
Decision Procedures

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Winter Term 2015/16

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 1 / 59



Organisation



Organisation

Dates

Lecture is Tuesday 14–16 (c.t) and Thursday 14–15 (c.t).

Tutorials will be given on Thursday 15–16.
Starting next week (this week is a two hour lecture).

Exercise sheets are uploaded on Tuesday.
They are due on Tuesday the week after.

To successfully participate, you must

prepare the exercises (at least 50 %)

actively participate in the tutorial

pass an oral examination

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 3 / 59



Literature

The Calculus of Computation:
Decision Procedures with

Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 4 / 59



Motivation



Motivation

Decision Procedures are algorithms to decide formulae.
These formulae can arise

in Hoare-style software verification,

in hardware verification,

in synthesis,

in scheduling,

in planning,

. . .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 6 / 59



Motivation (2)

Consider the following program:

for

@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
(int i := `; i ≤ u; i := i + 1) {
if ((a[i ] = e)) {
rv := true;
}

}

How can we prove that the formula is a loop invariant?

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 7 / 59



Motivation (3)

Prove the Hoare triples (one for if case, one for else case)

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
assume i ≤ u
assume a[i ] = e
rv := true;
i := i + 1
@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
assume i ≤ u
assume a[i ] 6= e
i := i + 1
@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 8 / 59



Motivation (4)

A Hoare triple {P} S {Q} holds, iff

P → wp(S ,Q)

(wp denotes is weakest precondition)
For assignments wp is computed by substitution:

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)
assume i ≤ u
assume a[i ] = e
rv := true;
i := i + 1
@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e)

holds if and only if:

` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e) ∧ i ≤ u ∧ a[i ] = e

→` ≤ i + 1 ≤ u ∧ (true ↔ ∃j . ` ≤ j < i + 1 ∧ a[j ] = e)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 9 / 59



Motivation (5)

We need an algorithm that decides whether a formula holds.

` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j ] = e) ∧ i ≤ u ∧ a[i ] = e

→` ≤ i + 1 ≤ u ∧ (true ↔ ∃j . ` ≤ j < i + 1 ∧ a[j ] = e)

If the formula does not hold it should give a counterexample, e.g.:

` = 0, i = 1, u = 1, rv = false, a[0] = 0, a[1] = 1, e = 1,

This counterexample shows that i + 1 ≤ u can be violated.

This lecture is about algorithms checking for validity and producing these
counterexamples.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 10 / 59



Contents of Lecture



Topics

Propositional Logic

First-Order Logic

First-Order Theories

Quantifier Elimination

Decision Procedures for Linear Arithmetic

Decision Procedures for Uninterpreted Functions

Decision Procedures for Arrays

Combination of Decision Procedures

DPLL(T)

Craig Interpolants

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 12 / 59


	Organisation
	Motivation
	Contents of Lecture

