Decision Procedures

Jochen Hoenicke

Software Engineering
\(-\frac{\stackrel{y}{2}}{\substack{品
른}}\)
Albert-Ludwigs-University Freiburg

Winter Term 2015/16

Further route of this lecture

- Syntax and Semantics of First Order Logic (FOL)
- Semantic Tableaux for FOL
- FOL is only semi-decidable
\Longrightarrow Restrictions to decidable fragments of FOL
- Quantifier Free Fragment (QFF)
- QFF of Equality
- Presburger arithmetic
- (QFF of) Linear integer arithmetic
- Real arithmetic
- (QFF of) Linear real/rational arithmetic
- QFF of Recursive Data Structures
- QFF of Arrays
- Putting it all together (Nelson-Oppen).

First-Order Logic

Syntax of First-Order Logic

Also called Predicate Logic or Predicate Calculus

FOL Syntax

variables
constants
functions
terms
x, y, z, \cdots
a, b, c, \cdots
f, g, h, \cdots with arity $n>0$
variables, constants or
n -ary function applied to n terms as arguments
$a, x, f(a), g(x, b), f(g(x, f(b)))$
predicates p, q, r, \cdots with arity $n \geq 0$
atom
literal
atom or its negation $p(f(x), g(x, f(x))), \quad \neg p(f(x), g(x, f(x)))$

Note: 0-ary functions: constant 0 -ary predicates: P, Q, R, \ldots

Syntax of First-Order Logic (2)

quantifiers

existential quantifier $\exists x . F[x]$
"there exists an x such that $F[x]$ "
universal quantifier $\forall x . F[x]$
"for all $x, F[x]$ "
FOL formula literal, application of logical connectives $(\neg, \vee, \wedge, \rightarrow, \leftrightarrow)$ to formulae, or application of a quantifier to a formula

Example

FOL formula

$$
\forall x \cdot(\underbrace{p(f(x), x) \rightarrow(\exists y \cdot(\underbrace{p(f(g(x, y))), g(x, y))}_{G})) \wedge q(x, f(x))}_{F})
$$

The scope of $\forall x$ is F.
The scope of $\exists y$ is G.
The formula reads:
"for all x ,
if $p(f(x), x)$
then there exists a y such that $p(f(g(x, y)), g(x, y))$ and $q(x, f(x)) "$

Famous theorems in FOL

- The length of one side of a triangle is less than the sum of the lengths of the other two sides

$$
\forall x, y, z . \operatorname{triangle}(x, y, z) \rightarrow \text { length }(x)<\text { length }(y)+\text { length }(z)
$$

- Fermat's Last Theorem.

$$
\begin{aligned}
& \forall n \text {. integer }(n) \wedge n>2 \\
& \rightarrow \forall x, y, z \text {. } \\
& \quad \text { integer }(x) \wedge \operatorname{integer}(y) \wedge \text { integer }(z) \\
& \quad \wedge x>0 \wedge y>0 \wedge z>0 \\
& \quad \rightarrow x^{n}+y^{n} \neq z^{n}
\end{aligned}
$$

Pumping Lemma

For every regular Language L there is some $n \geq 0$, such that for all words $z \in L$ with $|z| \geq n$ there is a decomposition $z=u v w$ with $|v| \geq 1$ and $|u v| \leq n$, such that for all $i \geq 0: u v^{i} w \in L$.

```
\(\forall\) L. regularlanguage \((L) \rightarrow\)
    \(\exists n\). integer \((n) \wedge n \geq 0 \wedge\)
    \(\forall z . z \in L \wedge|z| \geq n \rightarrow\)
        \(\exists u, v, w . \operatorname{word}(u) \wedge \operatorname{word}(v) \wedge \operatorname{word}(w) \wedge\)
    \(z=u v w \wedge|v| \geq 1 \wedge|u v| \leq n \wedge\)
    \(\forall i\). integer \((i) \wedge i \geq 0 \rightarrow u v^{i} w \in L\)
```

Predicates: regularlanguage, integer, word, $\cdot \in \cdot, \cdot \leq \cdot, \cdot \geq \cdot, \cdot=\cdot$
Constants: 0, 1
Functions: | \mid (word length), concatenation, iteration

FOL Semantics

An interpretation I : $\left(D_{I}, \alpha_{I}\right)$ consists of:

- Domain D_{l}
non-empty set of values or objects for example $D_{l}=$ playing cards (finite), integers (countable infinite), or reals (uncountable infinite)
- Assignment α_{l}
- each variable x assigned value $\alpha_{l}[x] \in D_{l}$
- each n-ary function f assigned

$$
\alpha_{l}[f]: \quad D_{l}^{n} \rightarrow D_{l}
$$

In particular, each constant a (0-ary function) assigned value $\alpha_{l}[a] \in D_{l}$

- each n-ary predicate p assigned

$$
\alpha_{l}[p]: D_{l}^{n} \rightarrow\{\top, \perp\}
$$

In particular, each propositional variable P (0-ary predicate) assigned truth value (\top, \perp)

Example

$$
F: p(f(x, y), z) \rightarrow p(y, g(z, x))
$$

Interpretation I: $\left(D_{I}, \alpha_{l}\right)$

$$
\begin{array}{rll}
D_{l}=\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\} & \text { integers } \\
\alpha_{l}[f]: & D_{l}^{2} \rightarrow D_{l} & \alpha_{l}[g]: \\
& (x, y) \mapsto x+y & D_{l}^{2} \rightarrow D_{l} \\
\alpha_{l}[p]: & D_{l}^{2} \rightarrow\{\top, \perp\} & (x, y) \mapsto x-y \\
& (x, y) \mapsto \begin{cases}\top & \text { if } x<y \\
\perp & \text { otherwise }\end{cases} &
\end{array}
$$

Also $\alpha_{l}[x]=13, \alpha_{l}[y]=42, \alpha_{l}[z]=1$
Compute the truth value of F under I

$$
\begin{array}{lll}
\text { 1. } \quad I \not \models p(f(x, y), z) & \text { since } 13+42 \geq 1 \\
\text { 2. } \quad I \not \models p(y, g(z, x)) & \text { since } 42 \geq 1-13 \\
\text { 3. } \quad I \not \models F & \text { by } 1,2, \text { and } \rightarrow
\end{array}
$$

F is true under I

Semantics: Quantifiers

For a variable x :

Definition (x-variant)

An x-variant of interpretation I is an interpretation $J:\left(D_{J}, \alpha_{J}\right)$ such that

- $D_{l}=D_{J}$
- $\alpha_{l}[y]=\alpha_{J}[y]$ for all symbols y, except possibly x

That is, I and J agree on everything except possibly the value of x
Denote $J: I \triangleleft\{x \mapsto v\}$ the x-variant of I in which $\alpha_{J}[x]=v$ for some $v \in D_{l}$. Then

- $I \models \forall x$. $F \quad$ iff for all $v \in D_{l}, l \triangleleft\{x \mapsto \mathrm{v}\} \vDash F$
- $I \models \exists x . F \quad$ iff there exists $\mathrm{v} \in D_{l}$ s.t. $I \triangleleft\{x \mapsto \mathrm{v}\} \models F$

Example

Consider

$$
F: \forall x . \exists y .2 \cdot y=x
$$

Here $2 \cdot y$ is the infix notatation of the term $\cdot(2, y)$, and $2 \cdot y=x$ is the infix notatation of the atom $=(\cdot(2, y), x)$.

- 2 is a 0 -ary function symbol (a constant).
- . is a 2-ary function symbol.
- = is a 2-ary predicate symbol.
- x, y are variables.

What is the truth-value of F ?

Example (\mathbb{Z})

$$
F: \forall x . \exists y .2 \cdot y=x
$$

Let l be the standard interpration for integers, $D_{l}=\mathbb{Z}$.
Compute the value of F under I :

$$
I \models \forall x . \exists y .2 \cdot y=x
$$

iff

$$
\text { for all } v \in D_{l}, l \triangleleft\{x \mapsto v\} \models \exists y .2 \cdot y=x
$$

iff
for all $\mathrm{v} \in D_{l}$, there exists $\mathrm{v}_{1} \in D_{I}, I \triangleleft\{x \mapsto \mathrm{v}\} \triangleleft\left\{y \mapsto \mathrm{v}_{1}\right\} \models 2 \cdot y=x$
The latter is false since for $1 \in D_{l}$ there is no number v_{1} with $2 \cdot v_{1}=1$.

Example (\mathbb{Q})

$$
F: \forall x . \exists y .2 \cdot y=x
$$

Let $/$ be the standard interpration for rational numbers, $D_{l}=\mathbb{Q}$.
Compute the value of F under I :

$$
I \models \forall x . \exists y .2 \cdot y=x
$$

iff

$$
\text { for all } v \in D_{l}, I \triangleleft\{x \mapsto v\} \vDash \exists y .2 \cdot y=x
$$

iff
for all $\mathrm{v} \in D_{I}$, there exists $\mathrm{v}_{1} \in D_{I}, I \triangleleft\{x \mapsto \mathrm{v}\} \triangleleft\left\{y \mapsto \mathrm{v}_{1}\right\} \models 2 \cdot y=x$
The latter is true since for $v \in D_{\text {l }}$ we can choose $\mathrm{v}_{1}=\frac{v}{2}$.

Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that $I \models F$.

Definition (Validity)

F is valid iff for all interpretations $I, I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

Substitution

Suppose, we want to replace terms with other terms in formulas, e.g.

$$
F: \forall y .(p(x, y) \rightarrow p(y, x))
$$

should be transformed to

$$
G: \forall y .(p(a, y) \rightarrow p(y, a))
$$

We call the mapping from x to a a substituion denoted as $\sigma:\{x \mapsto a\}$. We write $F \sigma$ for the formula G.
Another convenient notation is $F[x]$ for a formula containing the variable x and $F[a]$ for $F \sigma$.

Substitution

Definition (Substitution)

A substitution is a mapping from terms to terms, e.g.

$$
\sigma:\left\{t_{1} \mapsto s_{1}, \ldots, t_{n} \mapsto s_{n}\right\}
$$

By $F \sigma$ we denote the application of σ to formula F, i.e., the formula F where all occurences of t_{1}, \ldots, t_{n} are replaced by s_{1}, \ldots, s_{n}.

For a formula named $F[x]$ we write $F[t]$ as shorthand for $F[x]\{x \mapsto t\}$.

Safe Substitution

Care has to be taken in the presence of quantifiers:

$$
F[x]: \exists y . y=\operatorname{Succ}(x)
$$

What is $F[y]$?
We need to rename bounded variables occuring in the substitution:

$$
F[y]: \exists y^{\prime} \cdot y^{\prime}=\operatorname{Succ}(y)
$$

Bounded renaming does not change the models of a formula:

$$
(\exists y \cdot y=\operatorname{Succ}(x)) \Leftrightarrow\left(\exists y^{\prime} \cdot y^{\prime}=\operatorname{Succ}(x)\right)
$$

Recursive Definition of Substitution

$$
\begin{aligned}
& t \sigma= \begin{cases}\sigma(t) & t \in \operatorname{dom}(\sigma) \\
f\left(t_{1} \sigma, \ldots, t_{n} \sigma\right) & t \notin \operatorname{dom}(\sigma) \wedge t=f\left(t_{1}, \ldots, t_{n}\right) \\
x & t \notin \operatorname{dom}(\sigma) \wedge t=x\end{cases} \\
& p\left(t_{1}, \ldots, t_{n}\right) \sigma=p\left(t_{1} \sigma, \ldots, t_{n} \sigma\right) \\
& (\neg F) \sigma=\neg(F \sigma) \\
& (F \wedge G) \sigma=(F \sigma) \wedge(G \sigma) \\
& (\forall x . F) \sigma= \begin{cases}\forall x . F \sigma & x \notin \operatorname{Vars}(\sigma) \\
\forall x^{\prime} .\left(\left(F\left\{x \mapsto x^{\prime}\right\}\right) \sigma\right) & \text { otherwise and } x^{\prime} \text { is fresh }\end{cases} \\
& (\exists x . F) \sigma= \begin{cases}\exists x . F \sigma & x \notin \operatorname{Vars}(\sigma) \\
\exists x^{\prime} .\left(\left(F\left\{x \mapsto x^{\prime}\right\}\right) \sigma\right) & \text { otherwise and } x^{\prime} \text { is fresh }\end{cases}
\end{aligned}
$$

Example: Safe Substitution $F \sigma$

$$
\begin{gathered}
F:(\forall x . p(x, y)) \rightarrow q(f(y), x) \\
\text { bound by } \forall x \nearrow \text { free } \\
\sigma:\{x \mapsto g(x), y \mapsto f(x), f(y) \mapsto h(x, y)\}
\end{gathered}
$$

$F \sigma$?
(1) Rename

$$
\underset{\uparrow}{F^{\prime}:} \underset{\uparrow}{\forall x^{\prime}} \cdot p\left(x^{\prime}, y\right) \rightarrow q(f(y), x)
$$

where x^{\prime} is a fresh variable
(2) $F \sigma: \forall x^{\prime} \cdot p\left(x^{\prime}, f(x)\right) \rightarrow q(h(x, y), g(x))$

Semantic Tableaux

Recall rules from propositional logic:

$$
\begin{aligned}
& \frac{l \models \neg F}{l \nLeftarrow F} \\
& \frac{l \not \models \neg F}{l \models F} \\
& \begin{array}{l}
I \models F \wedge G \\
l \models F \\
I \models G \quad \text { and }
\end{array} \\
& \\
& \begin{array}{c}
l \models F \rightarrow G \\
\hline l \not \models F \mid \quad l \models G
\end{array} \\
& \begin{array}{c}
I \models F \leftrightarrow G \\
I \models F \wedge G \mid \quad l \not \models F \vee G
\end{array} \\
& \frac{I \mid F F \leftrightarrow G}{I \vDash F \wedge \neg G \quad \mid \vDash \neg F \wedge G} \\
& \begin{array}{l}
I \neq F \\
I \not \models F \\
I \models \perp
\end{array}
\end{aligned}
$$

Semantic Tableaux for FOL

The following additional rules are used for quantifiers:

$$
\begin{array}{cc}
\frac{I \models \forall x . F[x] \text { for any term } t}{I \models F[t]} & \frac{I \not \models \forall x . F[x]}{l \not \models F[a]} \text { for a fresh constant a } \\
\frac{I \models \exists x . F[x]}{I \models F[a]} \text { for a fresh constant a } & \frac{l \not \models \exists x . F[x]}{l \not \models F[t]} \text { for any term } t
\end{array}
$$

(We assume that there are infinitely many constant symbols.)
The formula $F[t]$ is created from the formula $F[x]$ by the substitution $\{x \mapsto t\}$ (roughly, replace every x by t).

Example

Show that $(\exists x . \forall y . p(x, y)) \rightarrow(\forall x . \exists y . p(y, x))$ is valid.
Assume otherwise.

1. $\quad I \notin(\exists x . \forall y \cdot p(x, y)) \rightarrow(\forall x . \exists y . p(y, x)) \quad$ assumption
2. $I \models \exists x . \forall y . p(x, y)$
3. $I \not \vDash \forall x$. $\exists y . p(y, x)$
4. $\quad I \vDash \forall y . p(a, y)$
5. $\quad I \not \vDash \exists y . p(y, b)$
6. $\quad I \vDash p(a, b)$
7. $I \not \vDash p(a, b)$
8. $I \models \perp$

1 and \rightarrow
1 and \rightarrow
2, \exists ($x \mapsto a$ fresh $)$
3, \forall ($x \mapsto b$ fresh $)$
4, $\forall(y \mapsto b)$
5, $\exists(y \mapsto a)$
6,7 contradictory
Thus, the formula is valid.

Example

Is $F:(\forall x . p(x, x)) \rightarrow(\exists x . \forall y . p(x, y))$ valid?.
Assume I is a falsifying interpretation for F and apply semantic argument:

$$
\begin{aligned}
& \text { 1. } \quad I \quad \vDash(\forall x . p(x, x)) \rightarrow(\exists x . \forall y . p(x, y)) \\
& \text { 2. } I \models \forall x \cdot p(x, x) \quad 1 \text { and } \rightarrow \\
& \text { 3. } I \notin \exists x . \forall y \cdot p(x, y) \quad 1 \text { and } \rightarrow \\
& \text { 4. } \quad l \models p\left(a_{1}, a_{1}\right) \quad 2, \forall \\
& \text { 5. } I \not \vDash \forall y . p\left(a_{1}, y\right) \quad 3, \exists \\
& \text { 6. } I \not \vDash p\left(a_{1}, a_{2}\right) \quad 5, \forall \\
& \text { 7. } I \models p\left(a_{2}, a_{2}\right) \quad 2, \forall \\
& \text { 8. } I \not \vDash \forall y . p\left(a_{2}, y\right) \quad 3, \exists \\
& \text { 9. } I \not \models p\left(a_{2}, a_{3}\right) \quad 8, \forall
\end{aligned}
$$

No contradiction. Falsifying interpretation I can be "read" from proof:

$$
D_{l}=\mathbb{N}, \quad p_{l}(x, y)= \begin{cases}\text { true } & y=x \\ \text { false } & y=x+1 \\ \text { arbitrary } & \text { otherwise }\end{cases}
$$

Semantic Argument Proof

To show FOL formula F is valid, assume $I \not \vDash F$ and derive a contradiction $l \models \perp$ in all branches

- Soundness

If every branch of a semantic argument proof reach $/ \vDash \perp$, then F is valid

- Completeness

Each valid formula F has a semantic argument proof in which every branch reach $/ \models \perp$

- Non-termination

For an invalid formula F the method is not guaranteed to terminate. Thus, the semantic argument is not a decision procedure for validity.

Soundness (proof sketch)

If for interpretation / the assumption of the proof holds then there is an interpretation I^{\prime} and a branch such that all statements on that branch hold.
I^{\prime} differs from I in the values $\alpha_{l}\left[a_{i}\right]$ of fresh constants a_{i}.
If all branches of the proof end with $I \models \perp$, then the assumption was wrong. Thus, if the assumption was $I \not \vDash F$, then F must be valid.

Completeness (proof sketch)

Consider (finite or infinite) proof trees starting with I $\not \vDash F$. We assume that

- all possible proof rules were applied in all non-closed branches.
- the \forall and \exists rules were applied for all terms.

This is possible since the terms are countable.

If every branch is closed, the tree is finite (Kőnig's Lemma) and we have a finite proof for F.

Completeness (proof sketch, continued)

Otherwise, the proof tree has at least one open branch P. We show that $t^{2^{2}} F$ is not valid.
(1) The statements on that branch P form a Hintikka set:

- $I \models F \wedge G \in P$ implies $I \models F \in P$ and $I \models G \in P$.
- $I \not \vDash F \wedge G \in P$ implies $I \not \vDash F \in P$ or $I \not \vDash G \in P$.
- $I \models \forall x$. $F[x] \in P$ implies for all terms $t, I \models F[t] \in P$.
- $I \not \vDash \forall x . F[x] \in P$ implies for some term $a, I \not \vDash F[a] \in P$.
- Similarly for $\vee, \rightarrow, \leftrightarrow, \exists$.
(2) Choose $D_{l}:=\{t \mid t$ is term $\}, \alpha_{l}[f]\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots t_{n}\right)$, $\alpha_{l}[x]=x$ (every term is interpreted as itself)

$$
\alpha_{l}[p]\left(t_{1}, \ldots, t_{n}\right)= \begin{cases}\text { true } & I \models p\left(t_{1}, \ldots, t_{n}\right) \in P \\ \text { false } & \text { otherwise }\end{cases}
$$

(3) I satisfies all statements on the branch.

In particular, I is a falsifying interpretation of F, thus F is not valid.

Normal Forms

Also in first-order logic normal forms can be used:

- Devise an algorithm to convert a formula to a normal form.
- Then devise an algorithm for satisfiability/validity that only works on the normal form.

Negation Normal Forms (NNF)

Negations appear only in literals. (only $\neg, \wedge, \vee, \exists, \forall$)
To transform F to equivalent F^{\prime} in NNF use recursively the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \perp \\
\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
\neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2}
\end{array}\right\} \text { De Morgan's Law } \quad \begin{aligned}
& \\
& F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2} \\
& F_{1} \leftrightarrow F_{2} \Leftrightarrow\left(F_{1} \rightarrow F_{2}\right) \wedge\left(F_{2} \rightarrow F_{1}\right) \\
& \neg \forall x . F[x] \Leftrightarrow \exists x . \neg F[x] \\
& \neg \exists x . F[x] \Leftrightarrow \forall x . \neg F[x]
\end{aligned}
$$

Example: Conversion to NNF

$G: \forall x .(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w)$.
(1) $\forall x \cdot(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w)$
(2) $\forall x \cdot \neg(\exists y \cdot p(x, y) \wedge p(x, z)) \vee \exists w \cdot p(x, w)$

$$
F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2}
$$

(3) $\forall x \cdot(\forall y \cdot \neg(p(x, y) \wedge p(x, z))) \vee \exists w \cdot p(x, w)$

$$
\neg \exists x . F[x] \Leftrightarrow \forall x . \neg F[x]
$$

(9) $\forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists w \cdot p(x, w)$

Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

$$
Q_{1} x_{1} \cdots Q_{n} x_{n} . F\left[x_{1}, \cdots, x_{n}\right]
$$

where $Q_{i} \in\{\forall, \exists\}$ and F is quantifier-free.
Every FOL formula F can be transformed to formula F^{\prime} in PNF s.t. $F^{\prime} \Leftrightarrow F$:
(1) Write F in NNF
(3) Rename quantified variables to fresh names

- Move all quantifiers to the front

Example: PNF

Find equivalent PNF of

$$
F: \forall x \cdot((\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists y \cdot p(x, y))
$$

- Write F in NNF

$$
F_{1}: \forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists y . p(x, y)
$$

- Rename quantified variables to fresh names

$$
\begin{gathered}
F_{2}: \quad \forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists w . p(x, w) \\
\uparrow \text { in the scope of } \forall x
\end{gathered}
$$

Example: PNF

- Move all quantifiers to the front

$$
F_{3}: \forall x . \forall y . \exists w . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Alternately,

$$
F_{3}^{\prime}: \forall x . \exists w . \forall y . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Note: In $F_{2}, \forall y$ is in the scope of $\forall x$, therefore the order of quantifiers must be $\cdots \forall x \cdots \forall y \cdots$

$$
F_{4} \Leftrightarrow F \text { and } F_{4}^{\prime} \Leftrightarrow F
$$

Note: However $G \nLeftarrow F$

$$
G: \forall y . \exists w . \forall x . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Decidability of FOL

- FOL is undecidable (Turing \& Church)

There does not exist an algorithm for deciding if a FOL formula F is valid, i.e. always halt and says "yes" if F is valid or say "no" if F is invalid.

- FOL is semi-decidable

There is a procedure that always halts and says "yes" if F is valid, but may not halt if F is invalid.

On the other hand,

- PL is decidable

There exists an algorithm for deciding if a PL formula F is valid, e.g., the truth-table procedure.

Similarly for satisfiability

