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Nelson-Oppen Theory Combination



Combining Decision Procedures: Nelson-Oppen Method &

L
Motivation: How do we show that

F:1<x Ax<2A f(x)#fFf(1) AN f(x)# f(2)

is (Tg U Tz)-unsatisfiable?

Multiple Theories T; over signatures ¥;
(constants, functions, predicates)
with corresponding decision procedures P; for T;-satisfiability.

Decide satisfiability of a sentence in theory U; T;. I
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Nelson-Oppen Combination Method (N-O Method) g

21 NYy = {:}
> 1-theory T3 > o-theory T>
for Tp-satisfiability for T»-satisfiability
of quantifier-free X1-formulae of quantifier-free X o-formulae

N

for (T1 U Ty)-satisfiability
of quantlfler—free (X1 U Xp)-formulae

We show how to get Procedure P from Procedures P; and Ps.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 283 / 414



Nelson-Oppen: Limitations

Given formula F in theory T; U T».
@ F must be quantifier-free.
@ Signatures ¥ ; of the combined theory only share =, i.e.,

Zl 022 = {:}

© Theories must be stably infinite.

Note:

@ Algorithm can be extended to combine arbitrary number of theories

T; — combine two, then combine with another, and so on.

@ We restrict F to be conjunctive formula — otherwise convert to DNF

and check each disjunct.
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Stably Infinite Theories £

Problem: The T;/Ty-interpretations must have the same data domain;
it turns out same cardinality, e.g. infinite, is enough.

Definition (stably infinite)
A Y-theory T is stably infinite iff
for every quantifier-free ¥ -formula F:

if F is T-satisfiable
then there exists some infinite T-interpretation that satisfies F

with infinite cardinality.
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Example: Stably Infinite g

@ Tyz: stably infinite (all T-interpretations are infinite).

o Tq: stably infinite (all T-interpretations are infinite).

@ Tg: stably infinite (one can add infinitely many fresh and distinct
values).

@ Y-theory T with X : {a,b,=} and axiom Vx. x = a V x = b:
not stable infinite,
since every T-interpretation has at most two elements.
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Example: g and X7 g

Consider quantifier-free conjunctive (Xg U Xz)-formula
F: 1< xAx<2Af(x)#f(1)Af(x)#f(2).

The signatures of Tg and Tz only share =. Also, both theories are stably
infinite. Hence, the NO combination of the decision procedures for Tg and
Tz decides the (Tg U Tz)-satisfiability of F.

Fis (Tg U Tz)-unsatisfiable:
The first two literals imply x = 1 V x = 2 so that
f(x) = f(1) vV f(x) = f(2). This contradicts last two literals.
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N-O Overview £

Phase 1: Variable Abstraction
@ Given conjunction I in theory T7 U T».
@ Convert to conjunction 'y U Iy s.t.

e [;in theory T;
o 1 U I, satisfiable iff I satisfiable.

Phase 2: Check
@ If there is some set S of equalities and disequalities between the

shared variables of 1 and '
shared(I'1,2) = free(I'1) N free(l2)
s.t. S UT; are T;-satisfiable for all i,
then I is satisfiable.

o Otherwise, unsatisfiable.
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Nelson-Oppen Method: Overview &

Consider quantifier-free conjunctive (X1 U Xp)-formula F.
Two versions:
@ nondeterministic — simple to present, but high complexity

@ deterministic — efficient

Nelson-Oppen (N-O) method proceeds in two steps:

@ Phase 1 (variable abstraction)
— same for both versions

@ Phase 2
nondeterministic: guess equalities/disequalities and check
deterministic: generate equalities/disequalities by equality propagation
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Phase 1: Variable abstraction g

Given quantifier-free conjunctive (X; U X)-formula F.
Transform F into two quantifier-free conjunctive formulae

Y 1-formula F and Y »-formula F;

s.t. Fis (T1 U Ty)-satisfiable iff F; A Fp is (T1 U Tp)-satisfiable
F1 and F» are linked via a set of shared variables.

For term t, let hd(t) be the root symbol, e.g. hd(f(x)) = f.
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Generation of F; and F, g

For i,j € {1,2} and i # j, repeat the transformations 2"
Q if function f € ¥; and hd(t) € ¥,

Flf(ti,... t,...,ty)] egsat. F[f(ts,...,w,...,ty)] Aw =1t

Q@ if predicate p € ¥; and hd(t) € ¥,
Flp(ti,...,t,...,ts)] egsat. F[p(ti,...,w,...;t))] A w =t

@ if hd(s) € X, and hd(t) € X,
F[s = t] egsat. F[T]Aw=sAw =1

Q ifhd(s) € ¥; and hd(t) € %,

Fls # t] egsat. Flwi # wa] Awy = sAwp =t

where w, wy, and ws are fresh variables.
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Example: Phase 1

Consider (Xg U Xz)-formula
F: 1< xAx<2Af(x)#F(A)AFf(x)#f(2).

According to transformation 1, since f € Xg and 1 € X, replace f(1) by
f(wy) and add wy = 1. Similarly, replace f(2) by f(w2) and add wy = 2.
Now, the literals

Fz: {1<x,x<2 w =1 w =2}
are Ty-literals, while the literals
Fe o {f(x) # f(wm), f(x) # f(w2)}
are Tg-literals. Hence, construct the ¥;-formula
Fi: 1< xAx<2Aw =1Awp =2
and the X g-formula
Foo f(x) # f(wi) A f(x) # f(ws) .
F1 and F; share the variables {x, wi, ws}.

F1 A Fpis (Tg U Tz)-equisatisfiable to F.
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Example: Phase 1 g
Consider (g U Xz)-formula
F: fx)=x4+yAx<y+zAx+z<yAy=1Af(x)# f(2).
In the first literal, hd(f(x)) = f € Lg and hd(x + y) = + € Xz; thus,
by (3), replace the literal with

wip = f(x) Awp = x+y.
In the final literal, f € g but 2 € ¥y, so by (1), replace it with

f(x) # f(wa) Awo = 2.
Now, separating the literals results in two formulae:

Fi:wvi=x4+yAx<y+zAx+z<yAy=1Aw =2
is a Xz-formula, and

Fo o wi = f(x) A f(x) # f(ws)
is a Xg-formula.

The conjunction F; A Fp is (Tg U Tyz)-equisatisfiable to F.
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Phase 2: Guess and Check (Nondeterministic) -

Phase 1 separated (X1 U X2)-formula F into two formulae:
Y 1-formula F; and Xo-formula F>

F1 and F; are linked by a set of shared variables:
V = shared(Fi, F2) = free(F1) N free(Fy)

Let E be an equivalence relation over V.
The arrangement a(V/, E) of V induced by E is:
a(V,E) : /\ u=vA /\ u#v

u,v € V. uEv u,v € V. =(uEv)
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Correctness of Phase 2 g

The original formula F is (T; U Ty)-satisfiable iff
there exists an equivalence relation E of V s.t.
(1) F1 A oV, E) is Ty-satisfiable, and
(2) Fa A\ oV, E) is Ty-satisfiable.

Proof:
= If Fis (T1 U Ty)-satisfiable, then F1 A Fyis (T1 U Ty)-satisfiable,
hence there is a T; U Tp-Interpretation / with | = F1 A Fa.

Define E C V x Vwithu E viffl = u=v.

Then E is a equivalence relation.

By definition of E and o(V,E), | = a(V,E).

Hence | E AL A (V,E)and | = Fo A oV, E).

Thus, these formulae are T;- and T,-satisfiable, respectively.
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< Let /1 and / be T3- and Tr-interpretations, respectively, with
h ): F A a(V, E) and b ): F A a(V, E).

W.l.o.g. assume that oy [=](v, w) iff v = w iff o [=](v, w).
(Otherwise, replace Dj, with Dy, /. [=])

Since Ty and T» are stably infinite, we can assume that D;, and D,
are of the same cardinality.

Since h E a(V,E) and b E a(V,E), for x,y € V:
apx] = aply] iff ap[x] = aplyl.

Construct bijective function g : D, — Dy, with g(ay[x]) = ay,[x]
for all x € V. Define | as follows: D; = D,,,

a[x] = ap[x](= glay[x])) for x € V,

a[=](v,w) iff v = w,

Oé[[fz] = Oé[z[fz] for f2 S 22,

a[f](vi,...,vn) = g(a,l[ﬂ](g’l(vl), oo, 8 () for 1 € X1.
Then [ is a T1 U Tp-interpretation, and satisfies F1 A F;.

Hence F is T1 U Ty-satisfiable.
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Example: Phase 2 g

Consider (g U Xz)-formula

F: 1< xAx<2Af(x)#f(1)Af(x)# f(2)
Phase 1 separates this formula into the X z-formula

F: 1< xAx<2Awi =1Aw =2

and the ¥ g-formula
Fo : f(x) # f(wi) A f(x) # f(w)
with
V = shared(F1, F2) = {x, w1, wa}
There are 5 equivalence relations to consider, which we list by stating the
partitions:
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Example: Phase 2 (cont) -

Q {{x,wi,wo}}, ie, x = wy = wa:
x = wi and f(x) # f(w1) = F2 A a(V, E) is Te-unsatisfiable.
Q {{x,wi1},{mwo}} ie, x = wi, x # wa:
x = wy and f(x) # f(w1) = F2 A a(V, E) is Tg-unsatisfiable.
Q {{x,wmo},{m}} ie, x = wy, x # wy:
x = wp and f(x) # f(w2) = F2 A a(V, E) is Tg-unsatisfiable.
QO {{x},{wi,wm}}, ie, x # w1, w1 = wa:
wi =wandwy = 1A w =2
= F1 A a(V,E) is Tyz-unsatisfiable.
Q {{x},{mi},{wa}}, ie, x # wq, x # wa, wi # wy:
XZEwWAXFEwand x = wy =1V x=w =2
(since 1 < x < 2 impliesthat x = 1V x = 2in Tz)
= F1 A a(V,E) is Tz-unsatisfiable.
Hence, F is (Tg U Tz)-unsatisfiable.
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Example: Phase 2 (cont) g

Consider the (Xcons U Xz)-formula 7%
F : car(x) + car(y) = z A cons(x,z) # cons(y, z) .

After two applications of (1), Phase 1 separates F into the ¥ ons-formula
Fi : wi = car(x) A wa = car(y) A cons(x,z) # cons(y, z)
and the ¥ z-formula
Frroowvi+w =2z,
with
V = shared(Fl,Fz) = {Z, wi, W2} .
Consider the equivalence relation E given by the partition
{{z}, {m1} {w2}} .
The arrangement
aVE): z£ wmiAz# wmAw # wy
satisfies both F; and F: F1 A oV, E) is Teons-satisfiable, and
Fa A a(V,E) is Ty-satisfiable.
Hence, F is (Teons U Tz)-satisfiable.
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Practical Efficiency &

Phase 2 was formulated as “guess and check”:
First, guess an equivalence relation E,
then check the induced arrangement.

The number of equivalence relations grows super-exponentially with the #
of shared variables. It is given by Bell numbers.

e.g., 12 shared variables = over four million equivalence relations.

Solution: Deterministic Version
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Deterministic Version g

Phase 1 as before

Phase 2 asks the decision procedures P; and P, to propagate new
equalities.

Example 1:
Real linear arithmethic Ty Theory of equality Tg

F: f(f(x)—f(y)) #f(z2) N x<y Ny+z<x AN0<z
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Phase 1: Variable Abstraction &

2y
=]y
F: f(f(x)—f(y)) #f(z) AN x<y Ny+z<x AN0<z
fx) = u fly) = v u—v = w
Nre . A{f(w) # f(2), u = f(x), v="~(y)} ... Tg-formula
R : {x<y,y+z<x,0<2z,w=u—v} .. Tgformula

shared(I'r,Me) = {x,y,z,u,v,w}

Nondeterministic version — over 200 Es!
Let's try the deterministic version.
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Phase 2: Equality Propagation g

so : (Mr, T, {1
R = x =y
si (T, Te, {x = y})
leEU{x=ylEu=v
2 (T, Te, {x = y,u=v})
RU{u=v}lEFz=w

53 ! <rR7rE){X = Yy,u=v,z = W}>
NeU{z = w} [= false

sy : false
Contradiction. Thus, F is (Tg U Tg)-unsatisfiable.

If there were no contradiction, F would be (Tg U Tg)-satisfiable.
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Convex Theories

BURG

Su

Definition (convex theory)

A ¥ -theory T is convex iff
for every quantifier-free conjunction X-formula F
n

and for every disjunction \/(u,- = v)
i=1

|fF):\/(u,: vi)

then F |: ui = v, forsomei € {1,...,n}

Equality propagation is a decision procedure for convex theories. I
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Convex Theories £

o Tg, Tr, Ty, Tcons are convex

@ Tz, Ta are not convex
Example: Tz is not convex
Consider quantifier-free conjunctive

F: 1<zANz<2ANu=1ANv=2

Then
FEz=uvz=yv

but
F
F

V4
z =
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Example:

The theory of arrays Tpa is not convex.
Consider the quantifier-free conjunctive X a-formula

F: ali<v)[j]=v.

Then
F=i=jvaj]l=v,
but
FAi=j
F # alj] = v.
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What if T is Not Convex? &

Case split when:
M= \(u=w)
i=1
but

M u=v foralli=1,...,n

@ Foreach i = 1,...,n, construct a branch on which
uj = vj is assumed.

o If all branches are contradictory, then unsatisfiable.
Otherwise, satisfiable.
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Example 2: Non-Convex Theory &

Tz not convex! TE convex

|

@ Replace f(1) by f(w1), and add wy = 1.
@ Replace f(2) by f(w2), and add wy = 2.

IN

X, x < 2,

(x) £ F(1), F(x) # 7(2) } n Tzl Te

-

Result:
1 < x,
_ x < 2 _ f(X) # f(Wl)a
=Y =, (Y TES { F(x) # F(wa)
wy = 2

shared(FZ, FE) = {X, wi, W2}
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Example 2: Non-Convex Theory

so: Mz, Te, {})
Mz Ex=w V x =w

X = wy X = Wy
St <r27rE7{X = W1}> S3 . (FZ,FE,{X = W2}>
rEU{X:W]_}):J_ rEU{X:W2}':J_
L sy @ L

All leaves are labeled with L. = I is (Tz U Tg)-unsatisfiable.
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Example 3: Non-Convex Theory

1 <x, x<3 .
{0 B A | MTEUTE
@ Replace f(1) by f(w1), and add wy =
@ Replace f(2) by f(w), and add wy = 2
@ Replace f(3) by f(w3), and add w3 = 3
Result:
1 < x,
x < 3, f(x) (1),
Mz =<¢ w =1, and g =< f(x) (w3),
wy = 2, f(wr) # f(wp)
w3 = 3

shared(l'z,Tg) = {x, w1, wo, w3}

Jochen Hoenicke (Software Engineering) Decision Procedures

Winter Term 2015/16

310 / 414



Example 3: Non-Convex Theory &

so: Mz, Te, {})
lzEx=w V xX=w V x = w3

51 <rz,rE,{X = W1}> S3 <rz,rE,{X = W2}> S4 . <rz,rE,{X = W3}>
NlEU{x=wm} = L rEU{x =ws} = L

SzZL S5ZL

No more equations on middle leaf = I"is (Tz U Tg)-satisfiable.
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