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Organisation

Dates

Lecture is Tuesday 14–16 (c.t) and Thursday 14–15 (c.t).

Tutorials will be given on Thursday 15–16.
Starting next week (this week is a two hour lecture).

Exercise sheets are uploaded on Tuesday.
They are due on Tuesday the week after.

To successfully participate, you must

prepare the exercises (at least 50 %)

actively participate in the tutorial

pass an oral examination
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Literature

The Calculus of Computation:
Decision Procedures with

Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007
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Motivation

Decision Procedures are algorithms to decide formulae.
These formulae can arise

in Hoare-style software verification,

in hardware verification,

in synthesis,

in scheduling,

in planning,

. . .
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Motivation (2)

Consider the following program:

for

@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
(int i := `; i ≤ u; i := i + 1) {
if ((a[i ] = e)) {
rv := true;
}

}

How can we prove that the formula is a loop invariant?
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Motivation (3)

Prove the Hoare triples (one for if case, one for else case)

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
assume i ≤ u
assume a[i ] = e
rv := true;
i := i + 1
@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
assume i ≤ u
assume a[i ] 6= e
i := i + 1
@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
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Motivation (4)

A Hoare triple {P} S {Q} holds, iff

P → wp(S ,Q)

(wp denotes is weakest precondition)
For assignments wp is computed by substitution:

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
assume i ≤ u
assume a[i ] = e
rv := true;
i := i + 1
@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)

holds if and only if:

` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e) ∧ i ≤ u ∧ a[i ] = e

→` ≤ i + 1 ≤ u ∧ (true ↔ ∃j . ` ≤ j < i + 1 ∧ a[j ] = e)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 9 / 59



Motivation (5)

We need an algorithm that decides whether a formula holds.

` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e) ∧ i ≤ u ∧ a[i ] = e

→` ≤ i + 1 ≤ u ∧ (true ↔ ∃j . ` ≤ j < i + 1 ∧ a[j ] = e)

If the formula does not hold it should give a counterexample, e.g.:

` = 0, i = 1, u = 1, rv = false, a[0] = 0, a[1] = 1, e = 1,

This counterexample shows that i + 1 ≤ u can be violated.

This lecture is about algorithms checking for validity and producing these
counterexamples.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 10 / 59



Contents of Lecture



Topics

Propositional Logic

First-Order Logic

First-Order Theories

Quantifier Elimination

Decision Procedures for Linear Arithmetic

Decision Procedures for Uninterpreted Functions

Decision Procedures for Arrays

Combination of Decision Procedures

DPLL(T)

Craig Interpolants
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