Decision Procedures

Jochen Hoenicke

Winter Term 2015/16

Quantifier-free Theory of Equality

$$\Sigma_E$$
: {=, a, b, c, ..., f, g, h, ..., p, q, r, ...}

uninterpreted symbols:

- constants a, b, c, \ldots
- functions f, g, h, \ldots
- predicates p, q, r, \dots

Axioms of T_E

(transitivity)

define = to be an equivalence relation.

Axiom schema

lacktriangledown for each positive integer n and n-ary function symbol f,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n. \ \bigwedge_i x_i = y_i$$

$$\rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$
 (congruence)

 \odot for each positive integer n and n-ary predicate symbol p,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n. \ \bigwedge_i x_i = y_i \rightarrow (p(x_1, \dots, x_n) \leftrightarrow p(y_1, \dots, y_n))$$
 (equivalence)

$$F: s_1 = t_1 \wedge \cdots \wedge s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_n \neq t_n$$

The algorithm performs the following steps:

 ${\color{red} \textbf{0}}$ Construct the congruence closure \sim of

$$\{s_1 = t_1, \ldots, s_m = t_m\}$$

over the subterm set S_F . Then

$$\sim \models s_1 = t_1 \wedge \cdots \wedge s_m = t_m$$
.

- ② If for any $i \in \{m+1,\ldots,n\}$, $s_i \sim t_i$, return unsatisfiable.
- **3** Otherwise, $\sim \models F$, so return satisfiable.

How do we actually construct the congruence closure in Step 1?

Begin with the finest congruence relation \sim_0 :

$$\{\{s\}\ :\ s\in S_F\}$$
.

Each term of S_F is only congruent to itself.

Then, for each $i \in \{1, \ldots, m\}$, impose $s_i = t_i$ by merging

$$[s_i]_{\sim_{i-1}}$$
 and $[t_i]_{\sim_{i-1}}$

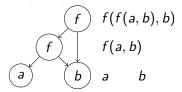
to form a new congruence relation \sim_i . To accomplish this merging,

- form the union of $[s_i]_{\sim_{i-1}}$ and $[t_i]_{\sim_{i-1}}$
- propagate any new congruences that arise within this union.

The new relation \sim_i is a congruence relation in which $s_i \sim t_i$.

Efficient data structure for computing the congruence closure.

• Directed Acyclic Graph (DAG) to represent terms.

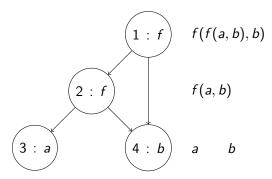


Union-Find data structure to represent equivalence classes:

For every subterm of the Σ_E -formula F, create

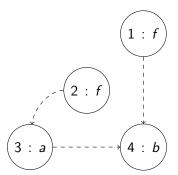
- a node labelled with the function symbols.
- and edges to the argument nodes.

If two subterms are equal, only one node is created.



Union-Find Data Structure

Equivalence classes are connected by a tree structure, with arrows pointing to the root node.



Two operations are defined:

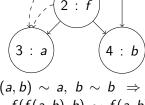
- FIND: Find the representative of an equivalence class by following the edges. $O(\log n)$
- UNION: Merge two classes by connecting the representatives. O(1)

Summary of idea

$$f(a,b) = a \wedge f(f(a,b),b) \neq a$$

 $f(a,b) = a \Rightarrow$

MERGE f(a, b) a



$$f(a,b) \sim a, b \sim b \Rightarrow f(f(a,b),b) \sim f(a,b)$$
MERGE $f(f(a,b),b)$
 $f(a,b)$

FIND
$$f(f(a,b),b) = a = \text{FIND } a$$

 $f(f(a,b),b) \neq a$ \Rightarrow Unsatisfiable

DAG representation

```
FREIBURG
```

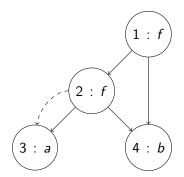
```
type node = {
                         id
    id
                         node's unique identification number
    fn
                      : string
                         constant or function name
                      : id list
    args
                         list of function arguments
                      : id
    mutable find
                         the edge to the representative
```

mutable ccpar

id set
if the node is the representative for its
congruence class, then its ccpar
(congruence closure parents) are all
parents of nodes in its congruence class

DAG Representation of node 2

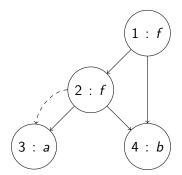
```
UNI
FREIBURG
```



DAG Representation of node 3

```
UNI
```

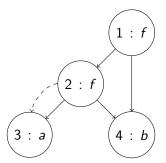
```
\label{eq:type_node} \begin{array}{llll} \text{type node} &=& \{ & & \\ & \text{id} & & : & \text{id} & \dots 3 \\ & \text{fn} & : & \text{string} & \dots a \\ & \text{args} & : & \text{idlist} & \dots [] \\ & \text{mutable find} & : & \text{id} & \dots 3 \\ & & \text{mutable ccpar} & : & \text{idset} & \dots \left\{1,2\right\} \\ & \} \end{array}
```



FIND function

returns the representative of node's congruence class

```
let rec FIND i =
  let n = NODE i in
  if n.find = i then i else FIND n.find
```



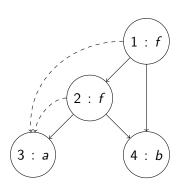
Example: FIND 2 = FIND 3 = 3 3 is the representative of 2.

UNION function

```
let UNION i_1 i_2 =
let n_1 = NODE (FIND i_1) in
let n_2 = NODE (FIND i_2) in
n_1.find \leftarrow n_2.find;
n_2.ccpar \leftarrow n_1.ccpar \cup n_2.ccpar;
n_1.ccpar \leftarrow \emptyset
```

 n_2 is the representative of the union class

Example



```
UNION 1 2 n_1 = 1 n_2 = 3

1.find \leftarrow 3

3.ccpar \leftarrow \{1,2\}

1.ccpar \leftarrow \emptyset
```

CCPAR function

Returns parents of all nodes in i's congruence class

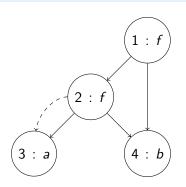
let CCPAR
$$i = (NODE (FIND i)).ccpar$$

CONGRUENT predicate

Test whether i_1 and i_2 are congruent

```
let CONGRUENT i_1 i_2 =
let n_1 = NODE i_1 in
let n_2 = NODE i_2 in
n_1.\text{fn} = n_2.\text{fn}
\land |n_1.\text{args}| = |n_2.\text{args}|
\land \forall i \in \{1, ..., |n_1.\text{args}|\}. FIND n_1.\text{args}[i] = \text{FIND } n_2.\text{args}[i]
```

Example



```
Are 1 and 2 congruent?

fn fields — both f
# of arguments — same
left arguments f(a,b) and a — both congruent to 3
right arguments b and b — both 4 (congruent)
```

Therefore 1 and 2 are congruent.

MERGE function

```
let rec MERGE i_1 i_2 =

if FIND i_1 \neq FIND i_2 then begin

let P_{i_1} = CCPAR i_1 in

let P_{i_2} = CCPAR i_2 in

UNION i_1 i_2;

foreach t_1, t_2 \in P_{i_1} \times P_{i_2} do

if FIND t_1 \neq FIND t_2 \land CONGRUENT t_1 t_2

then MERGE t_1 t_2

done
end
```

 P_{i_1} and P_{i_2} store the current values of CCPAR i_1 and CCPAR i_2 .

Given Σ_E -formula

$$F: s_1 = t_1 \wedge \cdots \wedge s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_n \neq t_n$$

with subterm set S_F , perform the following steps:

- Construct the initial DAG for the subterm set S_F .
- ② For $i \in \{1, ..., m\}$, MERGE s_i t_i .
- **③** If FIND $s_i = \text{FIND } t_i$ for some $i \in \{m+1,...,n\}$, return unsatisfiable.
- **4** Otherwise (if FIND $s_i \neq \text{FIND } t_i$ for all $i \in \{m+1, \ldots, n\}$) return satisfiable.

Example $f(a, b) = a \wedge f(f(a, b), b) \neq a$

$$f(a,b) = a \wedge f(f(a,b),b) \neq a$$
(1)

UNION 23 $P_2 = \{1\}$

$$P_3 = \{2\}$$
CONGRUENT 1 2

FIND $f(f(a,b),b) = a = \text{FIND } a \Rightarrow \text{Unsatisfiable}$

 $P_1 = \{\}$

 $P_2 = \{1, 2\}$

Given Σ_E -formula

$$F: f(a,b) = a \wedge f(f(a,b),b) \neq a.$$

The subterm set is

$$S_F = \{a, b, f(a,b), f(f(a,b),b)\},\$$

resulting in the initial partition

(1)
$$\{\{a\}, \{b\}, \{f(a,b)\}, \{f(f(a,b),b)\}\}$$

in which each term is its own congruence class. Fig (1).

Final partition

(2)
$$\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$$

Does

(3)
$$\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\} \models F$$
?

No, as $f(f(a,b),b) \sim a$, but F asserts that $f(f(a,b),b) \neq a$. Hence, F is T_F -unsatisfiable.

Example $f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$

$$f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

$$5: f \longrightarrow 4: f \longrightarrow 3: f \longrightarrow 2: f \longrightarrow 1: f \longrightarrow 0: a$$

Initial DAG

$$f(f(f(a))) = a \Rightarrow \text{MERGE 3 0} \quad P_3 = \{4\} \quad P_0 = \{1\}$$

 $\Rightarrow \text{MERGE 4 1} \quad P_4 = \{5\} \quad P_1 = \{2\}$
 $\Rightarrow \text{MERGE 5 2} \quad P_5 = \{\} \quad P_2 = \{3\}$
 $f(f(f(f(f(a))))) = a \Rightarrow \text{MERGE 5 0} \quad P_5 = \{3\} \quad P_0 = \{1,4\}$
 $\Rightarrow \text{MERGE 3 1} \quad P_3 = \{1,3,4\}, P_1 = \{2,5\}$

FIND $f(a) = f(a) = FIND a \Rightarrow$ Unsatisfiable

Given Σ_E -formula

$$F: f(f(f(a))) = a \wedge f(f(f(f(f(a))))) = a \wedge f(a) \neq a,$$

which induces the initial partition

- $\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$. The equality $f^3(a) = a$ induces the partition
- ② $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$. The equality $f^5(a) = a$ induces the partition
- **3** $\{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\}$. Now, does

$$\{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\} \models F$$
?

No, as $f(a) \sim a$, but F asserts that $f(a) \neq a$. Hence, F is T_F -unsatisfiable.

Theorem (Sound and Complete)

Quantifier-free conjunctive Σ_E -formula F is T_E -satisfiable iff the congruence closure algorithm returns satisfiable.

Proof:

 \Rightarrow Let I be a satisfying interpretation. By induction over the steps of the algorithm one can prove: Whenever the algorithm merges nodes t_1 and t_2 , $I \models t_1 = t_2$ holds.

Since $I \models s_i \neq t_i$ for $i \in \{m+1,\ldots,n\}$ they cannot be merged.

Hence the algorithm returns satisfiable.

Correctness of the Algorithm (2)

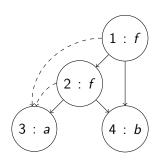
UNI

Proof:

 \Leftarrow Let S denote the nodes of the graph and Let $[t] := \{t' \mid t \sim t'\}$ denote the congruence class of t and $S/\sim := \{[t] \mid t \in S\}$ denote the set of congruence classes. Show that there is an interpretation I:

$$D_I = S/\sim \cup \{\Omega\}$$
 $lpha_I[f](v_1,\ldots,v_n) = egin{cases} [f(t_1,\ldots,t_n)] & v_1 = [t_1],\ldots,v_n = [t_n], \ & f(t_1,\ldots,t_n) \in S \ & \text{otherwise} \end{cases}$ $lpha_I[=](v_1,v_2) = \top ext{ iff } v_1 = v_2$

I is well-defined! $\alpha_I[=]$ is a congruence relation, $I \models F$.



$$S = \{f(f(a,b),b), f(a,b), a, b\}$$

$$S/\sim = \{\{f(f(a,b),b), f(a,b), a\}, \{b\}\} = \{[a], [b]\}$$

$$D_I = \{[a], [b], \Omega\}$$

$$\frac{\alpha_I[f] \quad [a] \quad [b] \quad \Omega}{[a] \quad \Omega \quad [a] \quad \Omega} \qquad \frac{\alpha_I[=] \quad [a] \quad [b] \quad \Omega}{[a] \quad \top \quad \bot \quad \bot}$$

$$\frac{[b] \quad \Omega \quad \Omega \quad \Omega}{\Omega \quad \Omega \quad \Omega} \qquad \Omega \qquad \frac{[b] \quad \bot \quad \top \quad \bot}{\Omega \quad \Box}$$

We can get rid of predicates by

- Introduce fresh constant corresponding to ⊤.
- Introduce a fresh function f_p for each predicate p.
- Replace $p(t_1, ..., t_n)$ with $f_p(t_1, ..., t_n) = \bullet$.

Compare the equivalence axiom for p with the congruence axiom for f_p .

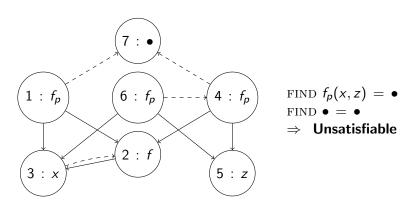
- $\forall x_1, x_2, y_1, y_2. \ x_1 = y_1 \land x_2 = y_2 \rightarrow p(x_1, x_2) \leftrightarrow p(y_1, y_2)$
- $\forall x_1, x_2, y_1, y_2. \ x_1 = y_1 \land x_2 = y_2 \rightarrow f_p(x_1, x_2) = f_p(y_1, y_2)$

Example

$$x = f(x) \land p(x, f(x)) \land p(f(x), z) \land \neg p(x, z)$$

is rewritten to

$$x = f(x) \wedge f_p(x, f(x)) = \bullet \wedge f_p(f(x), z) = \bullet \wedge f_p(x, z) \neq \bullet$$




```
\Sigma_{cons}: \ \{cons, \ car, \ cdr, \ atom, \ =\}
```

- constructor cons: cons(a, b) list constructed by prepending a to b
- left projector car: car(cons(a, b)) = a
- right projector cdr: cdr(cons(a, b)) = b
- atom: unary predicate

- reflexivity, symmetry, transitivity
- congruence axioms:

$$\forall x_1, x_2, y_1, y_2. x_1 = x_2 \land y_1 = y_2 \rightarrow cons(x_1, y_1) = cons(x_2, y_2)$$

 $\forall x, y. x = y \rightarrow car(x) = car(y)$
 $\forall x, y. x = y \rightarrow cdr(x) = cdr(y)$

equivalence axiom:

$$\forall x, y. \ x = y \rightarrow (atom(x) \leftrightarrow atom(y))$$

• $\forall x, y. \operatorname{car}(\operatorname{cons}(x, y)) = x$ (left projection) $\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$ (right projection) $\forall x. \neg \operatorname{atom}(x) \to \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) = x$ (construction) $\forall x, y. \neg \operatorname{atom}(\operatorname{cons}(x, y))$ (atom)

Satisfiabilty of Quantifier-free $\Sigma_{cons} \cup \Sigma_{E}$ -formulae

First simplify the formula:

- Consider only conjunctive $\Sigma_{cons} \cup \Sigma_{E}$ -formulae. Convert non-conjunctive formula to DNF and check each disjunct.
- $\neg \operatorname{atom}(u_i)$ literals are removed: replace $\neg \operatorname{atom}(u_i)$ with $u_i = \operatorname{cons}(u_i^1, u_i^2)$ by the (construction) axiom.

Result is a conjunctive $\Sigma_{cons} \cup \Sigma_{E}$ -formula with the literals:

- \circ s = t
- $s \neq t$
- atom(u)

where s, t, u are $T_{cons} \cup T_{E}$ -terms.

where s_i , t_i , and u_i are $T_{cons} \cup T_{F}$ -terms.

$$F: \underbrace{s_1 = t_1 \ \land \cdots \land s_m = t_m}_{\text{generate congruence closure}} \\ \land \underbrace{s_{m+1} \neq t_{m+1} \ \land \cdots \land s_n \neq t_n}_{\text{search for contradiction}} \\ \land \underbrace{s_{m+1} \neq t_{m+1} \ \land \cdots \land s_n \neq t_n}_{\text{search for contradiction}}$$

- Construct the initial DAG for S_F
- ② for each node n with n.fn = cons
 - add car(n) and MERGE car(n) n.args[1]
 - add cdr(n) and MERGE cdr(n) n.args[2]

by axioms (left projection), (right projection)

- 3 for $1 \le i \le m$, MERGE s_i t_i
- **①** for $m+1 \le i \le n$, if FIND $s_i = \text{FIND } t_i$, return **unsatisfiable**
- **⑤** for $1 \le i \le \ell$, if $\exists v$. FIND $v = \text{FIND } u_i \land v$.fn = cons, return **unsatisfiable**
- Otherwise, return satisfiable

Example

Given $(\Sigma_{cons} \cup \Sigma_{E})$ -formula

$$F: \qquad \begin{array}{c} \operatorname{car}(x) = \operatorname{car}(y) \ \land \ \operatorname{cdr}(x) = \operatorname{cdr}(y) \\ \land \ \neg \operatorname{atom}(x) \ \land \ \neg \operatorname{atom}(y) \ \land \ f(x) \neq f(y) \end{array}$$

where the function symbol f is in Σ_{E}

$$car(x) = car(y) \wedge$$
 (1)

$$\operatorname{cdr}(x) = \operatorname{cdr}(y) \wedge \tag{2}$$

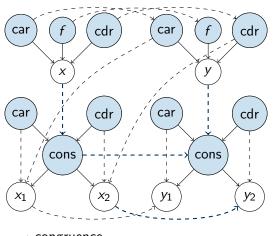
$$F': \qquad x = \cos(x_1, x_2) \quad \land \tag{3}$$

$$y = cons(y_1, y_2) \land \tag{4}$$

$$f(x) \neq f(y) \tag{5}$$

Example:
$$car(x) = car(y) \land cdr(x) = cdr(y) \land$$

 $x = cons(x_1, x_2) \land y = cons(y_1, y_2) \land f(x) \neq f(y)$



- - → congruence

```
Step 1
Step 2
Step 3:
MERGE car(x) car(y)
MERGE cdr(x) cdr(y)
MERGE x cons(x_1, x_2)
MERGE car(x) car(cons(x_1, x_2))
MERGE cdr(x) cdr(cons(x_1, x_2))
MERGE y cons(y_1, y_2)
MERGE car(y) car(cons(y_1, y_2))
MERGE cdr(y) cdr(cons(y_1, y_2))
 MERGE cons(x_1, x_2) cons(y_1, y_2)
  MERGE f(x) f(y)
```

Step 4: FIND f(x) = FIND f(y)

 \Rightarrow unsatisfiable

Theorem (Sound and Complete)

Quantifier-free conjunctive Σ_{cons} -formula F is T_{cons} -satisfiable iff the congruence closure algorithm for T_{cons} returns satisfiable.

Proof:

 \Rightarrow Let I be a satisfying interpretation.

By induction over the steps of the algorithm one can prove: Whenever the algorithm merges nodes t_1 and t_2 , $l \models t_1 = t_2$ holds.

Since $I \models s_i \neq t_i$ for $i \in \{m+1,\ldots,n\}$ they cannot be merged. From $I \models \neg atom(\cos(t_1,t_2))$ and $I \models atom(u_i)$ follows $I \models u_i \neq \cos(t_1,t_2)$ by equivalence axiom. Thus u_i for $i \in \{1,\ldots,\ell\}$ cannot be merged with a cons node.

Hence the algorithm returns satisfiable.

Correctness of the Algorithm (2)

UNI

Proof:

 \leftarrow Let S denote the nodes of the graph and let S/\sim denote the congruence classes computed by the algorithm. Show that there is an interpretation I:

$$D_I = \{ \text{binary trees with leaves labelled with } S/\sim \}$$

$$\setminus \{ \text{trees with subtree } _{[t_1]} \text{ with } \text{cons}(t_1, t_2) \in S \}$$

$$\mathsf{cons}_I(v_1, v_2) = \begin{cases} [\mathit{cons}(t_1, t_2)] & v_1 = [t_1], v_2 = [t_2], \mathsf{cons}(t_1, t_2) \in S \\ \\ v_1 & v_2 \end{cases} \quad \mathsf{otherwise}$$

$$\mathsf{car}_I(v) = \begin{cases} [\mathit{car}(t)] & \mathsf{if } v = [t], \mathsf{car}(t) \in S \\ \\ v_1 & \mathsf{if } v = v_1 \\ \\ \mathsf{arbitrary} & \mathsf{otherwise} \end{cases}$$

$$\mathsf{cdr}_I(v) = \begin{cases} [\mathit{cdr}(t)] & \text{if } v = [t], \mathsf{cdr}(t) \in S \\ v_2 & \text{if } v = \bigvee_{v_1 = v_2} v_2 \\ \text{arbitrary otherwise} \end{cases}$$

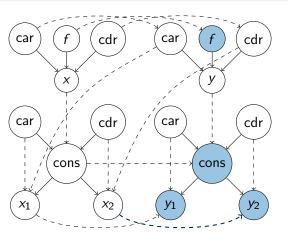
$$\mathsf{atom}_I(v) = \begin{cases} \mathsf{false} & \text{if } v = [\mathit{cons}(t_1, t_2)] \\ \mathsf{false} & \text{if } v = \bigvee_{v_1 = v_2} v_2 \\ \mathsf{true} & \mathsf{otherwise} \end{cases}$$

$$\alpha_I[=](v_1, v_2) = \mathsf{true} \; \mathsf{iff} \; v_1 = v_2$$

I is well-defined! $\alpha_I[=]$ is obviously a congruence relation.

 $\forall x, y. \operatorname{car}(\operatorname{cons}(x, y)) = x$ (left projection) $\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$ (right projection) $\forall x. \neg \operatorname{atom}(x) \to \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) = x$ (construction) $\forall x, y. \neg \operatorname{atom}(\operatorname{cons}(x, y))$ (atom)

Example:
$$car(x) = car(y) \land cdr(x) = cdr(y) \land x = cons(x_1, x_2) \land y = cons(y_1, y_2)$$



- - → congruence