1 ≤ i < |a| ∧ 0 ≤ j ≤ i ∧ partitioned(a, 0, i , i + 1, |a| − 1)
∧partitioned(a, 0, j − 1, j , j) ∧ sorted(a, i , |a| − 1)

]
assume j ≥ i ;
i := i − 1;
@L1 : −1 ≤ i < |a| ∧ partitioned(a, 0, i , i + 1, |a| − 1)

∧sorted(a, i , |a| − 1)
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(6)
@L1 : −1 ≤ i < |a| ∧ partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)
assume i ≤ 0;
rv := a;
@post sorted(rv , 0, |rv | − 1)

Visualization of basic paths of BubbleSort

@pre

L1

@post L2

(1)

(6) (2)
(5)

(3),(4)
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Proving Partial Correctness

A function is partially correct if
when the function’s precondition is satisfied on entry,
its postcondition is satisfied when the function halts.

A function + annotation is reduced to finite set of verification
conditions (VCs), FOL formulae

If all VCs are valid, then the function obeys its specification (partially
correct)
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Total Correctness

Given that the input satisfies the function precondition, the function
eventually halts and produces output that satisfies the function
postcondition.

Total Correctness = Partial Correctness + Termination

In the following, we focus on proving function termination. Therefore, we
need the notion of well-founded relations and ranking functions.
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Well-founded relation

Definition
For a set S , a binary relation ≺ is a well-founded relation iff there is no
infinite sequence s1, s2, s3 . . . of elements of S such that
s1 � s2 � s3 � · · · , where s ≺ t iff t � s.

Example
< is well-founded over N. Decreasing sequences w.r.t. < are always finite.
123 > 98 > 42 > 11 > 7 > 2 > 0

< is not well-founded over Q.
1 > 1

2 > 1
3 > 1

4 > · · ·
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Proving function termination

Choose set S with well-founded relation ≺
Usually set of n-tuples of natural numbers with the lexicographic
ordering.

Find function δ such that

δ maps program states to S , and
δ decreases according to ≺ along every basic path.

Such a function δ is called a ranking function.

Since ≺ is well-founded, there cannot exist an infinite sequence of program
states.
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Proving function termination: Example

Example: Ackermann function — recursive calls

Choose (N2, <2) as well-founded set

@pre x ≥ 0 ∧ y ≥ 0
@post rv ≥ 0
# (x , y) . . . ranking function δ : (x , y) 7→ (x , y)
int Ack(int x , int y) {
if (x = 0) {
return y + 1;

}
else if (y = 0) {
return Ack(x − 1, 1);

}
else {
int z := Ack(x , y − 1);
return Ack(x − 1, z);

}
}
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Proving function termination: Example

To prove function termination:

Show δ : (x , y) maps into N2, i.e.,
x ≥ 0 and y ≥ 0 are invariants

Show δ : (x , y) decreases from function entry to each recursive call.

The relevant basic paths are:
(1)

@pre x ≥ 0 ∧ y ≥ 0
# (x , y)
assume x 6= 0;
assume y = 0;
# (x − 1, 1)
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Proving function termination: Example

(2)
@pre x ≥ 0 ∧ y ≥ 0
# (x , y)
assume x 6= 0;
assume y 6= 0;
# (x , y − 1)

(3)
@pre x ≥ 0 ∧ y ≥ 0
# (x , y)
assume x 6= 0;
assume y 6= 0;
assume v1 ≥ 0;
z := v1;
# (x − 1, z)
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Proving function termination: Verification Condition

Showing decrease of ranking function

Basic path with ranking function:

@ F
# δ[x ]
S1;
...
Sn;
#κ[x ]

We must prove that
the value of κ after executing S1; · · · ; Sn

is less than
the value of δ before executing the statements

Thus, we show the verification condition

F → wp(κ ≺ δ[x0], S1; · · · ; Sn){x0 7→ x} .
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 370 / 436



Proving function termination: Verification Condition

Example: Ackermann function — verification condition for basic path (3)

(3)
@pre x ≥ 0 ∧ y ≥ 0
# (x , y)
assume x 6= 0;
assume y 6= 0;
assume v1 ≥ 0;
z := v1;
# (x − 1, z)

Verification condition:
x ≥ 0 ∧ y ≥ 0 →
wp((x − 1, z) <2 (x0, y0)

, assume x 6= 0; assume y 6= 0; assume v1 ≥ 0; z := v1)
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Proving function termination: Verification Condition

Computing the weakest precondition

wp((x − 1, z) <2 (x0, y0)
, assume x 6= 0; assume y 6= 0; assume v1 ≥ 0; z := v1)

⇔ wp((x − 1, v1) <2 (x0, y0)
, assume x 6= 0; assume y 6= 0; assume v1 ≥ 0)

⇔ x 6= 0 ∧ y 6= 0 ∧ v1 ≥ 0 → (x − 1, v1) <2 (x0, y0)

Renaming x0 and y0 to x and y , respectively, gives

x 6= 0 ∧ y 6= 0 ∧ v1 ≥ 0 → (x − 1, v1) <2 (x , y) .

We finally obtain the verification condition

x ≥ 0 ∧ y ≥ 0 ∧ x 6= 0 ∧ y 6= 0 ∧ v1 ≥ 0 → (x − 1, v1) <2 (x , y) .
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Proving function termination: Verification Condition

Verification conditions for the three basic paths

1 x ≥ 0 ∧ y ≥ 0 ∧ x 6= 0 ∧ y = 0 → (x − 1, 1) <2 (x , y)

2 x ≥ 0 ∧ y ≥ 0 ∧ x 6= 0 ∧ y 6= 0 → (x , y − 1) <2 (x , y)

3 x ≥ 0 ∧ y ≥ 0 ∧ x 6= 0 ∧ y 6= 0 ∧ v1 ≥ 0 → (x − 1, v1) <2 (x , y)
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Proving function termination: Example

BubbleSort — program with loops

Choose (N2, <2) as well-founded set

@pre >
@post >
int[] BubbleSort(int[] a0) {
int[] a := a0;
for

@L1 : i + 1 ≥ 0
# (i + 1, i + 1) . . . ranking function δ1

(int i := |a| − 1; i > 0; i := i − 1) {
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for

@L2 : i + 1 ≥ 0 ∧ i − j ≥ 0
# (i + 1, i − j) . . . ranking function δ2

(int j := 0; j < i ; j := j + 1) {
if (a[j ] > a[j + 1]) {
int t := a[j ];
a[j ] := a[j + 1];
a[j + 1] := t;
}
}
}
return a;
}
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We have to prove that

program is partially correct

function decreases along each basic path.

The relevant basic paths
(1)

@L1 : i + 1 ≥ 0
#L1 : (i + 1, i + 1)
assume i > 0;
j := 0;
#L2 : (i + 1, i − j)

(2),(3)
@L2 : i + 1 ≥ 0 ∧ i − j ≥ 0
#L2 : (i + 1, i − j)
assume j < i ;
· · ·
j := j + 1;
#L2 : (i + 1, i − j)
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(4)
@L2 : i + 1 ≥ 0 ∧ i − j ≥ 0
#L2 : (i + 1, i − j)
assume j ≥ i ;
i := i − 1;
#L1 : (i + 1, i + 1)

Verification conditions

Path (1)

i + 1 ≥ 0 ∧ i > 0 → (i + 1, i − 0) <2 (i + 1, i + 1) ,

Paths (2) and (3)

i + 1 ≥ 0 ∧ i − j ≥ 0 ∧ j < i → (i + 1, i − (j + 1)) <2 (i + 1, i − j) ,

Path (4)

i + 1 ≥ 0∧ i − j ≥ 0∧ j ≥ i → ((i −1) + 1, (i −1) + 1) <2 (i + 1, i − j) ,

which are valid. Hence, BubbleSort always halts.
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Summary

Specification and verification of sequential programs

Programming language pi and the PiVC verifier

Program specification

Program annotations as assertions
Including function preconditions, postconditions, loop invariants, . . .

Partial correctness

@pre + termination ⇒ @post
Notion of weakest preconditions and verification conditions

Total correctness

Additionally guarantees function termination
Notion of well-founded relations and ranking functions
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Craig Interpolation



Introduction

Given an unsatisfiable formula of the form:

F ∧ G

Can we find a “smaller” formula that explains the conflict?

I.e., a formula implied by F that is inconsistent with G ?

Under certain conditions, there is an interpolant I with

F ⇒ I .

I ∧ G is unsatisfiable.

I contains only symbols common to F and G .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 380 / 436



Craig Interpolation

A craig interpolant I for an unsatisfiable formula F ∧ G is

F ⇒ I .

I ∧ G is unsatisfiable.

I contains only symbols common to F and G .

Craig interpolants exists in many theories and fragments:

First-order logic.

Quantifier-free FOL.

Quantifier-free fragment of TE.

Quantifier-free fragment of TQ.

Quantifier-free fragment of T̂Z (augmented with divisibility).

However, QF fragment of TZ does not allow Craig interpolation.
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Program correctness

Consider this path through
LinearSearch:

@pre 0 ≤ ` ∧ u < |a|
i := `

assume i ≤ u

assume a[i ] 6= e

i := i + 1

assume i ≤ u

@ 0 ≤ i ∧ i < |a|

Single Static Assingment (SSA)
replaces assignments by assumes:

@pre 0 ≤ ` ∧ u < |a|
assume i1 = `

assume i1 ≤ u

assume a[i1] 6= e

assume i2 = i1 + 1

assume i2 ≤ u

@ 0 ≤ i2 ∧ i2 < |a|
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Program correctness and Interpolants

If program contains only assumes, the VC looks like

VC : P → (F1 → (F2 → (F3 → . . . (Fn → Q) . . . )))

Using ¬(F → G ) ⇔ F ∧ ¬G compute negation:

¬VC : P ∧ F1 ∧ F2 ∧ F3 ∧ · · · ∧ Fn ∧ ¬Q

If verification condition is valid ¬VC is unsatisfiable. We can compute
interpolants for any program point, e.g. for

P ∧ F1 ∧ F2 ∧ F3 ∧ · · · ∧ Fn ∧ ¬Q
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Verification Condition and Interpolants

Consider the path through
LinearSearch:

@pre 0 ≤ ` ∧ u < |a|
assume i1 = `

assume i1 ≤ u

assume a[i1] 6= e

assume i2 = i1 + 1

assume i2 ≤ u

@ 0 ≤ i2 ∧ i2 < |a|

The negated VC is unsatisfiable:

0 ≤ ` ∧ u < |a| ∧ i1 = `

∧ i1 ≤ u ∧ a[i1] 6= e ∧ i2 = i1 + 1

∧ i2 ≤ u ∧ (0 > i2 ∨ i2 ≥ |a|)

The interpolant I for the red and
blue part is

i1 ≥ 0 ∧ u < |a|

This is actually the loop invariant
needed to prove the assertion.
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Computing Interpolants

Suppose F1 ∧ Fn ∧ G1 ∧ Gn

How can we compute an interpolant?

The algorithm is dependent on the theory and the fragment.

We will show an algorithm for

Quantifier-free conjunctive fragment of TE.
Quantifier-free conjunctive fragment of TQ.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 385 / 436



Computing Interpolants for TE

F1 ∧ · · · ∧ Fn ∧ G1 ∧ · · · ∧ Gn is unsat

Let us first consider the case without function symbols.
The congruence closure algorithm returns unsat. Hence,

there is a disequality v 6= w and

v ,w have the same representative.

Example:

v 6= w ∧ x = y ∧ y = z ∧ z = u ∧ w = s ∧ t = z ∧ s = t ∧ v = x

v x y

z u

s tw

6=

The Interpolant “summarizes” the red edges: I : v 6= s ∧ x = t
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Computing Interpolants for TE

Given conjunctive formula:

F1 ∧ · · · ∧ Fn ∧ G1 ∧ · · · ∧ Gm

The following algorithm can be used unless there is a congruence edge:

Build the congruence closure graph. Edges Fi are colored red, Edges
Gj are colored blue.

Add (colored) disequality edge. Find circle and remove all other edges.

Combine maximal red paths, remove blue paths.

The F paths start and end at shared symbols.
Interpolant is the conjunction of the corresponding equalities.
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Handling Congruence Edges (Case 1)

Both side of the congruence edge belong to G .

i3 = i2 ∧ e 6= f ∧ a(i1) = e ∧ a(i4) = f ∧ i1 = i2 ∧ i3 = i4

a

fe

a

i4

i3i2

i1

Interpolant:
i2 = i3 ∧ e 6= f

Follow the path that connects the
arguments.

Also add summarized edges for that path.

Treat the congruence edge as blue edge
(ignore it).

Interpolant is conjunction of all summarized
paths.
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Handling Congruence Edges (Case 2)

Both side of the congruence edge belong to different formulas.

a(i1) = e ∧ i2 = i1 ∧ i3 = i2 ∧ a(i3) 6= e

a

e

a

i3

i2

i1

a

Interpolant: e = a(i2).

Function symbol a must be shared.

Follow the path that connects the
arguments.

Find first change from red to blue.

Lift function application on that term.

Summarize e = a(i1) ∧ i1 = i2 by
e = a(i2).

Compute remaining interpolant as usual.
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Handling Congruence Edges (Case 3)

Both side of the congruence edge belong to F .

a(i1) = e ∧ a(i4) = f ∧ i1 = i2 ∧ i3 = i4 ∧ i3 = i2 ∧ e 6= f

a

fe

a

i4

i3i2

i1

Interpolant:
i2 = i3 → e = f

Follow the path that connects the
arguments.

Find the first and last terms i2, i3 where
color changes.

Treat congruence edge as red edge and
summarize path.

The summary only holds under i2 = i3,i.e.,
add i2 = i3 → e = f to interpolants.

Summarize remaining path segments as
usual.
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Computing Interpolants for TQ

First apply Dutertre/de Moura algorithm.

Non-basic variables x1, . . . , xn.

Basic variables y1, . . . , ym.

yi =
∑

aijxj

Conjunctive formula
y1 ≤ b1 . . . ym′ ≤ bm′ ∧ ym′+1 ≤ bm′+1 . . . ym ≤ bm.

The algorithm returns unsatisfiable if and only if there is a line:
x · · · x y · · · y y · · · y

...
yi/yi 0 · · · 0 −/0 · · · −/0 −/0 · · · −/0

...

yi =
∑
−a′kyk , a′k ≥ 0 and

∑
−a′kbk > bi

(the constraint yi ≤ bi is not satisfied)
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Computing Interpolants for TQ

The conflict is:

bi ≥ yi =
∑
−a′kyk ≥

∑
−a′kbk > bi

or
0 = yi +

∑
a′kyk ≤ bi +

∑
a′kbk < 0

We split the y variables into blue and red ones:

0 =
m′∑
k=1

aikyk +
m∑

k=m′+1

aikyk ≤
m′∑
k=1

aikbk +
m∑

k=m′+1

aikbk < 0

where a′k ≥ 0, (a′i = 1). The interpolant I is the red part:

m′∑
k=1

aikyk ≤
m′∑
k=1

aikbk

where the basic variables yk are replaced by their definition.
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Example

x1 + x2 ≤ 3 ∧ x1 − x2 ≤ 1 ∧ x3 − x1 ≤ 1 ∧ x3 ≥ 4

y1 := x1 + x2 b1 := 3 y3 := −x1 + x3 b3 := 1

y2 := x1 − x2 b1 := 1 y4 := −x3 b4 := −4

Algorithm ends with the tableaux

1 1 -4
y2 y3 y4 β

y1 -1 -2 -2 5
x1 0 -1 -1 3
x2 -1 -1 -1 2
x3 0 0 -1 4

Conflict is 0 = y1 + y2 + 2y3 + 2y4 ≤ 3 + 1 + 2 − 8 = −2.
Interpolant is: y1 + y2 ≤ 3 + 1
or (substituting non-basic vars): 2x1 ≤ 4.
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Correctness

Fk : yk :=
n∑

j=0

akjxj ≤ bk , (k=1,...,m) Gk : yk :=
n∑

j=0

akjxj ≤ bk , (k=m′,...,m)

Conflict is 0 =
m′∑
k=1

a′kyk +
m∑

k=m′+1

a′kyk ≤
m′∑
k=1

a′kbk +
m∑

k=m′+1

a′kbk < 0

After substitution the red part
m′∑
k=1

a′kyk ≤
m′∑
k=1

a′kbk becomes

I :
n∑

j=1

(
m′∑
k=1

a′kakj

)
xj ≤

m′∑
k=1

a′kbk .

F ⇒ I (sum up the inequalities in F with factors a′k).
I ∧ G ⇒ ⊥ (sum up I and G with factors a′k to get 0 ≤

∑m
k=1 a′kbk < 0).

Only shared symbols in I: 0 =
∑m′

k=1 akja
′
kxj +

∑m
k=m′+1 akja

′
kxj .

If the left sum is not zero, the right sum is not zero and xj appears in F and G .
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Computing Interpolants for DPLL(T)

A proof of unsatisfiability is a resolution tree:

⊥

p

q ∨ p

r ∨ p r ∨ q

s ∨ r ∨ q s ∨ q

q ∨ p

p

s

r ∨ s r ∨ s

q ∨ r ∨ s q ∨ r

s ∨ p

where each node is generated by the rule

` ∨ C1 ` ∨ C2

C1 ∨ C2

The leaves are (trivial) consequences of F ∧ G .

Therefore, every node is a consequence.

Therefore, the root node ⊥ is a consequence.
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Interpolants for Conflict Clauses

Key Idea: Compute Interpolants for conflict clauses:
Split C into CF and CG (if literal appear in F and G put it in CG ).

The conflict clause follows from the original formula:

F ∧ G ⇒ CF ∨ CG

Hence, the following formula is unsatisfiable.

F ∧ ¬CF ∧ G ∧ ¬CG

An interpolant IC for C is the interpolant of the above formula. IC
contains only symbols shared between F and G .
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McMillan’s algorithm

Assign all literals to either F or G .

> : (I1 ∧ I2) ∨ (I1 ∧ I3 ∧ s)

p : I1 ∧ I2

q, p : I1

r , p : ⊥ r , q : I1

s, r , q : I1s, q : >

q, p : I2

p : I1 ∧ I3 ∧ s

s : s ∨ (I1 ∧ I3)

r , s : s r , s : I1 ∧ I3

q, r , s : I1q, r : I3

s, p : s

Compute interpolants for the leaves.
Then, for every resolution step compute interpolant as

`F ∧ C1 : I1 `F ∧ C2 : I2

C1 ∧ C2 : I1 ∨ I2

`G ∧ C1 : I1 `G ∧ C2 : I2

C1 ∧ C2 : I1 ∧ I2
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Computing Interpolants for Conflict Clauses

There are several points where conflict clauses are returned:

Conflict clauses is returned by tcheck.
Then theory must give an interpolant.
Conflict clauses comes from F .
Then F ⇒ CF ∨ CG .
Hence, (F ∧ ¬CF ) ⇒ CG . Also, CG ∧ G ∧ ¬CG is unsatisfiable
Interpolant is CG .
Conflict clauses comes from G .
Then CG = C , G ⇒ CG .
Hence, (G ∧ ¬CG ) is unsatisfiable. Interpolant is >.
Conflict clause comes from resolution on `.
Then there is a unit clause U = ` ∨ U ′ with interpolant IU
and conflict clause C = ¬` ∨ C ′ with interpolant IC .

If ` ∈ F , set IU′∨C ′ = IU ∨ IC
If ` ∈ G , set IU′∨C ′ = IU ∧ IC
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Computing Interpolants for DPLL(T)

The previous algorithm can compute interpolant for each conflict clause.
The final conflict clause returned is ⊥.
I⊥ is an interpolant of F ∧ G .
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Computing Interpolants for Theory Combinations

Unfortunately, it is not that easy. . .
. . . because equalities shared by Nelson-Oppen can contain red and blue
symbols simultaneously.

Example:

F : t ≤ 2a ∧ 2a ≤ s ∧ f (a) = q

G : s ≤ 2b ∧ 2b ≤ t ∧ f (b) 6= q
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Nelson-Oppen proof

Purifying the example gives:

ΓE : f (a) = q ∧ f (b) 6= q

ΓQ : t ≤ 2a ∧ 2a ≤ s ∧ s ≤ 2b ∧ 2b ≤ t

Shared variables V = {a, b}
Nelson-Oppen proceeds as follows

1 ΓQ propagates a = b.

2 ΓE ∪ a = b is unsatisfiable.
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Conflicts

ΓE : f (a) = q ∧ f (b) 6= q

ΓQ : t ≤ 2a ∧ 2a ≤ s ∧ s ≤ 2b ∧ 2b ≤ t

N-O introduces three literals: a = b, a ≤ b, a ≥ b.
Theory conflicts:

2b ≤ t ∧ t ≤ 2a ∧ ¬(b ≤ a)

2a ≤ s ∧ s ≤ 2b ∧ ¬(a ≤ b)

a ≤ b ∧ b ≤ a ∧ a 6= b

a = b ∧ f (a) = q ∧ f (b) 6= q

How can we compute interpolants for the conflicts?

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 402 / 436



Interpolant with a = b

What is an interpolant of a = b ∧ f (a) = q ∧ f (b) 6= q?

Key Idea: Split
a = b

into
a = x1 ∧ x1 = b where x1 shared

f

q

f

a x1 b

f

6=
a = x1 ∧ f (a) = q ∧
x1 = b ∧ f (b) 6= q

Interpolant: f (x1) = q
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Interpolant with a 6= b

What is an interpolant of a 6= b ∧ a = s ∧ b = s?

Key Idea: Split
a 6= b

into
eq(x1, a) ∧ ¬eq(x1, b) where x1 shared, eq a predicate

eq eq

•

a x1

s

eq

b

6=
eq(x1, a) = • ∧ a = s ∧
eq(x1, b) 6= • ∧ b = s

Interpolant: eq(x1, s)
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Resolving on a = b

Consider the resolution step

a = b ∨ a 6= s ∨ b 6= s a 6= b ∨ f (a) 6= q ∨ f (b) = q

f (a) 6= q ∨ f (b) = q ∨ a 6= s ∨ b 6= s

How to combine the interpolants eq(x1, s) and f (x1) = q?

f

q

f

a s b

f

6=
f (a) = q ∧ a = s ∧
f (b) 6= q ∧ s = b

Interpolant: f (s) = q

eq(x1, s) indicates that x1 should be replaced by s.
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Resolution rule for a = b

The interpolation rule is

a = b ∨ C1 : I1[eq(x , s1)] . . . [eq(x , sn)] a 6= b ∨ C2 : I2(x)

C1 ∨ C2 : I1[I2(s1)] . . . [I2(sn)]

In our example

¬(a 6= b ∧ a = s ∧ b = s) : eq(x1, s)
¬(a = b ∧ f (a) = q ∧ f (b) 6= q) : q = f (x1)

¬(f (a) = q ∧ f (b) 6= q ∧ a = s ∧ b = s) : q = f (s)
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Example

a = f (f (a)) ∧ a = x ∧ p(f (a)) ∧ b = x ∧ f (b) = f (f (b)) ∧ ¬p(b)

a

f

f

b

f

fp p

•

x

6=
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Example: Proof Lemmas

a = f (f (a)) ∧ a = x ∧ p(f (a)) ∧ b = x ∧ f (b) = f (f (b)) ∧ ¬p(b)

Prove using the following lemmas:

F1 : a = x ∧ x = b → f (a) =x1 f (b) : eq(x1, f (x))

F2 : f (a) =x1 f (b) → f (f (a)) =x2 f (f (b)) : eq(x2, f (x1))

F3 : f (a) =x1 f (b) = f (f (b)) =x2

f (f (a)) = a = x = b → f (a) =x3 b : eq(x3, x1) ∧ x2 = x

F4 : f (a) =x3 b ∧ p(f (a)) → p(b) : p(x3)
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Example: Annotating Proof with Interpolants

F1 : a = x ∧ x = b → f (a) =x1 f (b): eq(x1, f (x))

F2 : f (a) =x1 f (b) → f (f (a)) =x2 f (f (b)): eq(x2, f (x1))

F3 : f (a) =x1 f (b) = f (f (b)) =x2

f (f (a)) = a = x = b → f (a) =x3 b: eq(x3, x1) ∧ x2 = x

F4 : f (a) =x3 b ∧ p(f (a)) → p(b): p(x3)

p(f (x)) ∧ f (f (x)) = x

eq(x3, f (x)) ∧ f (f (x)) = x

F1 : eq(x1, f (x)) eq(x3, x1) ∧ f (x1) = x

F2 : eq(x2, f (x1)) F3 : eq(x3, x1) ∧ x2 = x

F4 : p(x3)
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Example: Checking Interpolants

a = f (f (a)) ∧ a = x ∧ p(f (a)) ∧ b = x ∧ f (b) = f (f (b)) ∧ ¬p(b)

Interpolant: p(f (x)) ∧ f (f (x)) = x

F → I : Substitute a = x into other atoms.

I ∧ G → ⊥: b = x ∧ f (f (x)) = x ∧ ¬p(b) implies ¬p(f (f (x))).
With b = x , f (b) = f (f (b)) this implies ¬p(f (x)).
This contradicts p(f (x)).

Symbol condition: p, f , x are shared.
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Back to the Nelson–Oppen Example

ΓE : f (a) = q ∧ f (b) 6= q

ΓQ : t ≤ 2a ∧ 2a ≤ s ∧ s ≤ 2b ∧ 2b ≤ t

Theory conflicts:

2b ≤ t ∧ t ≤ 2a ∧ ¬(b ≤ a)

2a ≤ s ∧ s ≤ 2b ∧ ¬(a ≤ b)

a ≤ b ∧ b ≤ a ∧ a 6= b

a = b ∧ f (a) = q ∧ f (b) 6= q

How can we compute interpolants for the conflicts?
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Interpolant with a > b

What is an interpolant of 2a ≤ s ∧ s ≤ 2b ∧ a > b

Split
a > b

into
a ≥ x1 ∧ x1 > a where x1 shared

2a − s ≤ 0 · 1
s − 2b ≤ 0 · 1
x1 − a ≤ 0 · 2
b − x1 < 0 · 2

0 < 0

2a − s ≤ 0 · 1
x1 − a ≤ 0 · 2

2x1 − s ≤ 0

Interpolant: 2x1 − s ≤ 0.
We need the term 2x1 − s later; we write interpolant as:

LA(2x1 − s, 2x1 − s ≤ 0)
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Interpolant with a < b

What is an interpolant of t ≤ 2a ∧ 2b ≤ t ∧ a < b

Split
a < b

into
a ≤ x2 ∧ x2 < b where x2 shared

t − 2a ≤ 0 · 1
2b − t ≤ 0 · 1
a − x2 ≤ 0 · 2
x2 − b < 0 · 2

0 < 0

t − 2a ≤ 0 · 1
a − x2 ≤ 0 · 2

t − 2x2 ≤ 0

Interpolant: t − 2x2 ≤ 0.
We need the term t − 2x2 later; we write interpolant as:

LA(t − 2x2, t − 2x2 ≤ 0)
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Interpolant of Trichotomy

What is an interpolant of a ≤ b ∧ b ≤ a ∧ a 6= b

a ≤ x1 ∧ x2 ≤ a ∧ eq(x3, a) ∧ x1 ≤ b ∧ b ≤ x2 ∧ ¬eq(x3, b)

Manually we find the interpolant

x2 − x1 < 0 ∨ (x2 − x1 ≤ 0 ∧ eq(x3, x2))

Here x2 − x1 is the “critical term”; Interpolant:

LA(x2 − x1, x2 − x1 < 0 ∨ (x2 − x1 ≤ 0 ∧ eq(x3, x2)))
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Combining Interpolants

Magic rule:

a ≤ b ∨ C1 : LA(s1 + c1x1,F1(x1)) a > b ∨ C2 : LA(s2 − c2x1,F2(x2))

C1 ∨ C2 : LA(c2s1 + c1s2, c2s1 + c1s2 < 0 ∨ (F1(s2/c2) ∧ F2(s2/c2)))

Example:

a ≤ b ∨ 2a > s ∨ s > 2b : LA(2x1 − s, 2x1 − s ≤ 0)
a > b ∨ a < b ∨ a = b : LA(x2 − x1, x2 − x1 < 0 ∨

(x2 − x1 ≤ 0 ∧ eq(x3, x2)))

a < b ∨ a = b ∨ 2a > s ∨ s > 2b : I3

I3 : LA(2x2 − s, 2x2 − s < 0 ∨ (2x2 − s ≤ 0 ∧ eq(x3, x2)))‘

(simplifying x2 < x2 to ⊥ and x2 ≤ x2 to >).
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Example continued

Magic rule:

a ≤ b ∨ C1 : LA(s1 + c1x1,F1(x1)) a > b ∨ C2 : LA(s2 − c2x1,F2(x2))

C1 ∨ C2 : LA(c2s1 + c1s2, c2s1 + c1s2 < 0 ∨ (F1(s2/c2) ∧ F2(s2/c2)))

a < b ∨ a = b ∨ 2a > s ∨ s > 2b : LA(2x2 − s, 2x2 − s < 0 ∨
(2x2 − s ≤ 0 ∧ eq(x3, x2)))

a ≥ b ∨ t < 2a ∨ 2b < s : LA(t − 2x1, t − 2x1 ≤ 0)

a = b ∨ 2a > s ∨ s > 2b
∨ t > 2a ∨ t > 2b : I4

I4 : LA(t − s, t − s < 0 ∨ (t − s ≤ 0 ∧ eq(x3, t/2)))

The critical term t − s does not contain an auxiliary and can be removed.

I4 : t − s < 0 ∨ (t − s ≤ 0 ∧ eq(x3, t/2))
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Example continued (with equality)

a = b ∨ 2a > s ∨ s > 2b
∨ t > 2a ∨ t > 2b

:
t − s < 0 ∨
(t − s ≤ 0 ∧ eq(x3, t/2))

a 6= b ∨ f (a) 6= q ∨ f (b) = q : q = f (x3)

2a > s ∨ s > 2b
∨ t > 2a ∨ t > 2b

∨ f (a) 6= q ∨ f (b) = q
:

t − s < 0 ∨
(t − s ≤ 0 ∧ q = f (t/2))

The interpolant of

2a ≤ s ∧ t ≤ 2a ∧ f (a) = q ∧ s ≤ 2b ∧ 2b ≤ t ∧ f (b) 6= q

is
t − s < 0 ∨ (t − s ≤ 0 ∧ q = f (t/2))
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Conclusion



Topics

Topics

Propositional Logic
First-Order Logic

First-Order Theories
Quantifier Elimination for TZ and TQ

Congruence Closure Algorithm (TE,Tcons,TA)
Dutertre–de Moura Algorithm (TQ)

DP for Array Property Fragment
Nelson-Oppen

DPLL(T) with Learning
Program Correctness

Interpolation
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Logics

PL Propostional Logic
FOL First-Order Logic
Tx Theories

PL

FOL

TE

TPA

TN
TZ
TQ
TR
TA

TZ
A

TRDS

Tcons
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Theories and their DPs

Theory Full Array Prop. Quant. free Conj. quant. free

TE 8 - 4 (19–20) 4 (13)
TPA 8 - 8 8

TZ 4 (10) - 4 4

TQ 4 (9) - 4 (19–20) 4 (11–12)
TR 4 (-) - 4 4

TA 8 4 (15–16) 4 4 (15)
TZ

A 8 4 (15–16) 4 4

TRDS 8 - 4 4

Tcons 8 - 4 4 (14)
T1 ∪ T2 - - 4 (-) 4 (17–18)
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Propositional Logic

What is an atom, a literal, a formula.

What is an interpretation?

What does I |= F mean, how do we compute it.

What is satisfiability, validity.

What is the duality between satisfiable and valid?

What is the semantic argument?

Write down the proof rules.

How can we prove P ∧ Q → P ∨ ¬Q?

What is ⇔ (equivalent) and ⇒ (implies).

What Normal Forms do you know (NNF, DNF, CNF)?

How to convert formulae into normal form.
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DPLL for Propositional Logic

What is a Decision Procedure?

What is equisatisfiability; why is it useful?

How to convert to CNF with polynomial time complexity?

What is a clause?

What does DPLL stand for?

What is Boolean Constraint Propagation (BCP) (aka. Unit
Propagation).

What is Pure Literal Propagation (PL).

Why is the DPLL algorithm correct?

What is the worst case time complexity of DPLL?
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First-Order Logic

What is a variable, a constant, a function (symbol), a predicate
(symbol), a term, an atom, a literal, a formula?

How do first-order logic and predicate logic relate?

What is an interpretation in FOL?

Why is DI non-empty?

What does αI assign?

What is an x-variant of an interpretation?

How do we compute whether I |= F ?

What is satisfiability, validity?

What are the additional rules in the Semantic Argument (version of
lecture 4)?

Soundness and Completeness of semantic argument.

What is a Hintikka set?

Normal forms. What is PNF (prenex normal form)?

Is validity for FOL decidable?
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First-Order Theories

What is a theory?

What is a signature Σ?

What do T -valid and emphT -satisfiable mean?

What is T -equivalent?

What is a decision procedure for a theory?

What is a fragment of a theory?

What are the most common fragments (quantifier-free, conjunctive)?

What theories do you know?

What are their axioms?

What fragments of these theories are decidable?

Bonus Question: Is there any closed formulae in TPA that is
satisfiable but not valid? What about TZ, TQ?
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Quantifier Elimination

What is Quantifier Elimination?

Does TZ admit quantifier elimination? What does it mean?

Why is it enough to eliminate one existential quantifiers over a
quantifier-free formula?

How can we eliminate more than one quantifier?

What is T̂Z?

What is Cooper’s method?

What is Ferrante and Rackoff’s method (TQ)?

What is the Array Property Fragment?

What do all quantifier elimination methods of the lecture have in
common?

What is the complexity of quantifier elimination?

Why is quantifier elimination a decision procedure?

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 426 / 436



Simplex Based Algorithm

Which theory does the Algorithm of Dutertre and de Moura decide?

How does the algorithm work?

How can we convert an arbitrary formula to the required format for
the algorithm?

What is the tableaux?

What is a pivot step?

Does the algorithm terminate?

What is the complexity?
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Congruence Closure Algorithm

What is the congruence closure algorithm?

How does it work for TE?

What are the data structures; what are the operations?

What complexity does the algorithm have?

What are the extensions for Tcons?

What is the complexity?

How did we prove correctness of the decision procedure?
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Decision Procedure for TA

How does the DP for quantifier-free fragment of TA work?

What is the complexity?

What is T =
A ?
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Array Property Fragment

What is the Array Property Fragment of TA/T =
A ?

Why are there so many restrictions?

What are the transformation steps?

How are quantifier eliminated?

What is λ and why is it necessary?

Why is the decision procedure correct?

What is the Array Property Fragment of TZ
A ?

What are differences to TA?

Why do we not need λ for TZ
A ?

Why is the decision procedure correct?

How can we check this fragment?
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Nelson-Oppen

What is the Nelson-Oppen procedure?

For what theories does it work? For which fragment of the theory?

What is a stably infinite theory?

Why is it important that theories are stably infinite?

What are the two phases of Nelson-Oppen?

What is the difference between the non-deterministic and
deterministic variant of Nelson-Oppen?

What is a convex theory?

What is the emphcomplexity of the deterministic version for
convex/non-convex theories?
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DPLL(T )

How can we extend the DPLL algorithm to decide T -satisfiability.

What is a minimal unsatisfiable core?

How can we compute it efficiently?

What is the relation between min. unsat. core and conflict clause?

Why is the algorithm correct, why does it terminate?

How can we extend it two more than one theory?

What is the relation to Nelson-Oppen?
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Program Correctness

What is a specification?

What types of specification are in a typical program?
(Precondition, postcondition, loop invariants, assertions)

When is a procedure correct (partial/total correctness)?

What is a basic path? Why is it useful?

How do we prove correctness of a basic path?

What is a verification condition?

What is the weakest precondition?

How do we compute weakest precondition?

What is a P-invariant annotation, what is a P-inductive annotation?

Why are we interested in P-inductive annotations?

What is a ranking function? Why do we need it?

What is a well-founded relation?

How do we prove total correctness?
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Interpolants

What is an interpolant?

What is the symbol condition?

Why is an interpolant useful?

How can we compute interpolants in TE?

How can we compute interpolants in TQ?

How can we compute interpolants for DPLL proofs?

What is the difficulty with theory combination?

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 434 / 436



General hints for exam

You should learn definitions (formally).
This includes the rules (semantic argument, DPLL with learning).

You should understand them (informally).

You should know important theorems.

Knowing the proofs is a plus. Don’t loose yourself in the details!

You should be able to apply the decision procedures.
Do the exercises! Invent some new exercises and solve them!

You should know some examples/counter-examples,
e.g., why is λ necessary?

When you feel well prepared, check if you can answer the questions in
this slide set.

When learning, do not leave out a whole topic completely!

Learn in a group. Ask question to each other and answer them as if
you were in the exam.
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Organisation

There will be only oral exams for this lecture.

You should have officially registered at the Prüfungsamt.

The exams will be in March.
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