Decision Procedures

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

Winter Term 2015/16

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

1/93

Further route of this lecture g

@ Syntax and Semantics of First Order Logic (FOL)
@ Semantic Tableaux for FOL

@ FOL is only semi-decidable
— Restrictions to decidable fragments of FOL

o Quantifier Free Fragment (QFF)

o QFF of Equality

o Presburger arithmetic

o (QFF of) Linear integer arithmetic

o Real arithmetic

o (QFF of) Linear real/rational arithmetic
o QFF of Recursive Data Structures

o QFF of Arrays

o Putting it all together (Nelson-Oppen).

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 60 / 93

First-Order Logic

Syntax of First-Order Logic

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables Xy Yy Zyo e
constants a,b,c,---
functions f,g,h,--- with arity n > 0
terms variables, constants or

n-ary function applied to n terms as arguments
a, x, f(a), g(x, b), f(g(x, f(b)))
predicates p,q,r,--- with arity n > 0
atom T, L, or an n-ary predicate applied to n terms
literal atom or its negation

p(f(x),&(x,f(x))), —=p(f(x),&(x,f(x)))

Note: 0-ary functions: constant
0-ary predicates: P, Q,R,...

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

62 /93

Syntax of First-Order Logic (2)

quantifiers

existential quantifier Ix.F[x]
“there exists an x such that F[x]"

universal quantifier Vx.F[x]
“for all x, F[x]"

FOL formula literal, application of logical connectives

(=, V, A, =, <) to formulae,
or application of a quantifier to a formula

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

63 /93

Example &

FOL formula

Vx. (p(f(x),x) = (Jy. (p(f(&(x,y)), &(x,¥)))) N a(x, f(x)))
G

The scope of Vx is F.
The scope of dy is G.
The formula reads:
“for all x,
if p(f(x),x)

then there exists a y such that
p(f(g(x,y)), &(x,y)) and q(x, f(x))"

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 64 /93

Famous theorems in FOL g

@ The length of one side of a triangle is less than the sum of the lengths
of the other two sides

Vx,y,z. triangle(x,y,z) — length(x) < length(y) + length(z)

@ Fermat’'s Last Theorem.

Vn. integer(n) A n > 2
—Vx,y, z.
integer(x) A integer(y) A integer(z)
AX>0ANy >0Az>0
*)Xn + yn # Zn

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 65 / 93

Pumping Lemma

For every regular Language L there is some n > 0, such that for all words
z € L with |z| > n there is a decomposition z = uvw with |v| > 1 and

luv| < n, such that for all i > 0: wv'w € L.

VL. regularlanguage(L)—
dn. integer(n) A n > OA
Vz.z € LA |z| > n—
Ju, v, w. word(u) A\ word(v) A word(w)A
z =uww A |v| > 1A |uv| < nA
Vi. integer(i) A i > 0 — uviw € L

Predicates: regularlanguage, integer, word, - € -, - < -, - > - - = .
Constants: 0, 1
Functions: | -

| (word length), concatenation, iteration

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

66 / 93

FOL Semantics &

An interpretation / : (Dj, «) consists of:
@ Domain Dy
non-empty set of values or objects
for example Dy = playing cards (finite),
integers (countable infinite), or
reals (uncountable infinite)
@ Assignment «y
e each variable x assigned value ay[x] € D
e each n-ary function f assigned

a/[f] : Dln — D/

In particular, each constant a (0-ary function) assigned value
a,[a] € D
e each n-ary predicate p assigned
arfp] - D — {T, L1}
In particular, each propositional variable P (0-ary predicate) assigned
truth value (T, 1)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 67 / 93

Example
F: p(f(x,y),z) = p(y,g(z,x))

Interpretation | : (Dy, «y)

Dp=%2={--,-2,-1,0,1,2,---} integers
Oé[[f] . Dlz — D/ a/[g] . Dlz — D/
(x,y) = x+y (x,y) = x —y
a/[p] : D12 - {TvJ—}
T ifx <y
(x,y) =

1 otherwise
Also ay[x] = 13, ay[y] = 42, cy[z] =
Compute the truth value of F under /

1. | = p(f(x,y),z) since 13 + 42 > 1
2. |}~ ply, g(z x)) since 42 > 1 — 13
3. I EF by 1, 2, and —

F is true under /

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

68 / 93

Semantics: Quantifiers g

For a variable x:

Definition (x-variant)

An x-variant of interpretation / is an interpretation J : (D,, ay) such that
L D/ = DJ
e «ay[y] = ayly] for all symbols y, except possibly x

That is, / and J agree on everything except possibly the value of x

Denote J : | < {x — v} the x-variant of / in which a,[x] = v for some
v € D;. Then

o/ =EVx. F iffforallve D, l<{x—v}E=F
o/ = 3x. F iffthereexistsv € Dyst. [<{x — v} E F

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 69 / 93

Example g

Consider
F:Vx.dy. 2.y =x
Here 2 - y is the infix notatation of the term (2, y),
and 2 - y = x is the infix notatation of the atom = (-(2,y), x).
@ 2 is a O-ary function symbol (a constant).
@ - is a 2-ary function symbol.
@ = is a 2-ary predicate symbol.

@ X,y are variables.

What is the truth-value of F?

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 70 /93

Example (Z) 2

F:Vx.dy.2.-y =x

Let / be the standard interpration for integers, D; = Z.
Compute the value of F under [/:

I EVx.3y. 2y =x
iff
forallv e D, la{x— v} E3Jy.2 -y =x
iff
for all v € Dy, there exists vi € Dy, I<{x — v}<{y = w1} E 2y = x

The latter is false since for 1 € D, there is no number v; with 2 - vy = 1.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 71/93

Example (Q) g

F:Vx.dy. 2.y =x
Let / be the standard interpration for rational numbers, D; = Q.
Compute the value of F under [I:

| EVx.dy. 2.y =x
iff

forallv e D, I a{x — v} =3y.2.-y =x

iff
for all v € Dy, there exists vi € Dy, I<{x — v}<{y — w1} F 2y = x

The latter is true since for v.€ D; we can choose vi = 3.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 72 /93

Satisfiability and Validity g

Definition (Satisfiability)
F is satisfiable iff there exists an interpretation / such that | = F.

Definition (Validity)
F is valid iff for all interpretations /, | }= F.

F is valid iff =F is unsatisfiable I

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 73 /93

Substitution g

Suppose, we want to replace terms with other terms in formulas, e.g.
F oy (p(x,y) = p(y,x))

should be transformed to
G : Vy. (p(a,y) = ply,a))

We call the mapping from x to a a substituion denoted as o : {x — a}.
We write Fo for the formula G.

Another convenient notation is F[x] for a formula containing the variable
x and F[a] for Fo.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 74 / 93

Substitution g

Definition (Substitution)

A substitution is a mapping from terms to terms, e.g.

o {1.'1 = S1,...,th — Sn}

By Fo we denote the application of ¢ to formula F, i.e., the formula F
where all occurences of ty,...,t, are replaced by si,...,s,.

For a formula named F[x] we write F[t] as shorthand for F[x]{x — t}.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 75/ 93

Safe Substitution g

Care has to be taken in the presence of quantifiers:
F[x] : 3y. y = Succ(x)

What is Fly|?
We need to rename bounded variables occuring in the substitution:

Fly] : 3y’. y' = Succ(y)
Bounded renaming does not change the models of a formula:

(Jy. y = Succ(x)) & (Fy'. y' = Succ(x))

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 76 / 93

Recursive Definition of Substitution g
~58-
o(t) t € dom(o)
to = § f(tio,...,tho) t & dom(o) At = f(t1,...,tn)
X t ¢ dom(o) ANt = x
p(ti, ..., th)o = p(tio, ..., tho)

(=F)o = —(Fo)
(FA G)o = (Fo) A (Go)

(x. F)o VX Fo x ¢ Vars(o)
X. =
((F{x — x'})o) otherwise and x’ is fresh
(3x. Flo = Ix. Fo x ¢ Vars(o)
X, ((F{x — x'})o) otherwise and x’ is fresh

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 77 /93

Example: Safe Substitution Fo &

F o (Vx. p(x,y)) = q(f(y).x)
bound by Vx 7 "\ free ™\ free

o:{x — g(x), y = f(x), f(y) — h(x,y)}
Fo?

@ Rename
F' 29X p(X'y) — q(f(y),x)
.

where x’ is a fresh variable
Q Fo : VX. p(X,f(x)) = q(h(x,y),g(x))

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 78 /93

Semantic Tableaux

Recall rules from propositional logic:

I = —~F I = —F
I F I F
I'EFAG I~ FAG
IEF TEF | TEG
l':G<—and or
IEFVG I FVG
I'EF | IEG I~ F
I~ G
IEF—G I'EF — G
T F [TEG I'EF
I~ G
IEF+ G IEF & G
IEFAG | TEFVG ITEFA-G | TE-FAG
I = F
I £ F
= L

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

79 / 93

Semantic Tableaux for FOL

The following additional rules are used for quantifiers:

| = Vx.F[x] for any term t I £ Vx.F[x] for a fresh constant a
I'= Fli I~ Flal
I = 3x.F[x] for a fresh constant a I B~ 3x.F[x] for any term ¢t
I'F= Fla] I Flt]

(We assume that there are infinitely many constant symbols.)

The formula F[t] is created from the formula F[x] by the substitution
{x — t} (roughly, replace every x by t).

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

80 / 93

Example g

Show that (3x. Vy. p(x,y)) — (¥x. Jy. p(y, x)) is valid.

Assume otherwise.

1. | ¥ (3x. Yy. p(x,y)) = (Vx. y. p(y, x)) assumption

2. | = 3x.Vy. p(x,y) 1 and —

3. | & Vx. 3y. p(y,x) 1and —

4. | = Vy. p(a,y) 2, 3 (x — a fresh)
5. 1 ¥~ 3y. p(y,b) 3,V (x — b fresh)
6. | = p(a,b) 4,V (y — b)

7. | = p(a,b) 5 3(y — a)

8. I =1L 6,7 contradictory

Thus, the formula is valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 81 /93

Example &

Is F : (Vx. p(x,x)) = (3x. Vy. p(x,y)) valid?.

Assume [is a falsifying interpretation for F and apply semantic argument:

1. | B (Vx. p(x,x)) = (3x. Vy. p(x,y))

2. | E ¥x. p(x,x) 1and —
3. | £ 3x. Vy. p(x,y) 1and —
4. | E p(a1,a1) 2,V

5. | & Vy.p(a1,y) 3,3

6. |}~ p(a1,a) 5V

7. 1 E p(a2, a) 2,V

8. | & Vy.p(az,y) 3,3

9. |}~ p(az,a3) 8,V

No contradiction. Falsifying interpretation / can be “read” from proof:
true y = X,
Dy =N, pi(x,y) = { false y =x+ 1,
arbitrary otherwise.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 82 /93

Semantic Argument Proof g

To show FOL formula F is valid, assume | = F and derive a contradiction
I = L in all branches

@ Soundness
If every branch of a semantic argument proof reach | |= L, then F is
valid

o Completeness
Each valid formula F has a semantic argument proof in which every
branch reach | = L

@ Non-termination
For an invalid formula F the method is not guaranteed to terminate.
Thus, the semantic argument is not a decision procedure for validity.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 83 /93

Soundness (proof sketch) 2

If for interpretation / the assumption of the proof holds
then there is an interpretation /” and a branch
such that all statements on that branch hold.

I" differs from [in the values «y[a;] of fresh constants a;.

If all branches of the proof end with /| = L, then the assumption was
wrong. Thus, if the assumption was | [~ F, then F must be valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 84 /93

Completeness (proof sketch) 2

Consider (finite or infinite) proof trees starting with / [~ F. We assume
that

@ all possible proof rules were applied in all non-closed branches.

@ the V and J rules were applied for all terms.
This is possible since the terms are countable.

If every branch is closed, the tree is finite (KOnig's Lemma) and we have a
finite proof for F.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 85 /93

Completeness (proof sketch, continued) -

-3
Otherwise, the proof tree has at least one open branch P. We show that’F
is not valid.

@ The statements on that branch P form a Hintikka set:
o/ EFAGE Pimplies!/l = F e Pand! = G € P.
I FAGe Pimplies | [£ F e Porl =G e P.
I E Vx. F[x] € P implies for all terms ¢, | = F[t] € P.
I = ¥x. F[x] € P implies for some term a, | [~ Fla] € P.
Similarly for vV, —, +», 3.
@ Choose Dy := {t | tis term}, a;[f](t1,...,tn) = F(t1,...tn),
ay[x] = x (every term is interpreted as itself)

true | = p(ty,....ty) € P
false otherwise

aylpl(t, ... t) = {

© |/ satisfies all statements on the branch.
In particular, I is a falsifying interpretation of F, thus F is not valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 86 / 93

Normal Forms
.

Also in first-order logic normal forms can be used:
@ Devise an algorithm to convert a formula to a normal form.
@ Then devise an algorithm for satisfiability /validity that only works on

the normal form.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 87 /93

Negation Normal Forms (NNF) %

Negations appear only in literals. (only =, A, V,3,V)
To transform F to equivalent F’/ in NNF use recursively
the following template equivalences (left-to-right):

-—f < A - T & L -1l < T
—|(F1 VAN Fz) & —F VvV ah

De Morgan's Law
—|(F1 V F2) & - AR

FR—FH < -FRVFHF
F1<—>F2<:>(F1—>F2)/\(F2—>F1)

—Vx. F[x] & 3x. =F[x]
—3x. F[x] & Vx. =F[x]

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 88 /93

Example: Conversion to NNF 2

G : Vx. (3y. p(x,y) A p(x,z)) = Iw.p(x,w) .

Q Vx. (Jy. p(x,y) A p(x,2)) = Iw. p(x,w)

@ Vx. =(Jy. p(x,y) A p(x,2)) V Iw. p(x, w)
FR—>F < -FVEF

Q Vx. (Vy —|(p(X,y) A p(X,Z))) vV 3w. p(X, W)
—3x. F[x] & Vx. =F[x]

Q vx. (Vy. =p(x,y) V =p(x, z)) V Iw. p(x, w)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 89 /93

Prenex Normal Form (PNF) g

All quantifiers appear at the beginning of the formula
Q1x1 -+ - QnXn. F[Xl, Tt 7Xn]
where Q; € {V, 3} and F is quantifier-free.
Every FOL formula F can be transformed to formula F’ in PNF s.t.
F' < F:
Q@ Write F in NNF

@ Rename quantified variables to fresh names
© Move all quantifiers to the front

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 90 / 93

Example: PNF g

Find equivalent PNF of
F o ¥x. (By. p(x,¥) A p(x,2)) = Jy. p(x,y))
o Write F in NNF

Fy: x. (Vy _‘P(X,}/) v _‘P(X,Z)) v dy. p(Xa}/)
@ Rename quantified variables to fresh names

Fo o Vx. (Yy. =p(x,y) V =p(x,2)) V Iw. p(x, w)
T'in the scope of Vx

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 91 /93

Example: PNF g

@ Move all quantifiers to the front
F3 : Vx.Vy.3w. =p(x,y) V =p(x,z) V p(x, w)
Alternately,
F5 . Vx. 3w. Vy. =p(x,y) V =p(x,2) V p(x, w)

Note: In Fp, Vy is in the scope of Vx, therefore the order of
quantifiers must be ---Vx---Vy--.

Fs < Fand F} & F

Note: However G < F

G : Vy.3w. Vx. =p(x,y) V =p(x,z) V p(x,w)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 92 /93

Decidability of FOL g

e FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says "yes” if F is valid or say “no” if F is
invalid.

@ FOL is semi-decidable
There is a procedure that always halts and says “yes" if F is valid,
but may not halt if F is invalid.

On the other hand,

@ PL is decidable
There exists an algorithm for deciding if a PL formula F is valid, e.g.,

the truth-table procedure.

Similarly for satisfiability

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 93 /93

	First-Order Logic
	Satisfiability and Validity
	Normal Forms

