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Craig Interpolation



Introduction g

Given an unsatisfiable formula of the form:

FAG

Can we find a “smaller” formula that explains the conflict?

l.e., a formula implied by F that is inconsistent with G?

Under certain conditions, there is an interpolant / with
o F =1
e | N G is unsatisfiable.

@ | contains only symbols common to F and G.
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Craig Interpolation &

A craig interpolant / for an unsatisfiable formula F A G is
o F =1
o | A G is unsatisfiable.

@ | contains only symbols common to F and G.

Craig interpolants exists in many theories and fragments:
o First-order logic.
@ Quantifier-free FOL.
@ Quantifier-free fragment of Tg.
o Quantifier-free fragment of Tg.
@ Quantifier-free fragment of 7'; (augmented with divisibility).

However, QF fragment of Ty does not allow Craig interpolation.
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Program correctness g

2

Consider this path through Single Static Assingment (SSA) 3
LINEARSEARCH: replaces assignments by assumes:

@pre 0 < L A u < |4 Opre 0 < ¢ A u < |4

i =Y assume i1 = /

assume | < u assume 1 < U

assume afi] # e assume a[ih] # e

=141 assume /p = i1 + 1

assume | < u assume b < u

Q0 <iNi<]|g Q0 < hAih<|a
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Program correctness and Interpolants g

If program contains only assumes, the VC looks like
VC: P (A= (Fr—=(F—...(Fh— Q)...)))
Using =(F — G) <& F A =G compute negation:
“VC:PANARANFBRANFRBA---ANFyANDQ

If verification condition is valid =VC is unsatisfiable. We can compute
interpolants for any program point, e.g. for

PANFLANF ANFRA---ANFyaAN—Q
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Verification Condition and Interpolants g

Consider the path through
LINEARSEARCH:

Opre 0 < £ A u < |4
assume i = £
assume i1 < U
assume afi1] # e
assume b = i1 + 1
assume /b < U

©0§i2/\i2<\a\

Jochen Hoenicke (Software Engineering)

The negated VC is unsatisfiable: Ef

O0</lAu<|aNni=1
A i uNalh]l #eNih =i +1

<
/\I'2§UA(0>I'2\/I'22’2D

The interpolant / for the red and
blue part is
i >0Au<|a

This is actually the loop invariant
needed to prove the assertion.
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Computing Interpolants &

Suppose F1 A F, A Gi A G,
How can we compute an interpolant?
@ The algorithm is dependent on the theory and the fragment.

@ We will show an algorithm for

o Quantifier-free conjunctive fragment of Tg.
o Quantifier-free conjunctive fragment of Tg.
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Computing Interpolants for Tg g

FEA---NF, NG A -+ A G,is unsat

Let us first consider the case without function symbols.
The congruence closure algorithm returns unsat. Hence,
@ there is a disequality v # w and
@ v,w have the same representative.

Example:

VEWAX=yAy=zANz=uAw=sAt=zAs=tANv =x

o,
JOLO
020/

The Interpolant “summarizes” the red edges: | : v # s A x =t
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Computing Interpolants for Tg &

Given conjunctive formula:
FEANANFa,ANGL A A Gy

The following algorithm can be used unless there is a congruence edge:
@ Build the congruence closure graph. Edges F; are colored red, Edges
G; are colored blue.
@ Add (colored) disequality edge. Find circle and remove all other edges.
@ Combine maximal red paths, remove blue paths.

@ The F paths start and end at shared symbols.
Interpolant is the conjunction of the corresponding equalities.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 387 / 435



Handling Congruence Edges (Case 1) £

Both side of the congruence edge belong to G.

B=ihANe#fAalh)=eNalis) =FfANih=hAiz=1

(=)

g o o Follow the path that connects the
e e arguments.

@ Also add summarized edges for that path.

G a o Treat the congruence edge as blue edge
(ignore it).

@ Interpolant is conjunction of all summarized
paths.

Interpolant:
h=HRhNe#f
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Handling Congruence Edges (Case 2) £

Both side of the congruence edge belong to different formulas.
a(il) =elNb=01hLANig = i2/\a(i3) #* e

A @ Function symbol a must be shared.

Follow the path that connects the
arguments.

. ,
©

®

Find first change from red to blue.

Lift function application on that term.

A\
e o

Summarize e = a(il) A it = i by
. e = a(h).

o Compute remaining interpolant as usual.

Interpolant: e = a(iy).
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Handling Congruence Edges (Case 3) g
52
=]y
Both side of the congruence edge belong to F.
a(il): e/\a(i4): FANRL=bANB=1IgNi3 = I.Q/\e?é f
e -t- e o Follow the path that connects the
N arguments.
@ Find the first and last terms i, i3 where
color changes.
@ Treat congruence edge as red edge and
@ summarize path.

@ The summary only holds under i, = i3,i.e.,

add ih = i3 — e = f to interpolants.

Interpolant: @ Summarize remaining path segments as

I-2 — i3 S e="f usual.
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Computing Interpolants for Tg &

First apply Dutertre/de Moura algorithm.
@ Non-basic variables xi, ..., x,.
@ Basic variables yi, ..., Ym.
oy = D ajX
@ Conjunctive formula
i < btV < by A Y1 < byt Ym < bm.

The algorithm returns unsatisfiable if and only if there is a line:
[x 0 x y ey oy oy

yilyi |0 0 0 —j0 e —J0 —j0 e O

yi =y —a Yk, a > 0and ) —a) b > b;
(the constraint y; < b; is not satisfied)
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Computing Interpolants for Tg g
The conflict is: 2"

bi > yi =Y —ayk = Y —agbe > b

or
0=y + > ayk < b+ b <0

We split the y variables into blue and red ones:

0= Zalkyk + Z aikyk < Zalkbk + Z aikb < 0

k=m'+1 k=m'+1

where a; > 0,(a; = 1). The interpolant / is the red part:

m’ m’
§ aiyk < E ajk by
k=1 k=1

where the basic variables yj are replaced by their definition.
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Example &

x1+x <3Ax1—x<1Ax3—xx <1Ax3 >4

Y1 = x1+ x by =3 y3 = —x1 + X3 by =1
Vo = X1 — X2 by =1 Ya = —X3 by ;= —4
1 1 -4
Y2 y3 ya | B
. . yi|-1 -2 -2|5
Algorithm ends with the tableaux w |0 1 13
x|-1 -1 -1]2
x310 0 -1|4

Conflictis0 = y1 +y2o +2y3 +2y4 <3 +1+4+2-8 = -2
Interpolant is: y3 +y» < 341
or (substituting non-basic vars): 2x; < 4.
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Correctness &
n =R
of

K = Zaijj < by, (k=1,...,m) Gk @ Yk = akixj < by, (k=m',...,m)

j=0

/

Conflict is 0 = " ajy + zm: ERY Zakbk + Z b <0

k=1 k=m'+1 k=m'+1

m/ l

I A

After substitution the red part Z ayk < Z a) b becomes
k=1 k=1
3 () 5 < St
Jj=1 \k=1

e F = | (sum up the inequalities in F with factors a} ).
©/AG = L (sumup / and G with factors aj to get 0 < >, a) by < 0).

) 7
@ Only shared symbols in 1: 0 = > 7/"; aiajx; + > )L, 11 akjd)X;.
If the left sum is not zero, the right sum is not zero and x; appears in F and G.
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Computing Interpolants for DPLL(T)

A proof of unsatisfiability is a resolution tree:
svVrVvgsVyg

qVvVrVvsqVvr
R R
rv.op rvVaq rvs rVs
%I—J %I—J
qavVvp qVvop s sVp
P P
1L

where each node is generated by the rule

A& ZVCQ
GV G

@ The leaves are (trivial) consequences of F A G.
@ Therefore, every node is a consequence.
@ Therefore, the root node L is a consequence.
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Interpolants for Conflict Clauses g

Key Idea: Compute Interpolants for conflict clauses:
Split C into Cr and Cg (if literal appear in F and G put it in Cg).

The conflict clause follows from the original formula:

FANG= CrV Cg

Hence, the following formula is unsatisfiable.

FA-CENGA—-Cg

An interpolant /¢ for C is the interpolant of the above formula. /¢
contains only symbols shared between F and G.
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McMillan's algorithm

Assign all literals to either F or G.

s,r,q : hs,qg : T q,r,s : hq,7 : k3
r,p: L r,q : h r,s:s r,s:h ARk
_
q,p:h qg,p:h s:sV(hAB) 5,p:5S
\ | \ |
| |
p:hANDb p:hANKBAS
\ |
|
T:(/l/\/Q)\/(/l/\/3/\§)
Compute interpolants for the leaves.
Then, for every resolution step compute interpolant as
Z/:/\aill éF/\?Q:b ZG/\aill (G/\C./z
?1/\?2:/1\//2 ?1/\?2:/1/\/2
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Computing Interpolants for Conflict Clauses &

There are several points where conflict clauses are returned:

o Conflict clauses is returned by TCHECK.
Then theory must give an interpolant.
o Conflict clauses comes from F.
Then F = Cr Vv Cq.
Hence, (F A =Cr) = Cg. Also, C¢ A G N =Cg is unsatisfiable
Interpolant is Cg.
@ Conflict clauses comes from G.
Then Cc = C, G = Cg.
Hence, (G N —Cg) is unsatisfiable. Interpolant is T.
@ Conflict clause comes from resolution on /.
Then there is a unit clause U = £ Vv U’ with interpolant Iy
and conflict clause C = —¢ Vv C’ with interpolant /c.

If ¢ € F,set lyne = Iy V e
If ¢ € G, set lyne = Iy N e
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Computing Interpolants for DPLL(T) g

The previous algorithm can compute interpolant for each conflict clause.
The final conflict clause returned is L.

/| is an interpolant of F A G.
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Computing Interpolants for Theory Combinations g

Unfortunately, it is not that easy. ..

... because equalities shared by Nelson-Oppen can contain red and blue
symbols simultaneously.

Example:
F:t<2aA2a<sAf(a)=gq
G:s <2bAN2b< tAf(b) #q
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Nelson-Oppen proof

Purifying the example gives:

e :f(a) =qgAf(b)#q
Mg :t<2aN2a<sAs<2bAN2b<t

Shared variables V = {a, b}
Nelson-Oppen proceeds as follows

© [ propagates a = b.
@ e U a = b is unsatisfiable.
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Conflicts g

Fe:f(a) =qgAf(b)#q
Mg :t<2aN2a<sAs<2bAN2b<t

N-O introduces three literals: a = b, a < b, a > b.
Theory conflicts:

2b < < a)
2a < sAs <2bA-=(a<b)
a<bAb<aANa#h

a=bAf(a) =qgATf(b) #q

tAt <2aA-(b

How can we compute interpolants for the conflicts?
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Interpolant with a = b g

2
-2~
What is an interpolant of a = b A f(a) = g A f(b) # q7? o
Key Idea: Split
a=»>
into

a=x Af(a) =qgA
x1:b/\f(b)§£q

Interpolant: f(x1) = ¢
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Interpolant with a # b

What is an interpolant of a # b A a = s A b = s?

Key Idea: Split
a#b
into

eq(xi,a) A —eq(xi, b) where x; shared, eq a predicate

eq(x1,a) = eNa=sA
eq(x1,b) £ e A b =s

Interpolant: eq(xi, s)
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Resolving on a = b g

Consider the resolution step

a=bVa#sVb#s a#bvf(a)#qVIf(b)=gq
f(a) #qVif(b)=qgVa#sVb+#s

How to combine the interpolants eq(x1,s) and f(x1) = q?

o 0

f(a)=qgAa
f(b) # g As =

Interpolant: f(s) = ¢

e
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Resolution rule for a = b g

The interpolation rule is

a= bV G : hleq(x,s1)]-..[eq(x, sn)] a#bVv G : hkx)
C1 V C2 : /1[/2(51)] .. [IQ(S,,)]

In our example
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Example &
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Example: Proof Lemmas

a=f(f(a) Aa=xAp(fa)) Ab=xAf(b) = f(f(b)) A =p(b)

Prove using the following lemmas:

Fi: a=xAx=b— f(a) = f(b):
F - f(a) =, f(b) = f(f(a)) = f(f(b)) :
F3 : f(a) = f(b) = f(f(b)) =x
f(f(a))=a=x=0b— f(a) = b
Fy : f(a) =« b A p(f(a)) — p(b)

Jochen Hoenicke (Software Engineering)

Decision Procedures

eq(xt, f(x))
eq(x2, f(x1))

ceq(xz, x1) A xo = x

- p(x3)
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Example: Annotating Proof with Interpolants

Fi: a=xAx=b— f(a) =, f(b): eq(xi, f(x))
Fa o fa) =4 f(b) = f(f(a)) =x F(F(D)): eqlx, (1))
Fs o f(a) =« f(b) = f(f(b)) =x
f(f(a)) = a=x=b — f(a) = b: eq(x3,x1) A xo0 = x
Fy : f(a) =« b A p(f(a)) — p(b): p(x3)
F> 1 eq(x2, f(x1)) F3 : eq(x3,x1) A xo = x

Fi @ eq(xi, f(x)) eq(x3, x1) /\I f(x1) = x

e, F(3)) A F(F(x)) = x o - p(s)

p(F(x)) A F(F(x)) = x
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Example: Checking Interpolants &

a=f(fa)) Aa=xAp(fla)) A b= xA F(b) = F(f(b)) A =p(b)

Interpolant: p(f(x)) A f(f(x)) = x

@ F — [: Substitute a = x into other atoms.

o I NG — L: b= xATf(f(x)) = x A —p(b) implies =p(f(f(x))).
With b = x, f(b) = f(f(b)) this implies =p(f(x)).
This contradicts p(f(x)).

@ Symbol condition: p, f, x are shared.
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Back to the Nelson—-Oppen Example &

e :f(a) =qAf(b) #q
Mg :t<2aN2a<sAs<2bAN2b<'t

Theory conflicts:

2b < tAt <2aA-(b<a)
2a < sAs <2bA-=(a<b)
a<bAb<aANa#h

a=bAf(a)=qgAf(b)#q

How can we compute interpolants for the conflicts?
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Interpolant with a > b &

What is an interpolant of 2a < s As < 2bAa > b
Split
a>»b
into
a > x1 A xg > awhere x; shared

2a—s5s <0 -1
s—2b<0 -1 2a—s5s <0 1
leago -2 leago
b—x1 <0 -2 2x1 —s <0
0<0
Interpolant: 2x; — s < 0.

We need the term 2x; — s later; we write interpolant as:

LA(2X1 — S, 2X1 —s < 0)
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Interpolant with a < b

What is an interpolant of t < 2aA2b < tAa<b
Split
a<hb
into
a < xo A xo < b where x> shared

t—2a<0 -1
2b—t <0 -1 t—2a<0 1
a*XQSO -2 a*XQSO
xx —b<0 -2 t—2x <0
0<O
Interpolant: t — 2x < 0.

We need the term t — 2x» later; we write interpolant as:

LA(t — 2xp,t — 2xp < 0)
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Interpolant of Trichotomy &

What is an interpolantof a < bA b < aAa#b

a<x3iAx < aANeq(xs,a)Ax1 < bAb< x A -eq(xs,b)

Manually we find the interpolant
x2—x1 <0V (x2—x1 <0A eq(x3,x2))
Here xo — xy is the ‘“critical term”; Interpolant:

LA(x2 — x1,x0 — x1 < 0V (x2 — x1 < 0 A eq(x3,x2)))
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Combining Interpolants &

Magic rule:

a<bv(G: LA(Sl + C1X1,F1(X1)) a>bv G: LA(52 — C2X1,F2(X2))

Gv G LA(C251 4+ c1s, 081 + sy < 0V (F1(52/C2) A F2(52/C2)))

Example:

a<bV?2a>sVs>2b:LA2x4 —s,2xg —s < 0)
a>bVa<bVa=b:LAx —x,x—x <0V
(2 —x1 < 0 A eq(x3,x2)))

a<bVa=bV2a>sVs>2b:Hk

I3 - LA(2X2 —5,2x0 —s <0V (2X2 —s<O0A eq(X3,x2)))‘

(simplifying x2 < x2 to L and x2 < x» to T).
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Example continued &

Magic rule:

a<bv(G: LA(Sl + C1X1,F1(X1)) a>bv (G: LA(52 - C2X1,F2(X2))
C1 V C2 : LA(C251 + 15,05 + 15 < oV (F1(52/C2) A F2(52/C2)))

a<bVa=bV2a>sVs>2b:LA2x —s5,2x —s <0V
(22 — s < 0 A eq(x3,x2)))
a>bVit<?2aV2b<s: LAt —2x,t—2x <0)
=bV2a>sVs>2b
Vit>2aVvVt>2b:ly

ly : LA(t —s,t —s <0V (t —s < 0A eq(x3,t/2)))

The critical term t — s does not contain an auxiliary and can be removed.

Iy :t—s <0V (t—s <O0Aeq(xst/2))
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Example continued (with equality) =

a=bV2a>sVs>2b t—-—s<0V
Vit>2aVt>2b = (t—s <0Aeq(xs,t/2))
a# bvf(a #qVi(b)=gq : q=f(x)
2a > sVs>2b
Vit>2aVit>2b

Vv f(a) #qVf(b)=q

The interpolant of

t—s<O0vV
(t—s <0Aqg=1f(t/2)

2a <sAt<2aAf(a)=qgAs<2bAN2b<tATf(b)+#q

t—s<0V(t—s<0Aqg=f(t/2)
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