Decision Procedures

Jochen Hoenicke

Software Engineering
\(-\frac{\stackrel{y}{2}}{\substack{品
른}}\)
Albert-Ludwigs-University Freiburg

Winter Term 2015/16

DPLL(T)

Satisfiability and Conjunctive Theories

Suppose we have a $T_{\mathbb{Q}}$-formulae that is not conjunctive:
$(x \geq 0 \rightarrow y>z) \wedge(x+y \geq z \rightarrow y \leq z) \wedge(y \geq 0 \rightarrow x \geq 0) \wedge x+y \geq z$
Our approach so far: Converting to DNF.
Yields in 8 conjuncts that have to be checked separately.
Is there a more efficient way to prove unsatisfiability?

CNF and Propositional Core

Suppose we have the following $T_{\mathbb{Q}}$-formulae:
$(x \geq 0 \rightarrow y>z) \wedge(x+y \geq z \rightarrow y \leq z) \wedge(y \geq 0 \rightarrow x \geq 0) \wedge x+y \geq z$
Converting to CNF and restricting to \leq :

$$
\begin{aligned}
(\neg(0 \leq x) \vee & \neg(y \leq z)) \wedge(\neg(z \leq x+y) \vee(y \leq z)) \\
& \wedge(\neg(0 \leq y) \vee(0 \leq x)) \wedge(z \leq x+y)
\end{aligned}
$$

Now, introduce boolean variables for each atom:

$$
\begin{array}{ll}
P_{1}: 0 \leq x & P_{2}: y \leq z \\
P_{3}: z \leq x+y & P_{4}: 0 \leq y
\end{array}
$$

Gives a propositional formula:

$$
\left(\neg P_{1} \vee \neg P_{2}\right) \wedge\left(\neg P_{3} \vee P_{2}\right) \wedge\left(\neg P_{4} \vee P_{1}\right) \wedge P_{3}
$$

DPLL-Algorithm

The core feature of the DPLL-algorithm is Unit Propagation.

$$
\left(\neg P_{1} \vee \neg P_{2}\right) \wedge\left(\neg P_{3} \vee P_{2}\right) \wedge\left(\neg P_{4} \vee P_{1}\right) \wedge P_{3}
$$

The clause P_{3} is a unit clause; set P_{3} to T.
Then $\neg P_{3} \vee P_{2}$ is a unit clause; set P_{2} to T.
Then $\neg P_{1} \vee \neg P_{2}$ is a unit clause; set P_{1} to \perp.
Then $\neg P_{4} \vee P_{1}$ is a unit clause; set P_{4} to \perp.
Only solution is $P_{3} \wedge P_{2} \wedge \neg P_{1} \wedge \neg P_{4}$.

DPLL-Algorithm

Only solution is $P_{3} \wedge P_{2} \wedge \neg P_{1} \wedge \neg P_{4}$.

$$
\begin{array}{ll}
P_{1}: 0 \leq x & P_{2}: y \leq z \\
P_{3}: z \leq x+y & P_{4}: 0 \leq y
\end{array}
$$

This gives the conjunctive $T_{\mathbb{Q}^{-}}$-formula

$$
z \leq x+y \wedge y \leq z \wedge x<0 \wedge y<0
$$

DPLL(T) with Learning (CDCL)

We describe DPLL(T) by a set of rules modifying a configuration.
A configuration is a triple

$$
\langle M, F, C\rangle,
$$

where

- M (model) is a sequence of literals (that are currently set to true) interspersed with backtracking points denoted by \square.
- F (formula) is a formula in CNF, i. e., a set of clauses where each clause is a set of literals.
- C (conflict) is either T or a conflict clause (a set of literals). A conflict clause C is a clause with $F \Rightarrow C$ and $M \not \vDash C$. Thus, a conflict clause shows $M \not \vDash F$.

Rule Based Description

We describe the algorithm by a set of rules, which each describe a set of transitions between configurations, e.g.,
Explain $\frac{\langle M, F, C \cup\{\ell\}\rangle}{\left\langle M, F, C \cup\left\{\ell_{1}, \ldots, \ell_{k}\right\}\right\rangle}$
where $\ell \notin C,\left\{\ell_{1}, \ldots, \ell_{k}, \bar{\ell}\right\} \in F$, and $\bar{\ell}_{1}, \ldots, \bar{\ell}_{k} \prec \bar{\ell}$ in M.

Here, $\bar{\ell}_{1}, \ldots, \bar{\ell}_{k} \prec \ell$ in M means the literals $\overline{\ell_{1}}, \ldots, \bar{\ell}_{k}$ occur in the sequence M before the literal ℓ (and all literals appear in M).

Example: for $M=P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F=\left\{\left\{P_{1}\right\},\left\{P_{3}, \bar{P}_{4}\right\}\right\}$, and $C=\left\{P_{2}\right\}$ the transition

$$
\left\langle M, F,\left\{P_{2}, P_{4}\right\}\right\rangle \longrightarrow\left\langle M, F,\left\{P_{2}, P_{3}\right\}\right\rangle
$$

is possible.

Rules for CDCL (Conflict Driven Clause Learning)

Decide $\frac{\langle M, F, T\rangle}{\langle M \cdot \square \cdot \ell, F, T\rangle}$
Propagate $\frac{\langle M, F, T\rangle}{\langle M \cdot \ell, F, T\rangle}$
Conflict $\frac{\langle M, F, T\rangle}{\left\langle M, F,\left\{\ell_{1}, \ldots, \ell_{k}\right\}\right\rangle}$
Explain $\frac{\langle M, F, C \cup\{\ell\}\rangle}{\left\langle M, F, C \cup\left\{\ell_{1}, \ldots, \ell_{k}\right\}\right\rangle}$

Back $\frac{\left\langle M, F,\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\}\right\rangle}{\left\langle M^{\prime} \cdot \ell, F, T\right\rangle}$
where $\left\{\ell_{1}, \ldots, \ell_{k}\right\} \in F$ and $\overline{\ell_{1}}, \ldots, \bar{\ell}_{k}$ in M.
where $\ell \notin C,\left\{\ell_{1}, \ldots, \ell_{k}, \bar{\ell}\right\} \in F$, and $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}} \prec \bar{\ell}$ in M.
where $C \neq \mathrm{T}, C \notin F$.
where $\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\} \in F$,
where $\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\} \in F$
and $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in $M, \ell, \bar{\ell}$ in M. $M=M^{\prime} \cdot \square \cdots \bar{\ell} \cdots$,
and $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in M^{\prime}.

Example: DPLL with Learning

$$
P_{1} \wedge\left(\neg P_{2} \vee P_{3}\right) \wedge\left(\neg P_{4} \vee P_{3}\right) \wedge\left(P_{2} \vee P_{4}\right) \wedge\left(\neg P_{1} \vee \neg P_{4} \vee \neg P_{3}\right) \wedge\left(P_{4} \vee \neg P_{3}\right)
$$

The algorithm starts with $M=\epsilon, C=\top$ and $F=\left\{\left\{P_{1}\right\},\left\{\bar{P}_{2}, P_{3}\right\},\left\{\bar{P}_{4}, P_{3}\right\},\left\{P_{2}, P_{4}\right\},\left\{\bar{P}_{1}, \bar{P}_{4}, \bar{P}_{3}\right\},\left\{P_{4}, \bar{P}_{3}\right\}\right\}$.
$\langle\epsilon, F, T\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1}, F, T\right\rangle \xrightarrow{\text { Decide }}\left\langle P_{1} \square \bar{P}_{2}, F, T\right\rangle \xrightarrow{\text { Propagate }}$ $\left\langle P_{1} \square \bar{P}_{2} P_{4}, F, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1} \square \bar{P}_{2} P_{4} P_{3}, F, T\right\rangle \xrightarrow{\text { Conflict }}$ $\left\langle P_{1} \square \bar{P}_{2} P_{4} P_{3}, F,\left\{\bar{P}_{1}, \bar{P}_{4}, \bar{P}_{3}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \square \bar{P}_{2} P_{4} P_{3}, F,\left\{\bar{P}_{1}, \bar{P}_{4}\right\}\right\rangle \xrightarrow{\text { Learn }}$ $\left\langle P_{1} \square \bar{P}_{2} P_{4} P_{3}, F^{\prime},\left\{\bar{P}_{1}, \bar{P}_{4}\right\}\right\rangle \xrightarrow{\text { Back }}\left\langle P_{1} \bar{P}_{4}, F^{\prime}, T\right\rangle \xrightarrow{\text { Propagate }}$
$\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime}, T\right\rangle \xrightarrow{\text { Conflict }}\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime},\left\{P_{4}, \overline{P_{3}}\right\}\right\rangle \xrightarrow{\text { Explain }}$
$\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime},\left\{P_{4}, \bar{P}_{2}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime},\left\{P_{4}\right\}\right\rangle \xrightarrow{\text { Explain }}$
$\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime},\left\{\bar{P}_{1}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime}, \emptyset\right\rangle \xrightarrow{\text { Learn }}$
$\left\langle P_{1} \bar{P}_{4} P_{2} P_{3}, F^{\prime} \cup\{\emptyset\}, \emptyset\right\rangle$
where $F^{\prime}=F \cup\left\{\left\{\bar{P}_{1}, \bar{P}_{4}\right\}\right\}$.

DPLL(T): DPLL Modulo Theory

The DPLL/CDCL algorithm is combined with a Decision Procedures for a Theory

DPLL engine	Truth Assignment	Theory, e.g., $T_{\mathbb{Q}}$
	Unsatisfiable Core	

DPLL takes the propositional core of a formula, assigns truth-values to atoms.
Theory takes a conjunctive formula (conjunction of literals), returns a minimal unsatisfiable core.

Minimal Unsatisfiable Core

Suppose we have a decision procedure for a conjunctive theory, e.g., Simplex Algorithm for $T_{\mathbb{Q}}$.

Given an unsatisfiable conjunction of literals $\ell_{1} \wedge \cdots \wedge \ell_{n}$. Find a subset UnsatCore $=\left\{\ell_{i_{1}}, \ldots, \ell_{i_{m}}\right\}$, such that

- $\ell_{i_{1}} \wedge \ldots \wedge \ell_{i_{m}}$ is unsatisfiable.
- For each subset of UnsatCore the conjunction is satisfiable.

Possible approach: check for each literal whether it can be omitted.
$\longrightarrow n$ calls to decision procedure.
Most decision procedures can give small unsatisfiable cores for free.

Unsatisfiable Core and Conflict Clause

Theory returns an unsatisfiable core:

- a conjunction of literals from current truth assignment
- that is unsatisfible.

DPLL learns conflict clauses, a disjunction of literals

- that are implied by the formula
- and in conflict to current truth assignment.

Thus the negation of an unsatisfiable core is a conflict clause.

The DPLL part only needs one new rule:
TConflict $\frac{\langle M, F, T\rangle}{\langle M, F, C\rangle} \quad \begin{aligned} & \text { where } M \text { is unsatisfiable in the theory } \\ & \text { and } \neg C \text { an unsatisfiable core of } M \text {. }\end{aligned}$

Example: DPLL(T)

$$
F: y \geq 1 \wedge(x \geq 0 \rightarrow y \leq 0) \wedge(x \leq 1 \rightarrow y \leq 0)
$$

Atomic propositions:

$$
\begin{array}{ll}
P_{1}: y \geq 1 & P_{2}: x \geq 0 \\
P_{3}: y \leq 0 & P_{4}: x \leq 1
\end{array}
$$

Propositional core of F in CNF:

$$
F_{0}:\left(P_{1}\right) \wedge\left(\neg P_{2} \vee P_{3}\right) \wedge\left(\neg P_{4} \vee P_{3}\right)
$$

Running DPLL(T)

$$
\begin{aligned}
& F_{0}:\left\{\left\{P_{1}\right\},\left\{\bar{P}_{2}, P_{3}\right\},\left\{\bar{P}_{4}, P_{3}\right\}\right\} \\
& P_{1}: y \geq 1 \quad P_{2}: x \geq 0 \quad P_{3}: y \leq 0 \quad P_{4}: x \leq 1 \\
& \left\langle\epsilon, F_{0}, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1}, F_{0}, T\right\rangle \xrightarrow{\text { Decide }}\left\langle P_{1} \square P_{3}, F_{0}, T\right\rangle \xrightarrow{\text { TConflict }} \\
& \left\langle P_{1} \square P_{3}, F_{0},\left\{\bar{P}_{1}, \bar{P}_{3}\right\}\right\rangle \xrightarrow{\text { Learn }}\left\langle P_{1} \square P_{3}, F_{1},\left\{\bar{P}_{1}, \bar{P}_{3}\right\}\right\rangle \xrightarrow{\text { Back }} \\
& \left\langle P_{1} \bar{P}_{3}, F_{1}, T\right\rangle \xrightarrow{\text { Propagate }}\left\langle P_{1} \bar{P}_{3} \bar{P}_{2}, F_{1}, T\right\rangle \xrightarrow{\text { Propagate }} \\
& \left\langle P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F_{1}, T\right\rangle \xrightarrow{\text { TConflict }}\left\langle P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F_{1},\left\{P_{2}, P_{4}\right\}\right\rangle \xrightarrow{\text { Explain }} \\
& \left\langle P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F_{1},\left\{P_{2}, P_{3}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F_{1},\left\{P_{3}\right\}\right\rangle \xrightarrow{\text { Explain }} \\
& \left\langle P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F_{1},\left\{\bar{P}_{1}\right\}\right\rangle \xrightarrow{\text { Explain }}\left\langle P_{1} \bar{P}_{3} \bar{P}_{2} \bar{P}_{4}, F_{1}, \emptyset\right\rangle \xrightarrow{\text { Learn }} \\
& \left\langle P_{1} \overline{P_{3}} \overline{P_{2}} \bar{P}_{4}, F_{1} \cup\{\emptyset\}, \emptyset\right\rangle \\
& \text { where } F_{1}:=F_{0} \cup\left\{\left\{\bar{P}_{1}, \bar{P}_{3}\right\}\right\}
\end{aligned}
$$

No further step is possible; the formula F is unsatisfiable.

Correctness of DPLL(T)

Theorem (Correctness of DPLL(T))

Let F be a \sum-formula and F^{\prime} its propositional core. Let

$$
\left\langle\epsilon, F^{\prime}, T\right\rangle=\left\langle M_{0}, F_{0}, C_{0}\right\rangle \longrightarrow \ldots \longrightarrow\left\langle M_{n}, F_{n}, C_{n}\right\rangle
$$

be a maximal sequence of rule application of $\operatorname{DPLL}(T)$.
Then F is T-satisfiable iff C_{n} is T.
Before proving the theorem, we note some important invariants:

- M_{i} never contains a literal more than once.
- M_{i} never contains ℓ and $\bar{\ell}$.
- Every \square in M_{i} is followed immediately by a literal.
- If $C_{i}=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$ then $\overline{\ell_{1}}, \ldots, \overline{\ell_{k}}$ in M.
- C_{i} is always implied by F_{i} (or the theory).
- F is equivalent to F_{i} for all steps i of the computation.
- If a literal ℓ in M is not immediately preceded by \square, then F contains a clause $\left\{\ell, \ell_{1}, \ldots, \ell_{k}\right\}$ and $\bar{\ell}_{1}, \ldots, \bar{\ell}_{k} \prec \ell$ in M.

Correctness proof

Proof: If the sequence ends with $\left\langle M_{n}, F_{n}, T\right\rangle$ and there is no rule applicable, then:

- Since Decide is not applicable, all literals of F_{n} appear in M_{n} either positively or negatively.
- Since Conflict is not applicable, for each clause at least one literal appears in M_{n} positively.
- Since TConflict is not applicable, the conjunction of truth assignments of M_{n} is satisfiable by a model I.
Thus, I is a model for F_{n}, which is equivalent to F.
If the sequence ends with $\left\langle M_{n}, F_{n}, C_{n}\right\rangle$ with $C_{n} \neq \mathrm{T}$.
Assume $C_{n}=\left\{\ell_{1}, \ldots, \ell_{k}, \ell\right\} \neq \emptyset$. W.I.o.g., $\overline{\ell_{1}}, \ldots, \bar{\ell}_{k} \prec \bar{\ell}$. Then:
- Since Learn is not applicable, $C_{n} \in F_{n}$.
- Since Explain is not applicable $\bar{\ell}$ must be immediately preceded by \square.
- However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and $C_{n}=\emptyset(=\perp)$.
Since F implies C_{n}, F is not satisfiable.

Total Correctness of DPLL with Learning

Theorem (Termination of DPLL)
Let F be a propositional formula. Then every sequence

$$
\langle\epsilon, F, \top\rangle=\left\langle M_{0}, F_{0}, C_{0}\right\rangle \longrightarrow\left\langle M_{1}, F_{1}, C_{1}\right\rangle \longrightarrow \ldots
$$

terminates.

Proof of Total Correctness

We define some well-ordering on the domains:

- We define $M \prec M^{\prime}$ if $M \square \square$ comes lexicographically before $M^{\prime} \square \square$, where every literal is considered to be smaller than \square.
Example: $\ell_{1} \ell_{2}(\square \square) \preccurlyeq \ell_{1} \square \bar{\ell}_{2} \ell_{3}(\square \square) \prec \ell_{1} \square \bar{\ell}_{2}(\square \square) \prec \ell_{1}(\square \square)$
- For a sequence $M=\bar{\ell}_{1} \ldots \bar{\ell}_{n}$, the conflict clauses are ordered by:
$C \prec_{M} C^{\prime}$, iff $C \neq \top, C^{\prime}=\top$ or for some $k \leq n$: $C \cap\left\{\ell_{k+1}, \ldots, \ell_{n}\right\}=C^{\prime} \cap\left\{\ell_{k+1}, \ldots \ell_{n}\right\}$ and $\ell_{k} \notin C, \ell_{k} \in C^{\prime}$.
Example: $\emptyset \prec_{\overline{\ell_{1}} \overline{V_{2}} \overline{\ell_{3}}}\left\{\ell_{2}\right\} \prec_{\overline{\ell_{1}} \overline{\bar{L}_{2}} \overline{\bar{U}_{3}}}\left\{\ell_{1}, \ell_{3}\right\} \prec_{\overline{\ell_{1}} \overline{\ell_{2}} \overline{\ell_{3}}}\left\{\ell_{2}, \ell_{3}\right\} \prec_{\overline{\ell_{1} \overline{\ell_{2}} \overline{\ell_{3}}}} \top$ These are well-orderings, because the domains are finite.

Termination Proof: Every rule application decreases the value of $\left\langle M_{i}, F_{i}, C_{i}\right\rangle$ according to the well-ordering:

$$
\langle M, F, C\rangle \prec\left\langle M^{\prime}, F^{\prime}, C^{\prime}\right\rangle \text {, iff }\left\{\begin{array}{l}
M \prec M^{\prime}, \\
\text { or } M=M^{\prime}, C \prec_{M} C^{\prime}, \\
\text { or } M=M^{\prime}, C=C^{\prime}, C \in F, C \notin F^{\prime} .
\end{array}\right.
$$

