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Quantifier-free Theory of Equality



The Theory of Equality Tg

Ye: {=,a b, c, ..., f, g, h ....p qr, ...

uninterpreted symbols:

e constants a, b,c,...
e functions f,g,h,...
e predicates p,q,r,...
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Axioms of Tg g

2

-

=]y

Q Vx. x = x (reflexivity)
QO Vx,y.x=y—>y=x (symmetry)

QO Vx,y,zx=yANy=z—-x=1z2 (transitivity)
define = to be an equivalence relation.

Axiom schema
@ for each positive integer n and n-ary function symbol f,
VXl?' s Xny Y1y .-+ Yn- /\,'Xi =Y

—f(x1, ..y xn) = F(y1,---,Yn) (congruence)
© for each positive integer n and n-ary predicate symbol p,

VXl?"'aXm)/h"'ayn- /\Xi = Yi—
i

(p(x1,..-,xn) < p(y1,---,¥n)) (equivalence)
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Congruence Closure Algorithm

F:ss=tN - ANSm=1tn A Sny1 # tme1 A -+ Asp # tp

The algorithm performs the following steps:

@ Construct the congruence closure ~ of
{s1 = ti,...,5m = tm}
over the subterm set Sg. Then
~ESE =t A ASy =ty

@ Ifforany i € {m+ 1,...,n}, s; ~ t;, return unsatisfiable.
@ Otherwise, ~= F, so return satisfiable.

How do we actually construct the congruence closure in Step 17
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Congruence Closure Algorithm (Details)

Begin with the finest congruence relation ~q:
{{s} : s € SF}.

Each term of S¢ is only congruent to itself.
Then, for each i € {1,..., m}, impose s; = t; by merging

[Si]'\“i—l and [t’.]Nifl

to form a new congruence relation ~;. To accomplish this merging,
e form the union of [si]~,_, and [ti]~,_,
@ propagate any new congruences that arise within this union.

The new relation ~; is a congruence relation in which s; ~ t;.
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Ingredients of Algorithm &

Efficient data structure for computing the congruence closure.

e Directed Acyclic Graph (DAG) to represent terms.

e f(f(a, b), b)
e‘ f(a, b)
e e a b

@ Union-Find data structure to represent equivalence classes:

@7
o=6
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Directed Acyclic Graph (DAG) £

For every subterm of the X g-formula F, create
@ a node labelled with the function symbols.
@ and edges to the argument nodes.

If two subterms are equal, only one node is created.

f(f(a, b), b)

f(a, b)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 205 / 414



Union-Find Data Structure

BURG

52

D
Equivalence classes are connected by a tree structure, with arrows pointing
to the root node.

k — — — — — — =

Two operations are defined:
@ FIND: Find the representative of an equivalence class by following the
edges. O(logn)
@ UNION: Merge two classes by connecting the representatives. O(1)
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Summary of idea £

Initial DAG f(a,b) = a =
MERGE f(a, b) a

FIND f(f(a,b),b) = a = FIND a
f(f(a, b),b) # a
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DAG representation g

type node = {
id :id
node’s unique identification number

fn . string

constant or function name
args o id list

list of function arguments
mutable find : id

the edge to the representative

mutable ccpar : id set
if the node is the representative for its
congruence class, then its ccpar
(congruence closure parents) are all
parents of nodes in its congruence class

}
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DAG Representation of node 2

type node = {
id
fn
args
mutable find
mutable ccpar

id
string
idlist
id
idset

_gﬁ_
L2
o f
... [3.4]
.3
.0
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DAG Representation of node 3

type node = {
id
fn
args
mutable find
mutable ccpar

id
string
idlist
id
idset
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The Implementation: FIND

FIND function
returns the representative of node's congruence class
let rec FIND | =

let n = NODE / in
if n.find = / then / else FIND n.find

Example: FIND 2 = FIND 3 = 3
3 is the representative of 2.
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The Implementation: UNION 2

UNION function

let UNION ij ip =
let n1 = NODE (FIND /1) in
let np = NODE (FIND h) in
ny.find < np.find;
ny.ccpar < ni.ccpar U np.ccpar;
ni.ccpar <«

ny is the representative of the union class
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Example &

UNION 1 2 nn=1 n=3
1.find + 3
3.ccpar « {1,2}
l.ccpar < 0
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The Implementation: CONGRUENT

2
%]
CCPAR function

Returns parents of all nodes in i’s congruence class

let CCPAR | =

(NODE (FIND i)).ccpar
CONGRUENT predicate
Test whether i1 and i» are congruent

let CONGRUENT /| ip =
let m

= NODE /1 in

let np = NODE fp in

nl.fn = ng.fn
Alni.args| = |m.args|

AYi € {1,...,|ni.args|}. FIND nj.args[i] = FIND np.args]i]

Jochen Hoenicke (Software Engineering) Decision Procedures

Winter Term 2015/16 214 / 414



Example &

Are 1 and 2 congruent?

fn fields — both f

# of arguments — same

left arguments f(a, b) and a — both congruent to 3
right arguments b and b — both 4 (congruent)

Therefore 1 and 2 are congruent.
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The Implementation: MERGE 2

MERGE function

let rec MERGE i1 lh =
if FIND ;i # FIND ip then begin

let P; = CCPAR /1 in
let P, = CCPAR i» in
UNION fy ip;

foreach t;,tp € Py x P, do
if FIND t; # FIND tp A CONGRUENT t; tp
then MERGE tj o
done
end

Pi, and P;, store the current values of CCPAR i; and CCPAR i>.
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Decision Procedure: Tg-satisfiability g
52
=]
Given X g-formula
F: s =t AN ASy=1tnASmt1 # tme1 N - A Sy # tn,
with subterm set Sg, perform the following steps:
@ Construct the initial DAG for the subterm set Sg.
@ Fori € {1,...,m}, MERGE s; t;.
© If FIND s; = FIND t; for some i € {m + 1,...,n}, return
unsatisfiable.
© Otherwise (if FIND s; # FIND t; for all i € {m + 1,...,n}) return
satisfiable.
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Example f(a,b) = a A f(f(a,b),b) # a -

f(a,b) = a N f(f(a,b),b)

Initial DAG MERGE 2 3 MERGE 1 2
UNION 2 3 UNION 1 2
P, = {1} Py = {}
P3:{2} 'D2:{1’2}

CONGRUENT 1 2
FIND f(f(a,b),b) = a = FIND a = Unsatisfiable
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Given ¥ g-formula

F : f(a,b) = an f(f(a,b),b) # a.
The subterm set is

Sg = {a, b, f(a,b), f(f(a,b),b)},
resulting in the initial partition

(1) {{a}, {b}, {f(a,b)}, {f(f(a,b),b)}}

in which each term is its own congruence class. Fig (1).

Final partition

(2) {{a,f(a,b), f(f(a, b), b)}, {b}}
Does

(3) {{a,f(a, b), f(f(a,b),b)}, {b}} = F 7
No, as f(f(a, b),b) ~ a, but F asserts that f(f(a, b), b) # a. Hence, F
is Te-unsatisfiable.
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Example f3(a) = a A f°(a) = a A f(a) # a 2

a))) = a N F(F(f( ) =a A f(a) # a

= MERCE30 P; = {4} Py = {1}
= MERCE41 P, = {5} P = {2}
= MERGE52 P; = {} P, = {3}

f(f(f(f(f(a))))) = a = MERGES50 Ps = {3} Py = {1,4}
= MERGE 31 P3; = {1,3,4},P1 = {2,5}

FIND f(a) = f(a) = FIND a = Unsatisfiable
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Given X g-formula

F o f(f(f(a))) = a A F(F(F(F(f(a)))) = anf(a) # a,

which induces the initial partition

0 {{a}, {f(a)}. {F2(}, {F(a)}, {F(a)}, {F(a)}}.

The equality £3(a) = a induces the partition

@ {{a. (a)}, {f(a), f(a)}, {f*(a). F°(a)}} .

The equality £°(a) = a induces the partition

0 {{a, f(a), f*(a), f3(a), f*(a), f*(a)}} .

Now, does

{{a,f(a), f*(a), f*(a), f*(a). f°(a)}} = F ?

No, as f(a) ~ a, but F asserts that f(a) # a. Hence, F is
Te-unsatisfiable.
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Correctness of the Algorithm g

Theorem (Sound and Complete)

Quantifier-free conjunctive ¥ g-formula F is Tg-satisfiable iff the
congruence closure algorithm returns satisfiable.

Proof:

= Let | be a satisfying interpretation.
By induction over the steps of the algorithm one can prove:
Whenever the algorithm merges nodes t; and tp, | |= t; = t, holds.

Since | = s # tifori € {m+ 1,..., n} they cannot be merged.

Hence the algorithm returns satisfiable.
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Correctness of the Algorithm (2) g
55
Proof:
< Let S denote the nodes of the graph and
Let [t] :== {t' | t ~ t’} denote the congruence class of t and

S/~ = {[t] | t € S} denote the set of congruence classes.
Show that there is an interpretation /:

Dy =S/~U{Q}
[f(t1,...,tn)] vi = [t1],.--, Ve = [ta],
a/[f](vl,...,v,,) = f(tl,...,t,,) SN

Q otherwise
Oé[[:](vl,VQ) =T iff Vi = W

I is well-defined!
ay[=] is a congruence relation,

I = F.
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Jocl

Example: f(a,b) = a A f(f(a,b),b) # b

S = {f(f(a, b),b),f(a, b),a, b}
S/N = {{f(#(a,b), b),f(a, b),a},{b}} = {[a], [b]}

= {[a], [b], 2}
ou[f] [ [a] [ Q@ a[=] | [a] [p] €@
[a] [a] @ [ | T L L
]| @ Q Q [b] | L T L
Q1 Q Q Q Q| L 1L 7T
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How to handle predicates?

We can get rid of predicates by
@ Introduce fresh constant e corresponding to T.
@ Introduce a fresh function f, for each predicate p.
@ Replace p(t1,...,ty) with fy(t1,...,ts) = e.
Compare the equivalence axiom for p
with the congruence axiom for f,.
© Vx1,%0,y1,¥2- X1 = y1 A X2 = ya2 = p(x1,x2) < p(y1,y2)
© Vx1, %0, y1,¥2- X1 = y1 A X2 = ya2 = fp(x1,x2) = fp(y1,2)
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Example &

x = F(x) A plx, F(x)) A p(F(x),2) A =p(x, 2)
is rewritten to

x = f(x) A fp(x,f(x)) = o A fp(f(x),2) = @ N fr(x,2) #

FIND fy(x,z) = ®
FIND @ = e
= Unsatisfiable
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Theory of Lists



Theory of Lists Teons g

Ycons : {cons, car, cdr, atom, =}

@ constructor cons: cons(a, b) list constructed by
prepending a to b

e left projector car: car(cons(a, b)) = a
@ right projector cdr: cdr(cons(a, b)) = b

@ atom: unary predicate
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Axioms of Tons £

o reflexivity, symmetry, transitivity

@ congruence axioms:
Vxi, X2, y1,¥2- X1 = X2 A y1 = y2 — cons(xi,y1) = cons(xz, y2)
Vx,y.x =y — car(x) = car(y)
Vx,y.x =y — cdr(x) = cdr(y)

@ equivalence axiom:

Vx,y.x =y — (atom(x) <« atom(y))

e Vx,y. car(cons(x,y)) = x (left projection)
Vx,y. cdr(cons(x,y)) = y (right projection)
Vx. matom(x) — cons(car(x),cdr(x)) = x (construction)
Vx, y. —atom(cons(x, y)) (atom)
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Satisfiabilty of Quantifier-free >, U 2g-formulae g

First simplify the formula:
@ Consider only conjunctive ¥ ons U Zg-formulae.
Convert non-conjunctive formula to DNF and check each disjunct.
e —atom(u;) literals are removed:
replace —atom(u;) with u; = cons(u}, u?)
by the (construction) axiom.
Result is a conjunctive ¥ ons U Zg-formula with the literals:

es=1t
°os £t
e atom(u)
where s, t, u are Tcons U Tg-terms.
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Algorithm: To,s-Satisfiability (the idea) g

F: S =1t AN -+ N Sy =ty
generate congruence closure

AN Smil # tmp1r A o0 N Sy F ty
search for contradiction
A atom(ui) A .-+ A atom(uy)

~—
search for contradiction

where s;, t;, and u; are Teons U Tg-terms.
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Algorithm: T.,,s-Satisfiability g

@ Construct the initial DAG for Sg
@ for each node n with n.fn = cons

o add car(n) and MERGE car(n) n.args[1]

e add cdr(n) and MERGE cdr(n) n.args[2]
by axioms (left projection), (right projection)
for1 < i < m, MERGE s; t;

form+ 1 < j < n, if FIND s; = FIND t;, return unsatisfiable

© 00

forl < j </ ifdv.FINDv = FIND u; A v.fn = cons,
return unsatisfiable

@ Otherwise, return satisfiable
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Example &

Given (Xcons U X)-formula

car(x) = car(y) A cdr(x) = cdr(y)
A —atom(x) A —atom(y) A f(x) # f(y)
where the function symbol f is in g

F :

car(x) = car(y) A (1)
cdr(x) = cdr(y) A (2)
F':  x = cons(x1,x2) A (3)
y = cons(y1,y2) A (4)
f(x) # £(y) (5)
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Example: car(x) = car(y) A cdr(x) = cdr(y)A

x = cons(xy, x2)

- -» congruence

Jochen Hoenicke (Software Engineering)

Decision Procedures

Ay = cons(yi, ys) N\ f(x) # f(y) 'g%‘
Step 1
Step 2
Step 3 :

MERGE car(x) car(y)

MERGE cdr(x) cdr(y)

MERGE x cons(xy, x2)

MERGE car(x) car(cons(x1,x2))

MERGE cdr(x) cdr(cons(x, x2))

MERGE y cons(yi, y2)

MERGE car(y) car(cons(y1, y2))

MERGE cdr(y) cdr(cons(y1, y2))
MERGE cons(xy, x2) cons(y1, ¥2)
MERGE f(x) f(y)

Step 4 :

FIND f(x) = FIND f(y)

= unsatisfiable
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Correctness of the Algorithm &

Theorem (Sound and Complete)

Quantifier-free conjunctive X cons-formula F is Teons-satisfiable iff the
congruence closure algorithm for T.ons returns satisfiable.

Proof:

= Let / be a satisfying interpretation.
By induction over the steps of the algorithm one can prove:
Whenever the algorithm merges nodes t; and t, | = t; = t» holds.

Since | = s; # tifori € {m+ 1,...,n} they cannot be merged.
From | = —atom(cons(t1, t2)) and | = atom(u;)

follows | |= u; # cons(t1, t2) by equivalence axiom.

Thus u; for i € {1,...,¢} cannot be merged with a cons node.

Hence the algorithm returns satisfiable.
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Correctness of the Algorithm (2) -

Proof: o8
< Let S denote the nodes of the graph and
let S/~ denote the congruence classes computed by the algorithm.
Show that there is an interpretation /:

Dy = {binary trees with leaves labelled with S/~}

\ {trees with subtree [tll/\[tﬂ with cons(ti, ) € S}

[cons(t, )] wvi = [t1],v2 = [t2],cons(t1,t2) € S

consy(v, ve) = < otherwise
vi Vo
[car(t)] if v = [t],car(t) € S
carj(v) = ¢ w» if v = Vl/\v2

arbitrary otherwise
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Correctness of the Algorithm (3) 8

([cdr(t)] if v = [t],cdr(t) € S
cdri(v) = ¢ v if v = Vl/\vz
arbitrary otherwise

(false if v = [cons(t1, t2)]

atom;(v) = { false ifv = <

vi V2

true otherwise
OCI[:](Vl, V2) = true iff Vi = W

I is well-defined!  «;[=] is obviously a congruence relation.

Vx,y. car(cons(x,y)) = x (left projection)
Vx,y. cdr(cons(x,y)) = y (right projection)
Vx. —matom(x) — cons(car(x), cdr(x)) = x (construction)
Vx, y. matom(cons(x, y)) (atom)
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Example: car(x) = car(y) A cdr(x) = cdr(y)A
x = cons(xy,x2) ANy = cons(yi, y»)

UNI
1

FREIBURG

- - congruence
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