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DPLL(T)



Satisfiability and Conjunctive Theories g

Suppose we have a Tg-formulae that is not conjunctive:
(x > 0=y > 2)A(x+y > z—=y < z)A(y 2 0—>x > 0)Ax+y > z

Our approach so far: Converting to DNF.
Yields in 8 conjuncts that have to be checked separately.

Is there a more efficient way to prove unsatisfiability?
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CNF and Propositional Core g

Suppose we have the following Tg-formulae:
(x > 0=y > 2)A(x+y > z—=y < z)A(y 2 0—=>x > 0)Ax+y > z
Converting to CNF and restricting to <:
(0 <x)Valy <) A (H(z < x+y)Vy < 2)
A0 < y) V(0 <
Now, introduce boolean variables for each atom:

P10 < x Py :y
Ps:z<x+y Py :0

VARVAN

Gives a propositional formula:

(—|P1 V _\P2) A (—|P3 V P2) A\ (—|P4 V Pl) A P3

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 314 / 414



DPLL-Algorithm g

The core feature of the DPLL-algorithm is Unit Propagation.

(—\Pl V —\PQ) A\ (—\P3 Vv P2) A (—\P4 V Pl) AN P3

The clause P3 is a unit clause; set P3 to T.
Then —P3 V P> is a unit clause; set P, to T.
Then —=P; V =P> is a unit clause; set P; to L.
Then —=P4 V Py is a unit clause; set P4 to L.

Only solution is P3 A P> A =Py A —P4.
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DPLL-Algorithm &

Only solution is P3 A P> A =Py A —P4.

Py :0
Ps;: z

X Py :y
xX+y Py:0

IN A

<
<

This gives the conjunctive Tg-formula

z<x+yAhy<zAx<0Ay <O
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DPLL(T) with Learning (CDCL) g

We describe DPLL(T) by a set of rules modifying a configuration.
A configuration is a triple
<M’ F? C> )

where

@ M (model) is a sequence of literals (that are currently set to true)
interspersed with backtracking points denoted by (1.

e F (formula) is a formula in CNF,
i.e., a set of clauses where each clause is a set of literals.

@ C (conflict) is either T or a conflict clause (a set of literals).
A conflict clause C is a clause with F = C and M [~ C.
Thus, a conflict clause shows M [~ F.
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Rule Based Description g

We describe the algorithm by a set of rules, which each describe a set of
transitions between configurations, e. g.,

(M,F,C U {£}) where £ ¢ C, {l1,... .0, T} € F,
(M,F,C U {t1,...,6¢}) and/fy,....0 < Cin M.

Explain
Here, ¢1,...,0k < ¢ in M means the literals [1, ... ,[k occur in the

sequence M before the literal ¢ (and all literals appear in M).

Example: for M = P1P3P,Py, F = {{P1},{P3,Ps}}, and C = {P>}
the transition

(M, F,{P2,Ps}) — (M,F,{P2, Ps})

is possible.
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Rules for CDCL (Conflict Driven Clause Learning) §

Decide M <Aé’ Fjg:r% )
Propagate m
Confict 17 éAZgIF T> 0}
Explain M, ;_—A’/I&FL’JC{Z, {K}Qk})
Learn <M’<FM£JF% 8, C)
pack (M Fofle o6
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where ¢ € lit(F), £, in M

where {l1,..., bk, t} € F

and Kl,...,[k in M, E,Zi/l M.

where {{1,..., 0k} € F
and 61,...,&( in M.

where £ ¢ C, {l1,..., 0, I} € F,
and f1,..., 0k < £in M.
where C # T, C ¢ F.

where {{1,..., 0, l} € F,
M=M. 00
and 01,...,0, in M’
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Example: DPLL with Learning &

P1 A (—|P2 V P3) A (—|P4 V P3) A (P2 V P4) A (—\Pl V =Py V_\P3) A (P4 V _\P3)

The algorithm starts with M = ¢, C = T and B
F = {{Pl}a{P27P3}7{P47 P3}7{P27P4}7{P17 P47 P3}7{P47P3}}-

Propagate Deade Propagate
) ( )

e F, T P, F, Ty —
PuOPP,, F,T) 228 (pi VB, PPy, F, T)
PIOP,PyPs, F, {P1, Py, P3}) 23" (iR, PyPs, L {Py, By} =20
PIOPPPs, F/ {Py, Py} B2 (P1Py, F/,T) roPogte
PLBPyPs, F, T) U (P By Py s, F! { Py, Ps)
PLPAP,Ps, F' {Py, Po}) 23" (P ByPyPy, Y {Py}) 28
PLPsPPs, F' {P1}) “23" (PLPyPyPs, ', ) =23
P1P4P>P3, F' U {0}, 0)

where F' = F U {{Py, P,}}.
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DPLL(T): DPLL Modulo Theory g

The DPLL/CDCL algorithm is combined with a Decision Procedures for a
Theory

Truth Assignment

Theory,

DPLL engine eg. Tg

Unsatisfiable Core

DPLL takes the propositional core of a formula,
assigns truth-values to atoms.

Theory takes a conjunctive formula (conjunction of literals),
returns a minimal unsatisfiable core.
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Minimal Unsatisfiable Core g

Suppose we have a decision procedure for a conjunctive theory,
e.g., Simplex Algorithm for Tg.

Given an unsatisfiable conjunction of literals /1 A -+ A £,.
Find a subset UnsatCore = {/¢; ,...,¢; }, such that

@ /iy N ... AY is unsatisfiable.

@ For each subset of UnsatCore the conjunction is satisfiable.

Possible approach: check for each literal whether it can be omitted.
— n calls to decision procedure.

Most decision procedures can give small unsatisfiable cores for free.
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Unsatisfiable Core and Conflict Clause

Theory returns an unsatisfiable core:

@ a conjunction of literals from current truth assignment
@ that is unsatisfible.

DPLL learns conflict clauses, a disjunction of literals
@ that are implied by the formula

@ and in conflict to current truth assignment.

Thus the negation of an unsatisfiable core is a conflict clause.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

323 / 414



DPLL(T)

The DPLL part only needs one new rule:

TConflict (M,F,T) where M is unsatisfiable in the theory
(M,F,C) and —C an unsatisfiable core of M.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 324 / 414



Example: DPLL(T) -

F:y>2IAn(x>20-2y<0)A(x<1—y <0
Atomic propositions:

P, x>0
0 P, :x <1

Py
P3 :y

IN IV

Propositional core of F in CNF:

Fo : (Pl) A (—|P2 V P3) A\ (—|P4 V P3)
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Running DPLL(T)

{{P1},{P2, P3},{P4, P3}}
Pir:y>1 Pb: x>0 P3: y<0 Pp: x<1

P t
G,Fo, > ropaae<

P, Fo. T) 2% (PIOPs, R, T)
PIOPs, Fo, {Py, Ps}) % (PiOPs, Fy, {P1, Ps}) 225
P1P3,F1, > Propagate <P1P3:52,F1, > Propagate

(
(
(
(PLP3 PPy, Fr, T) T2 (P Py PPy, Fr, {Po, Pa}) 23"
(
(
(

P1P3PyPy, F1,{Pa, P3}) Explain (P1P3PyPy, F1, {P3}) == Explam

P1P3PyPy, F1,{P1}) —= gy (PLP3PyPy, Fyi,0) Learp

P1P3P2Py, F1 U {0},0)
where F1 := Fy U {{:51,:53}}

No further step is possible; the formula F is unsatisfiable.
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Correctness of DPLL(T) -

Theorem (Correctness of DPLL(T))

Let F be a Y-formula and F’ its propositional core. Let
<6, F’,T> = <M0, Fo, C0> — coo — (Mn, F,,, Cn>

be a maximal sequence of rule application of DPLL(T).
Then F is T-satisfiable iff C,, is T.

Before proving the theorem, we note some important invariants:

M; never contains a literal more than once.

M; never contains ¢ and /.

Every O in M; is followed immediately by a literal.

If C; = {f1,..., 0k} then f1,... 0 in M.

C; is always implied by F; (or the theory).

F is equivalent to F; for all steps i/ of the computation.

If a literal £ in M is not immediately preceded by [J, then F contains
aclause {£,¢1,...,0,} and {1,..., 0, < £in M.
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Correctness proof g

Proof: If the sequence ends with (M, F,, T) and there is no rule
applicable, then:
@ Since Decide is not applicable, all literals of F,, appear in M, either
positively or negatively.
@ Since Conflict is not applicable, for each clause at least one literal
appears in M, positively.
@ Since TConflict is not applicable, the conjunction of truth
assignments of M, is satisfiable by a model /.
Thus, I is a model for F,, which is equivalent to F.

If the sequence ends with (M,, F,, C,) with C, # T.

Assume C, = {l1,..., 0,0} # 0. W.log., {1,...,0, < {. Then:
@ Since Learn is not applicable, C, € F,,.
@ Since Explain is not applicable £ must be immediately preceded by [J.
@ However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and C, = 0 (= 1).

Since F implies C,, F is not satisfiable.
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Total Correctness of DPLL with Learning g

Theorem (Termination of DPLL)

Let F be a propositional formula. Then every sequence
<€, F, T) = <M0, F(), C()> — <M1, F1, C1> —_— ...

terminates.
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Proof of Total Correctness g

We define some well-ordering on the domains: o
o We define M < M’ if MOO comes lexicographically before M'0I0,
where every literal is considered to be smaller than [.
Example: (10,(00) < £100¢3(00) < ,00(00) < ¢(00)
@ For a sequence M = 01 ...0,, the conflict clauses are ordered by:
C <y CLiffC #£ T,C" = T or for some k < n:
CN{lksr,--slnt = C N {lgsr,... Lyt and b & C 4, € C'.
Example: 0 -<[1[2[3 {fz} A {51,83} -<[1[2[3 {52,53} A T
These are well-orderings, because the domains are finite.

Termination Proof: Every rule application decreases the value of
(M;, Fi, C;) according to the well-ordering:

M < M,
(M,F,C) < (M, F'.C),iffCor M = M',C < C',
orM=M,C=C,CeF,C¢F.
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