
Decision Procedures

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Winter Term 2015/16

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 1 / 414

Nelson-Oppen Theory Combination

Combining Decision Procedures: Nelson-Oppen Method

Motivation: How do we show that

F : 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

is (TE ∪ TZ)-unsatisfiable?

Given

Multiple Theories Ti over signatures Σi

(constants, functions, predicates)
with corresponding decision procedures Pi for Ti -satisfiability.

Goal

Decide satisfiability of a sentence in theory ∪iTi .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 282 / 414

Nelson-Oppen Combination Method (N-O Method)

Σ1 ∩ Σ2 = {=}

Σ1-theory T1

P1 for T1-satisfiability

of quantifier-free Σ1-formulae

Σ2-theory T2

P2 for T2-satisfiability

of quantifier-free Σ2-formulae

P for (T1 ∪ T2)-satisfiability
of quantifier-free (Σ1 ∪ Σ2)-formulae

We show how to get Procedure P from Procedures P1 and P2.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 283 / 414

Nelson-Oppen: Limitations

Given formula F in theory T1 ∪ T2.

1 F must be quantifier-free.

2 Signatures Σi of the combined theory only share =, i.e.,

Σ1 ∩ Σ2 = {=}

3 Theories must be stably infinite.

Note:

Algorithm can be extended to combine arbitrary number of theories
Ti — combine two, then combine with another, and so on.

We restrict F to be conjunctive formula — otherwise convert to DNF
and check each disjunct.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 284 / 414

Stably Infinite Theories

Problem: The T1/T2-interpretations must have the same data domain;
it turns out same cardinality, e.g. infinite, is enough.

Definition (stably infinite)

A Σ-theory T is stably infinite iff
for every quantifier-free Σ-formula F :

if F is T -satisfiable
then there exists some infinite T -interpretation that satisfies F

with infinite cardinality.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 285 / 414

Example: Stably Infinite

TZ: stably infinite (all T -interpretations are infinite).

TQ: stably infinite (all T -interpretations are infinite).

TE: stably infinite (one can add infinitely many fresh and distinct
values).

Σ-theory T with Σ : {a, b,=} and axiom ∀x . x = a ∨ x = b:
not stable infinite,
since every T -interpretation has at most two elements.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 286 / 414

Example: ΣE and ΣZ

Consider quantifier-free conjunctive (ΣE ∪ ΣZ)-formula

F : 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2) .

The signatures of TE and TZ only share =. Also, both theories are stably
infinite. Hence, the NO combination of the decision procedures for TE and
TZ decides the (TE ∪ TZ)-satisfiability of F .

F is (TE ∪ TZ)-unsatisfiable:
The first two literals imply x = 1 ∨ x = 2 so that
f (x) = f (1) ∨ f (x) = f (2). This contradicts last two literals.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 287 / 414

N-O Overview

Phase 1: Variable Abstraction

Given conjunction Γ in theory T1 ∪ T2.

Convert to conjunction Γ1 ∪ Γ2 s.t.

Γi in theory Ti

Γ1 ∪ Γ2 satisfiable iff Γ satisfiable.

Phase 2: Check

If there is some set S of equalities and disequalities between the
shared variables of Γ1 and Γ2

shared(Γ1, Γ2) = free(Γ1) ∩ free(Γ2)
s.t. S ∪ Γi are Ti -satisfiable for all i ,
then Γ is satisfiable.

Otherwise, unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 288 / 414

Nelson-Oppen Method: Overview

Consider quantifier-free conjunctive (Σ1 ∪ Σ2)-formula F .

Two versions:

nondeterministic — simple to present, but high complexity

deterministic — efficient

Nelson-Oppen (N-O) method proceeds in two steps:

Phase 1 (variable abstraction)
— same for both versions

Phase 2
nondeterministic: guess equalities/disequalities and check
deterministic: generate equalities/disequalities by equality propagation

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 289 / 414

Phase 1: Variable abstraction

Given quantifier-free conjunctive (Σ1 ∪ Σ2)-formula F .
Transform F into two quantifier-free conjunctive formulae

Σ1-formula F1 and Σ2-formula F2

s.t. F is (T1 ∪ T2)-satisfiable iff F1 ∧ F2 is (T1 ∪ T2)-satisfiable
F1 and F2 are linked via a set of shared variables.

For term t, let hd(t) be the root symbol, e.g. hd(f (x)) = f .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 290 / 414

Generation of F1 and F2

For i , j ∈ {1, 2} and i 6= j , repeat the transformations
1 if function f ∈ Σi and hd(t) ∈ Σj ,

F [f (t1, . . . , t, . . . , tn)] eqsat. F [f (t1, . . . ,w , . . . , tn)] ∧ w = t

2 if predicate p ∈ Σi and hd(t) ∈ Σj ,

F [p(t1, . . . , t, . . . , tn)] eqsat. F [p(t1, . . . ,w , . . . , tn)] ∧ w = t

3 if hd(s) ∈ Σi and hd(t) ∈ Σj ,

F [s = t] eqsat. F [>] ∧ w = s ∧ w = t

4 if hd(s) ∈ Σi and hd(t) ∈ Σj ,

F [s 6= t] eqsat. F [w1 6= w2] ∧ w1 = s ∧ w2 = t

where w , w1, and w2 are fresh variables.
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 291 / 414

Example: Phase 1

Consider (ΣE ∪ ΣZ)-formula

F : 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2) .

According to transformation 1, since f ∈ ΣE and 1 ∈ ΣZ, replace f (1) by
f (w1) and add w1 = 1. Similarly, replace f (2) by f (w2) and add w2 = 2.
Now, the literals

ΓZ : {1 ≤ x , x ≤ 2, w1 = 1, w2 = 2}

are TZ-literals, while the literals

ΓE : {f (x) 6= f (w1), f (x) 6= f (w2)}

are TE -literals. Hence, construct the ΣZ-formula

F1 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

and the ΣE -formula

F2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2) .

F1 and F2 share the variables {x ,w1,w2}.
F1 ∧ F2 is (TE ∪ TZ)-equisatisfiable to F .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 292 / 414

Example: Phase 1

Consider (ΣE ∪ ΣZ)-formula

F : f (x) = x + y ∧ x ≤ y + z ∧ x + z ≤ y ∧ y = 1 ∧ f (x) 6= f (2) .

In the first literal, hd(f (x)) = f ∈ ΣE and hd(x + y) = + ∈ ΣZ; thus,
by (3), replace the literal with

w1 = f (x) ∧ w1 = x + y .

In the final literal, f ∈ ΣE but 2 ∈ ΣZ, so by (1), replace it with

f (x) 6= f (w2) ∧ w2 = 2 .

Now, separating the literals results in two formulae:

F1 : w1 = x + y ∧ x ≤ y + z ∧ x + z ≤ y ∧ y = 1 ∧ w2 = 2

is a ΣZ-formula, and

F2 : w1 = f (x) ∧ f (x) 6= f (w2)

is a ΣE -formula.
The conjunction F1 ∧ F2 is (TE ∪ TZ)-equisatisfiable to F .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 293 / 414

Phase 2: Guess and Check (Nondeterministic)

Phase 1 separated (Σ1 ∪ Σ2)-formula F into two formulae:
Σ1-formula F1 and Σ2-formula F2

F1 and F2 are linked by a set of shared variables:
V = shared(F1,F2) = free(F1) ∩ free(F2)

Let E be an equivalence relation over V .

The arrangement α(V ,E) of V induced by E is:

α(V ,E) :
∧

u,v ∈ V . uEv

u = v ∧
∧

u,v ∈ V . ¬(uEv)

u 6= v

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 294 / 414

Correctness of Phase 2

Lemma

The original formula F is (T1 ∪ T2)-satisfiable iff
there exists an equivalence relation E of V s.t.

(1) F1 ∧ α(V ,E) is T1-satisfiable, and
(2) F2 ∧ α(V ,E) is T2-satisfiable.

Proof:

⇒ If F is (T1 ∪ T2)-satisfiable, then F1 ∧ F2 is (T1 ∪ T2)-satisfiable,
hence there is a T1 ∪ T2-Interpretation I with I |= F1 ∧ F2.

Define E ⊆ V × V with u E v iff I |= u = v .
Then E is a equivalence relation.
By definition of E and α(V ,E), I |= α(V ,E).
Hence I |= F1 ∧ α(V ,E) and I |= F2 ∧ α(V ,E).
Thus, these formulae are T1- and T2-satisfiable, respectively.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 295 / 414

⇐ Let I1 and I2 be T1- and T2-interpretations, respectively, with

I1 |= F1 ∧ α(V ,E) and I2 |= F2 ∧ α(V ,E).

W.l.o.g. assume that αI1 [=](v ,w) iff v = w iff αI2 [=](v ,w).
(Otherwise, replace DIi with DIi/αIi [=])

Since T1 and T2 are stably infinite, we can assume that DI1 and DI2

are of the same cardinality.

Since I1 |= α(V ,E) and I2 |= α(V ,E), for x , y ∈ V :

αI1 [x] = αI1 [y] iff αI2 [x] = αI2 [y].

Construct bijective function g : DI1 → DI2 with g(αI1 [x]) = αI2 [x]
for all x ∈ V . Define I as follows: DI = DI2 ,
αI [x] = αI2 [x](= g(αI1 [x])) for x ∈ V ,
αI [=](v ,w) iff v = w ,
αI [f2] = αI2 [f2] for f2 ∈ Σ2,
αI [f1](v1, . . . , vn) = g(αI1 [f1](g−1(v1), . . . , g−1(vn))) for f1 ∈ Σ1.

Then I is a T1 ∪ T2-interpretation, and satisfies F1 ∧ F2.
Hence F is T1 ∪ T2-satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 296 / 414

Example: Phase 2

Consider (ΣE ∪ ΣZ)-formula
F : 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

Phase 1 separates this formula into the ΣZ-formula
F1 : 1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2

and the ΣE -formula
F2 : f (x) 6= f (w1) ∧ f (x) 6= f (w2)

with
V = shared(F1,F2) = {x ,w1,w2}

There are 5 equivalence relations to consider, which we list by stating the
partitions:

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 297 / 414

Example: Phase 2 (cont)

1 {{x ,w1,w2}}, i.e., x = w1 = w2:
x = w1 and f (x) 6= f (w1) ⇒ F2 ∧ α(V ,E) is TE -unsatisfiable.

2 {{x ,w1}, {w2}}, i.e., x = w1, x 6= w2:
x = w1 and f (x) 6= f (w1) ⇒ F2 ∧ α(V ,E) is TE -unsatisfiable.

3 {{x ,w2}, {w1}}, i.e., x = w2, x 6= w1:
x = w2 and f (x) 6= f (w2) ⇒ F2 ∧ α(V ,E) is TE -unsatisfiable.

4 {{x}, {w1,w2}}, i.e., x 6= w1, w1 = w2:
w1 = w2 and w1 = 1 ∧ w2 = 2
⇒ F1 ∧ α(V ,E) is TZ-unsatisfiable.

5 {{x}, {w1}, {w2}}, i.e., x 6= w1, x 6= w2, w1 6= w2:
x 6= w1 ∧ x 6= w2 and x = w1 = 1 ∨ x = w2 = 2
(since 1 ≤ x ≤ 2 implies that x = 1 ∨ x = 2 in TZ)
⇒ F1 ∧ α(V ,E) is TZ-unsatisfiable.

Hence, F is (TE ∪ TZ)-unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 298 / 414

Example: Phase 2 (cont)

Consider the (Σcons ∪ ΣZ)-formula

F : car(x) + car(y) = z ∧ cons(x , z) 6= cons(y , z) .

After two applications of (1), Phase 1 separates F into the Σcons-formula
F1 : w1 = car(x) ∧ w2 = car(y) ∧ cons(x , z) 6= cons(y , z)

and the ΣZ-formula
F2 : w1 + w2 = z ,

with
V = shared(F1,F2) = {z ,w1,w2} .

Consider the equivalence relation E given by the partition
{{z}, {w1}, {w2}} .

The arrangement
α(V ,E) : z 6= w1 ∧ z 6= w2 ∧ w1 6= w2

satisfies both F1 and F2: F1 ∧ α(V ,E) is Tcons-satisfiable, and
F2 ∧ α(V ,E) is TZ-satisfiable.
Hence, F is (Tcons ∪ TZ)-satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 299 / 414

Practical Efficiency

Phase 2 was formulated as “guess and check”:
First, guess an equivalence relation E ,
then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the #
of shared variables. It is given by Bell numbers.
e.g., 12 shared variables ⇒ over four million equivalence relations.

Solution: Deterministic Version

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 300 / 414

Deterministic Version

Phase 1 as before
Phase 2 asks the decision procedures P1 and P2 to propagate new
equalities.

Example 1:

Real linear arithmethic TR Theory of equality TE

PR PE

F : f (f (x)−f (y)) 6= f (z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 301 / 414

Phase 1: Variable Abstraction

F : f (f (x) − f (y)) 6= f (z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

f (x) ⇒ u f (y) ⇒ v u − v ⇒ w

ΓE : {f (w) 6= f (z), u = f (x), v = f (y)} . . .TE -formula

ΓR : {x ≤ y , y + z ≤ x , 0 ≤ z , w = u − v} . . .TR-formula

shared(ΓR, ΓE) = {x , y , z , u, v ,w}

Nondeterministic version — over 200 E s!
Let’s try the deterministic version.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 302 / 414

Phase 2: Equality Propagation

PR s0 : 〈ΓR, ΓE , {}〉 PE

ΓR |= x = y

s1 : 〈ΓR, ΓE , {x = y}〉
ΓE ∪ {x = y} |= u = v

s2 : 〈ΓR, ΓE , {x = y , u = v}〉
ΓR ∪ {u = v} |= z = w

s3 : 〈ΓR, ΓE , {x = y , u = v , z = w}〉
ΓE ∪ {z = w} |= false

s4 : false
Contradiction. Thus, F is (TR ∪ TE)-unsatisfiable.

If there were no contradiction, F would be (TR ∪ TE)-satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 303 / 414

Convex Theories

Definition (convex theory)

A Σ-theory T is convex iff
for every quantifier-free conjunction Σ-formula F

and for every disjunction
n∨

i=1

(ui = vi)

if F |=
n∨

i=1

(ui = vi)

then F |= ui = vi , for some i ∈ {1, . . . , n}

Claim

Equality propagation is a decision procedure for convex theories.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 304 / 414

Convex Theories

TE , TR, TQ, Tcons are convex

TZ,TA are not convex

Example: TZ is not convex

Consider quantifier-free conjunctive

F : 1 ≤ z ∧ z ≤ 2 ∧ u = 1 ∧ v = 2

Then
F |= z = u ∨ z = v

but

F 6|= z = u

F 6|= z = v

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 305 / 414

Example:

The theory of arrays TA is not convex.
Consider the quantifier-free conjunctive ΣA-formula

F : a〈i / v〉[j] = v .

Then
F ⇒ i = j ∨ a[j] = v ,

but
F 6⇒ i = j
F 6⇒ a[j] = v .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 306 / 414

What if T is Not Convex?

Case split when:

Γ |=
n∨

i=1

(ui = vi)

but

Γ 6|= ui = vi for all i = 1, . . . , n

For each i = 1, . . . , n, construct a branch on which
ui = vi is assumed.

If all branches are contradictory, then unsatisfiable.
Otherwise, satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 307 / 414

Example 2: Non-Convex Theory

TZ not convex! TE convex

PZ PE

Γ :

{
1 ≤ x , x ≤ 2,
f (x) 6= f (1), f (x) 6= f (2)

}
in TZ ∪ TE

Replace f (1) by f (w1), and add w1 = 1.

Replace f (2) by f (w2), and add w2 = 2.

Result:

ΓZ =


1 ≤ x ,
x ≤ 2,
w1 = 1,
w2 = 2

 and ΓE =

{
f (x) 6= f (w1),
f (x) 6= f (w2)

}

shared(ΓZ, ΓE) = {x ,w1,w2}

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 308 / 414

Example 2: Non-Convex Theory

s0 : 〈ΓZ, ΓE , {}〉
ΓZ |= x = w1 ∨ x = w2

s1 : 〈ΓZ, ΓE , {x = w1}〉
ΓE ∪ {x = w1} |= ⊥

s2 : ⊥

s3 : 〈ΓZ, ΓE , {x = w2}〉
ΓE ∪ {x = w2} |= ⊥

s4 : ⊥

x = w1 x = w2

All leaves are labeled with ⊥ ⇒ Γ is (TZ ∪ TE)-unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 309 / 414

Example 3: Non-Convex Theory

Γ :

{
1 ≤ x , x ≤ 3,

f (x) 6= f (1), f (x) 6= f (3), f (1) 6= f (2)

}
in TZ ∪ TE

Replace f (1) by f (w1), and add w1 = 1.

Replace f (2) by f (w2), and add w2 = 2.

Replace f (3) by f (w3), and add w3 = 3.

Result:

ΓZ =


1 ≤ x ,
x ≤ 3,
w1 = 1,
w2 = 2,
w3 = 3

 and ΓE =


f (x) 6= f (w1),
f (x) 6= f (w3),
f (w1) 6= f (w2)


shared(ΓZ, ΓE) = {x ,w1,w2,w3}

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 310 / 414

Example 3: Non-Convex Theory

s0 : 〈ΓZ, ΓE , {}〉
ΓZ |= x = w1 ∨ x = w2 ∨ x = w3

s1 : 〈ΓZ, ΓE , {x = w1}〉
ΓE ∪ {x = w1} |= ⊥

s2 : ⊥

s3 : 〈ΓZ, ΓE , {x = w2}〉 s4 : 〈ΓZ, ΓE , {x = w3}〉
ΓE ∪ {x = w3} |= ⊥

s5 : ⊥

x = w1 x = w2 x = w3

No more equations on middle leaf ⇒ Γ is (TZ ∪ TE)-satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 311 / 414

	Nelson-Oppen Theory Combination

