Decision Procedures

Jochen Hoenicke

Winter Term 2015/16

Suppose we have a $T_{\mathbb{Q}}$ -formulae that is not conjunctive:

$$(x \ge 0 \rightarrow y > z) \land (x+y \ge z \rightarrow y \le z) \land (y \ge 0 \rightarrow x \ge 0) \land x+y \ge z$$

Our approach so far: Converting to DNF.

Yields in 8 conjuncts that have to be checked separately.

Is there a more efficient way to prove unsatisfiability?

CNF and Propositional Core

Suppose we have the following $T_{\mathbb{Q}}$ -formulae:

$$(x \ge 0 \rightarrow y > z) \land (x+y \ge z \rightarrow y \le z) \land (y \ge 0 \rightarrow x \ge 0) \land x+y \ge z$$

Converting to CNF and restricting to \leq :

$$(\neg(0 \le x) \lor \neg(y \le z)) \land (\neg(z \le x + y) \lor (y \le z))$$
$$\land (\neg(0 \le y) \lor (0 \le x)) \land (z \le x + y)$$

Now, introduce boolean variables for each atom:

$$P_1: 0 \le x$$
 $P_2: y \le z$ $P_3: z \le x + y$ $P_4: 0 \le y$

Gives a propositional formula:

$$(\neg P_1 \lor \neg P_2) \land (\neg P_3 \lor P_2) \land (\neg P_4 \lor P_1) \land P_3$$

The core feature of the DPLL-algorithm is Unit Propagation.

$$(\neg P_1 \vee \neg P_2) \wedge (\neg P_3 \vee P_2) \wedge (\neg P_4 \vee P_1) \wedge P_3$$

The clause P_3 is a unit clause; set P_3 to \top .

Then $\neg P_3 \lor P_2$ is a unit clause; set P_2 to \top .

Then $\neg P_1 \vee \neg P_2$ is a unit clause; set P_1 to \bot .

Then $\neg P_4 \lor P_1$ is a unit clause; set P_4 to \bot .

Only solution is $P_3 \wedge P_2 \wedge \neg P_1 \wedge \neg P_4$.

DPLL-Algorithm

Only solution is $P_3 \wedge P_2 \wedge \neg P_1 \wedge \neg P_4$.

$$P_1: 0 \le x \qquad \qquad P_2: y \le z$$

$$P_3: z \leq x + y \qquad \qquad P_4: 0 \leq y$$

This gives the conjunctive $T_{\mathbb{Q}}$ -formula

$$z \leq x + y \wedge y \leq z \wedge x < 0 \wedge y < 0.$$

DPLL(T) with Learning (CDCL)

We describe DPLL(T) by a set of rules modifying a configuration. A configuration is a triple

$$\langle M, F, C \rangle$$
,

where

- M (model) is a sequence of literals (that are currently set to true) interspersed with backtracking points denoted by \square .
- F (formula) is a formula in CNF,
 i. e., a set of clauses where each clause is a set of literals.
- C (conflict) is either \top or a conflict clause (a set of literals). A conflict clause C is a clause with $F \Rightarrow C$ and $M \not\models C$. Thus, a conflict clause shows $M \not\models F$.

Rule Based Description

We describe the algorithm by a set of rules, which each describe a set of transitions between configurations, e.g.,

Explain
$$\frac{\langle M, F, C \cup \{\ell\} \rangle}{\langle M, F, C \cup \{\ell_1, \dots, \ell_k\} \rangle} \quad \text{where } \ell \notin C, \ \{\ell_1, \dots, \ell_k, \overline{\ell}\} \in F, \\ \text{and } \overline{\ell_1}, \dots, \overline{\ell_k} \prec \overline{\ell} \text{ in } M.$$

Here, $\bar{\ell}_1, \ldots, \bar{\ell}_k \prec \ell$ in M means the literals $\bar{\ell}_1, \ldots, \bar{\ell}_k$ occur in the sequence M before the literal ℓ (and all literals appear in M).

Example: for $M = P_1 \bar{P}_3 \bar{P}_2 \bar{P}_4$, $F = \{\{P_1\}, \{P_3, \bar{P}_4\}\}$, and $C = \{P_2\}$ the transition

$$\langle M, F, \{P_2, P_4\} \rangle \longrightarrow \langle M, F, \{P_2, P_3\} \rangle$$

is possible.

Rules for CDCL (Conflict Driven Clause Learning)

Decide
$$\frac{\langle M, F, \top \rangle}{\langle M \cdot \square \cdot \ell, F, \top \rangle}$$

where $\ell \in \mathit{lit}(F)$, $\ell, \bar{\ell}$ in M

Propagate
$$\frac{\langle M, F, \top \rangle}{\langle M \cdot \ell, F, \top \rangle}$$

where $\{\ell_1,\ldots,\ell_k,\ell\}\in \mathcal{F}$ and $\bar{\ell}_1,\ldots,\bar{\ell}_k$ in M, $\ell,\bar{\ell}$ in M.

Conflict
$$\frac{\langle M, F, \top \rangle}{\langle M, F, \{\ell_1, \dots, \ell_k\} \rangle}$$

where $\{\ell_1,\ldots,\ell_k\}\in F$ and $\bar{\ell_1},\ldots,\bar{\ell_k}$ in M.

Explain
$$\frac{\langle M, F, C \cup \{\ell\} \rangle}{\langle M, F, C \cup \{\ell_1, \dots, \ell_k\} \rangle}$$

where $\ell \notin C$, $\{\ell_1, \dots, \ell_k, \bar{\ell}\} \in F$, and $\bar{\ell}_1, \dots, \bar{\ell}_k \prec \bar{\ell}$ in M.

Learn
$$\frac{\langle M, F, C \rangle}{\langle M, F \cup \{C\}, C \rangle}$$

where $C \neq \top$, $C \notin F$.

Back
$$\frac{\langle M, F, \{\ell_1, \dots, \ell_k, \ell\} \rangle}{\langle M' \cdot \ell, F, \top \rangle}$$

where
$$\{\ell_1,\ldots,\ell_k,\ell\} \in F$$
, $M = M' \cdot \square \cdots \bar{\ell} \cdots$, and $\bar{\ell_1},\ldots,\bar{\ell_k}$ in M' .

Example: DPLL with Learning

$$P_1 \wedge (\neg P_2 \vee P_3) \wedge (\neg P_4 \vee P_3) \wedge (P_2 \vee P_4) \wedge (\neg P_1 \vee \neg P_4 \vee \neg P_3) \wedge (P_4 \vee \neg P_3)$$

The algorithm starts with
$$M = \epsilon$$
, $C = \top$ and $F = \{\{P_1\}, \{\bar{P}_2, P_3\}, \{\bar{P}_4, P_3\}, \{P_2, P_4\}, \{\bar{P}_1, \bar{P}_4, \bar{P}_3\}, \{P_4, \bar{P}_3\}\}$. $\langle \epsilon, F, \top \rangle \stackrel{\mathsf{Propagate}}{\longrightarrow} \langle P_1, F, \top \rangle \stackrel{\mathsf{Decide}}{\longrightarrow} \langle P_1 \Box \bar{P}_2, F, \top \rangle \stackrel{\mathsf{Propagate}}{\longrightarrow} \langle P_1 \Box \bar{P}_2 P_4, F, \top \rangle \stackrel{\mathsf{Propagate}}{\longrightarrow} \langle P_1 \Box \bar{P}_2 P_4 P_3, F, \top \rangle \stackrel{\mathsf{Conflict}}{\longrightarrow} \langle P_1 \Box \bar{P}_2 P_4 P_3, F, \{\bar{P}_1, \bar{P}_4\}\rangle \stackrel{\mathsf{Explain}}{\longrightarrow} \langle P_1 \Box \bar{P}_2 P_4 P_3, F, \{\bar{P}_1, \bar{P}_4\}\rangle \stackrel{\mathsf{Explain}}{\longrightarrow} \langle P_1 \Box \bar{P}_2 P_4 P_3, F', \{\bar{P}_1, \bar{P}_4\}\rangle \stackrel{\mathsf{Explain}}{\longrightarrow} \langle P_1 \Box \bar{P}_2 P_4 P_3, F', \{\bar{P}_1, \bar{P}_4\}\rangle \stackrel{\mathsf{Explain}}{\longrightarrow} \langle P_1 \bar{P}_4 P_2 P_3, F', \{P_4, \bar{P}_3\}\rangle \stackrel{\mathsf{Explain}}{\longrightarrow} \langle P_1 \bar{P}_4 P_2 P_3, F', \{P_4, \bar{P}_3\}\rangle \stackrel{\mathsf{Explain}}{\longrightarrow} \langle P_1 \bar{P}_4 P_2 P_3, F', \{P_4\}\rangle \stackrel{\mathsf{Explain}}{\longrightarrow} \langle P_1 \bar{P}_4 P_2 P_3, F', \{\bar{P}_1\}\rangle \stackrel{\mathsf{Explain}}{\longrightarrow} \langle P_1 \bar{P}_4 P_2 P_3, F', \emptyset\rangle \stackrel{\mathsf{Learn}}{\longrightarrow} \langle P_1 \bar{P}_4 P_2 P_3, F', \emptyset\rangle$

where $F' = F \cup \{\{\bar{P_1}, \bar{P_4}\}\}.$

The DPLL/CDCL algorithm is combined with a Decision Procedures for a Theory

DPLL takes the propositional core of a formula, assigns truth-values to atoms.

Theory takes a conjunctive formula (conjunction of literals), returns a minimal unsatisfiable core.

Suppose we have a decision procedure for a conjunctive theory, e.g., Simplex Algorithm for $T_{\mathbb{Q}}$.

Given an unsatisfiable conjunction of literals $\ell_1 \wedge \cdots \wedge \ell_n$. Find a subset UnsatCore $= \{\ell_{i_1}, \dots, \ell_{i_m}\}$, such that

- $\ell_{i_1} \wedge \ldots \wedge \ell_{i_m}$ is unsatisfiable.
- For each subset of UnsatCore the conjunction is satisfiable.

Possible approach: check for each literal whether it can be omitted. $\longrightarrow n$ calls to decision procedure.

Most decision procedures can give small unsatisfiable cores for free.

Theory returns an unsatisfiable core:

- a conjunction of literals from current truth assignment
- that is unsatisfible.

DPLL learns conflict clauses, a disjunction of literals

- that are implied by the formula
- and in conflict to current truth assignment.

Thus the negation of an unsatisfiable core is a conflict clause.

The DPLL part only needs one new rule:

TConflict
$$\frac{\langle M, F, \top \rangle}{\langle M, F, C \rangle}$$

TConflict $\frac{\langle M, F, \top \rangle}{\langle M, F, C \rangle}$ where M is unsatisfiable in the theory and $\neg C$ an unsatisfiable core of M.

$$F: y \geq 1 \land (x \geq 0 \rightarrow y \leq 0) \land (x \leq 1 \rightarrow y \leq 0)$$

Atomic propositions:

$$P_1: y \ge 1 \qquad \qquad P_2: x \ge 0$$

$$P_3: y \le 0$$
 $P_4: x \le 1$

Propositional core of *F* in CNF:

$$F_0: (P_1) \wedge (\neg P_2 \vee P_3) \wedge (\neg P_4 \vee P_3)$$

$$\begin{array}{lll} F_0: & \{\{P_1\},\{\bar{P}_2,P_3\},\{\bar{P}_4,P_3\}\} \\ P_1: & y \geq 1 & P_2: & x \geq 0 & P_3: & y \leq 0 & P_4: & x \leq 1 \\ \\ \langle \epsilon,F_0,\top\rangle & \overset{\mathsf{Propagate}}{\longrightarrow} & \langle P_1,F_0,\top\rangle & \overset{\mathsf{Decide}}{\longrightarrow} & \langle P_1\Box P_3,F_0,\top\rangle & \overset{\mathsf{TConflict}}{\longrightarrow} \\ \langle P_1\Box P_3,F_0,\{\bar{P}_1,\bar{P}_3\}\rangle & \overset{\mathsf{Learn}}{\longrightarrow} & \langle P_1\Box P_3,F_1,\{\bar{P}_1,\bar{P}_3\}\rangle & \overset{\mathsf{Back}}{\longrightarrow} \\ \langle P_1\bar{P}_3,F_1,\top\rangle & \overset{\mathsf{Propagate}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2,F_1,\top\rangle & \overset{\mathsf{Propagate}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\top\rangle & \overset{\mathsf{TConflict}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{P_2,P_4\}\rangle & \overset{\mathsf{Explain}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{P_2,P_3\}\rangle & \overset{\mathsf{Explain}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{P_3\}\rangle & \overset{\mathsf{Explain}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Explain}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Explain}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Explain}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Explain}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Explain}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Explain}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Explain}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Explain}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Explain}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Learn}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Learn}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Learn}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}{\longrightarrow} \\ \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\{\bar{P}_1\}\rangle & \overset{\mathsf{Learn}}{\longrightarrow} & \langle P_1\bar{P}_3\bar{P}_2\bar{P}_4,F_1,\emptyset\rangle & \overset{\mathsf{Learn}}$$

No further step is possible; the formula F is unsatisfiable.

Correctness of DPLL(T)

Theorem (Correctness of DPLL(T))

Let F be a Σ -formula and F' its propositional core. Let

$$\langle \epsilon, F', \top \rangle = \langle M_0, F_0, C_0 \rangle \longrightarrow \ldots \longrightarrow \langle M_n, F_n, C_n \rangle$$

be a maximal sequence of rule application of DPLL(T).

Then F is T-satisfiable iff C_n is \top .

Before proving the theorem, we note some important invariants:

- M_i never contains a literal more than once.
- M_i never contains ℓ and $\bar{\ell}$.
- Every \square in M_i is followed immediately by a literal.
- If $C_i = \{\ell_1, \ldots, \ell_k\}$ then $\bar{\ell_1}, \ldots, \bar{\ell_k}$ in M.
- C_i is always implied by F_i (or the theory).
- F is equivalent to F_i for all steps i of the computation.
- If a literal ℓ in M is not immediately preceded by \square , then F contains a clause $\{\ell, \ell_1, \dots, \ell_k\}$ and $\bar{\ell_1}, \dots, \bar{\ell_k} \prec \ell$ in M.

Correctness proof

Proof: If the sequence ends with $\langle M_n, F_n, \top \rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_n appear in M_n either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_n positively.
- Since TConflict is not applicable, the conjunction of truth assignments of M_n is satisfiable by a model I.

Thus, I is a model for F_n , which is equivalent to F.

If the sequence ends with $\langle M_n, F_n, C_n \rangle$ with $C_n \neq \top$. Assume $C_n = \{\ell_1, \dots, \ell_k, \ell\} \neq \emptyset$. W.l.o.g., $\bar{\ell_1}, \dots, \bar{\ell_k} \prec \bar{\ell}$. Then:

- Since Learn is not applicable, $C_n \in F_n$.
- Since Explain is not applicable $\bar{\ell}$ must be immediately preceded by \Box .
- However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and $C_n = \emptyset (= \bot)$.

Since F implies C_n , F is not satisfiable.

Theorem (Termination of DPLL)

Let F be a propositional formula. Then every sequence

$$\langle \epsilon, F, \top \rangle \, = \, \langle \textit{M}_0, \textit{F}_0, \textit{C}_0 \rangle \, \longrightarrow \, \langle \textit{M}_1, \textit{F}_1, \textit{C}_1 \rangle \, \longrightarrow \, \ldots$$

terminates.

Proof of Total Correctness

We define some well-ordering on the domains:

- We define $M \prec M'$ if $M \square \square$ comes lexicographically before $M' \square \square$, where every literal is considered to be smaller than \square .
 - Example: $\ell_1\ell_2(\Box\Box) \prec \ell_1\Box\bar{\ell_2}\ell_3(\Box\Box) \prec \ell_1\Box\bar{\ell_2}(\Box\Box) \prec \ell_1(\Box\Box)$

• For a sequence
$$M = \bar{\ell}_1 \dots \bar{\ell}_n$$
, the conflict clauses are ordered by: $C \prec_M C'$, iff $C \neq \top, C' = \top$ or for some $k \leq n$: $C \cap \{\ell_{k+1}, \dots, \ell_n\} = C' \cap \{\ell_{k+1}, \dots \ell_n\}$ and $\ell_k \notin C, \ell_k \in C'$. **Example**: $\emptyset \prec_{\bar{\ell}_1\bar{\ell}_2\bar{\ell}_3} \{\ell_2\} \prec_{\bar{\ell}_1\bar{\ell}_2\bar{\ell}_3} \{\ell_1, \ell_3\} \prec_{\bar{\ell}_1\bar{\ell}_2\bar{\ell}_3} \{\ell_2, \ell_3\} \prec_{\bar{\ell}_1\bar{\ell}_2\bar{\ell}_3} \top$

These are well-orderings, because the domains are finite.

Termination Proof: Every rule application decreases the value of $\langle M_i, F_i, C_i \rangle$ according to the well-ordering:

$$\langle M, F, C \rangle \prec \langle M', F', C' \rangle, \text{ iff } \begin{cases} M \prec M', \\ \text{or } M = M', C \prec_M C', \\ \text{or } M = M', C = C', C \in F, C \notin F'. \end{cases}$$